[Article]

www.whxb.pku.edu.cn

锂离子电池复合正极材料 xLiFePO₄·yLi₃V₂(PO₄)₃ 的复合机制

郑俊超1 李新海1.* 王志兴1 李金辉1.2

伍凌1 李灵均1 郭华军1

(中南大学冶金科学与工程学院,长沙 410083; 2江西理工大学材料与化学工程学院,江西赣州 341000)

摘要: 以FePO₄·xH₂O₂V₂O₅、NH₄H₂PO₄和Li₂CO₃为原料,以乙二酸为还原剂,通过湿化学还原-低温热处理方法制备出锂离子复合正极材料 xLiFePO₄·yLi₃V₂(PO₄)₃. X射线衍射(XRD)结果表明,合成的材料中橄榄石结构的LiFePO₄和单斜晶系的Li₃V₂(PO₄)₃两相共存;从复合材料中LiFePO₄、Li₃V₂(PO₄)₃相对于相同条件下制备的纯相LiFePO₄和Li₃V₂(PO₄)₃的晶格常数变化以及结合高分辨透射电子显微镜(HRTEM)、能量散射 X射线(EDAX)的结果可以看出,在复合材料 xLiFePO₄·yLi₃V₂(PO₄)₃中存在部分 V和Fe,分别掺杂在LiFePO₄和Li₃V₂(PO₄)₃中,并形成固溶体;X射线光电子能谱(XPS)结果表明,Fe/V在复合材料中的价态与各自在LiFePO₄和Li₃V₂(PO₄)₃中的价态保持一致,分别为+2和+3价.充放电测试表明,制备出的复合正极材料电化学性能明显优于单一的LiFePO₄和Li₃V₂(PO₄)₃;循环代安测试表明,复合正极材料具有优良的脱/嵌锂性能.

关键词: 锂离子电池; 复合正极材料; 掺杂; *x*LiFePO₄·*y*Li₃V₂(PO₄)₃ 中图分类号: O646; TM912.9

A Coalescence Mechanism for the Composite Cathode Material *x*LiFePO₄·*y*Li₃V₂(PO₄)₃

ZHENG Jun-Chao¹ LI Xin-Hai^{1,*} WANG Zhi-Xing¹ LI Jin-Hui^{1,2} WU Ling¹ LI Ling-Jun¹ GUO Hua-Jun¹

WULING LILING-JUN GUU HUA-JUN

(¹School of Metallurgical Science and Engineering, Central South University, Changsha 410083, P. R. China; ²School of Materials and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China)

Abstract: Composite cathode material *x*LiFePO₄ · *y*Li₃V₂(PO₄)₃ was obtained from wet chemical reduction and lithiation method by using FePO₄ · *x*H₂O, V₂O₅, NH₄H₂PO₄, Li₂CO₃ as raw materials and oxalic acid as reductant. X-ray diffraction (XRD) results showed that the composite material contained olivine LiFePO₄ and monoclinic Li₃V₂(PO₄)₃ phases. High resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectrometry (EDAX) results indicated that some LiFePO₄ and Li₃V₂(PO₄)₃ in the composite material were doped by V and Fe, respectively, and formed a solid solution. The valences of Fe and V doping in Li₃V₂(PO₄)₃ and LiFePO₄ are +2 and +3, respectively. Charge and discharge tests showed that the synthesized composite material exhibited better electrochemical performance than individual LiFePO₄ and Li₃V₂(PO₄)₃. Cyclic voltammetry indicated the composite material showing good lithium ions extraction/insertion property.

Key Words: Lithium ion battery; Composite cathode material; Doping; xLiFePO₄·yLi₃V₂(PO₄)₃

锂离子电池自商品化以来,作为二次电池一直 备受人们的青睐.然而随着社会的发展,人们对锂离

© Editorial office of Acta Physico-Chimica Sinica

Received: April 17, 2009: Revised: June 12, 2009; Published on Web: August 7, 2009.

^{*}Corresponding author. Email: tonyson_011@163.com; Tel: +86-731-8836633.

The project was supported by the National Key Basic Research Program (973) of China (2007CB613607).

国家重点基础研究发展计划(973)项目(2007CB613607)资助

子电池的性能要求越来越高,如高容量、高安全性能、价格低廉等. 锂离子电池正极材料作为其最重要的组成部分,一直都是人们的研究热点. 在众多锂离子电池正极材料中,磷酸盐体系因具备结构稳定、资源丰富、比容量高、平台优良^[1-3]等特点一直是人们研究的焦点,其中最有前景的应该是 LiFePO₄ 和 Li₃V₂(PO₄)₃ 两种正极材料. LiFePO₄ 具有原料来源广泛、环境友好、结构稳定、高理论容量(170 mAh·g⁻¹)等优点,但存在离子导电率和电子导电率低的缺点^[4],一直限制着它的大规模应用; Li₃V₂(PO₄)₃ 具有结构稳定,高比容量(197 mAh·g⁻¹),放电平台高(平均放电平台3.6 V),高离子导电率等优点^[5],但同样存在着电子导电率低的缺点. 提高这两种材料的导电性都可以采用碳包覆^[67]、金属离子掺杂^[89]、制备小颗粒^[7,10]等来改善,但都存在不少问题.

由于这两种材料的特征接近,且制备这两种材料方法也是大同小异,且有关文献已报道过利用 Fe 或 V 分别来掺杂 Li₃V₂(PO₄)₃和 LiFePO₄可以提高材料的性能^[0,11],若将这两种材料复合在一起制备出来,可能会产生一部分 Fe 和 V 部分掺杂 Li₃V₂(PO₄)₃和 LiFePO₄,从而提高材料整体的导电性.本课题组前期研究^[12]表明,将两种材料复合制备出来,利用部分 高离子导电性的 Li₃V₂(PO₄)₃取代部分 LiFePO₄来提 高复合材料的离子导电性,其综合性能有较大提高, 然而并没有阐明 Li₃V₂(PO₄)₃和 LiFePO₄ 在复合材料 中的复合机制.本研究将重点研究复合材料 xLiFePO₄·yLi₃V₂(PO₄)₃的复合机理.

1 实 验

1.1 xLiFePO₄·yLi₃V₂(PO₄)₃的制备

xLiFePO4·yLi₃V₂(PO4)₃复合材料合成步骤如下: (1)将Li₂CO₃(纯度>99%,天津市双船化学试剂厂)、 FePO4·xH₂O(纯度>95%,自制)、V₂O₅(纯度>99%,湘 中化学试剂有限公司)、NH₄H₂PO4(纯度>98%,天津 市博迪化工有限公司)和HOOCCOOH·2H₂O(纯度> 98%,国药集团化学试剂有限公司)按化学计量比在 去离子水中混合均匀,在磁力搅拌器上搅拌2h至 糊状;(2)常温下在星形球磨机中球磨4h;(3)在鼓 风干燥箱中80℃条件下烘24h;(4)在氩气气氛下 进行热处理.具体反应方程如下:

 $2FePO_4 \cdot xH_2O + Li_2CO_3 + HOOCCOOH \cdot 2H_2O \rightarrow$ $2LiFePO_4 + 3CO_2 + (3+2x)H_2O$ $2V_2O_5 + 3Li_2CO_3 + 6NH_4H_2PO_4 + 4HOOCCOOH \cdot$ $2H_2O {\rightarrow} 2Li_3V_2(PO_4)_3 {+} 11CO_2 {+} 6NH_3 {+} 21H_2O$

1.2 材料表征

采用日本 Rigaku 公司的 X 射线衍射仪(Rint-2000, Rigaku)研究材料的物相结构;用 Tecnai G12型 透射电镜(TEM)表征材料的微观结构;用 EDAX 表 征材料中的元素分布;采用美国 Physical Electronics Company 的 PHI Quantum 2000 Scanning ESCA Microprobe 型能谱仪测试材料表面元素的化合价 态.

1.3 电池组装和测试

实验电池正极片由合成的 xLiFePO₄·yLi₃V₂(PO₄)₃ 复合材料、导电剂乙炔黑与粘结剂聚偏氟乙烯(PVDF) 按质量比8:1:1 混合,加入 N-甲基吡咯烷酮(NMP),均 匀涂覆在铝箔上,于 60 ℃的真空干燥箱中干燥 4 h. 负极为金属锂,电解液为 1 mol·L⁻¹LiPF₆ 的碳酸乙 烯酯(EC)+碳酸二乙酯(DEC)+碳酸甲乙酯(EMC)(1: 1:1,体积比)溶液,隔膜为 Celgard2400 膜,在氩气保 护的手套箱内装配成 CR2025 型扣式电池.充放电 测试在Neware 公司生产的充放电测试仪上完成,测 试的温度为常温,充放电电压范围为 2.5–4.5 V.用电 化学工作站(上海辰华 CHI660A)研究样品的脱/嵌锂 性能.

2 结果讨论

2.1 X 射线衍射分析

图 1 为 750 ℃下烧结 12 h 所得不同复合比例 (*x*:*y*)的复合材料 *x*LiFePO₄·*y*Li₃V₂(PO₄)₃ 的 X 射线衍 射图谱. 从图中可以看出复合比例 *x*:*y* 分别为 1:0 和 0:1 时, 合成的材料分别为橄榄石结构的 LiFePO₄ 和

- 图 1 750 ℃下制备的复合材料 xLiFePO₄•yLi₃V₂(PO₄)₃的 XRD 图谱
- Fig.1 XRD patterns of composite material *x*LiFePO₄· *y*Li₃V₂(PO₄)₃ synthesized at 750 ℃

表 1 合成材料 5LiFePO₄·Li₃V₂(PO₄)₃ 的晶胞参数 Table 1 Lattice parameters of the synthesized material 5LiFePO₄·Li₃V₂(PO₄)₃

Sample	Lattice parameters			
	a/nm	<i>b</i> /nm	c/nm	V/nm ³
LFP ₀ (pure)	1.033392	0.600914	0.469484	0.29154
LVP ₀ (pure)	0.857662	1.190671	0.868620	0.88703
LFP(LFVP)	1.030525	0.599436	0.469276	0.28989
LVP(LFVP)	0.849628	1.212471	0.866493	0.89262
LFVP: 5LiFePO ₄ ·Li ₃ V ₂ (PO ₄) ₃ ; LFP: LiFePO ₄ ; LVP: Li ₃ V ₂ (PO ₄) ₃				

单斜晶系的 Li₃V₂(PO₄)₃, 且没有杂相生成; 随着复合 比例在 1:0 和 0:1 之间变化, 合成材料的 XRD 图谱 中逐渐出现了 LiFePO₄ 和 Li₃V₂(PO₄)₃ 两相的特征衍 射峰, 同时出现了少量 Li₃PO₄ 杂质峰. 根据 Chung 等^[13]的研究发现, 当出现 M₂(Fe)位被取代时会出现 阳离子缺陷, 从而倾向于形成 Li₃PO₄ 杂质, 根据这 一研究结果可以推断 LiFePO₄ 中可能存在 Fe 位被 V 取代的现象.

为进一步证实这一现象,本研究选择复合比例 为5:1时合成的材料进行较为详细的研究.表1所示 为复合材料5LiFePO4·Li₃V₂(PO4)₃(LFVP)中LiFePO4 (LFP)、Li₃V₂(PO₄)₃(LVP)的晶格常数以及相同条件下 制备的纯相 LiFePO₄、Li₃V₂(PO₄)₃的晶格常数. 从表1 可以看出, 复合材料 LFVP 中LiFePO₄ 的晶胞参数 和晶胞体积相对于纯相的 LiFePO₄ 的晶胞参数有所 下降, 这可能是由于 V 的掺杂以及阳离子缺陷所导 致的; 复合材料5LiFePO₄·Li₃V₂(PO₄)₃ 中 LVP 的晶胞 参数 b 和晶胞体积相对于纯相的 LVP 却有所上升, 这可能是由于 Fe²⁺掺入 Li₃V₂(PO₄)₃ 晶格中, 而 Fe²⁺离 子的体积比 V³⁺离子体积更大导致; 根据文献[9,11]的 研究结果, 可以推测复合材料 5LiFePO₄·Li₃V₂(PO₄)₃ 中存在 Fe/V 相互掺杂 Li₃V₂(PO₄)₃ 固溶体.

2.2 HRTEM 分析

图 2 为 750 ℃下烧结 12 h 得到的复合材料 5LiFePO₄•Li₃V₂(PO₄)₃ 的 HRTEM 图. 从图 2(a)中可 以看出, 1 区和 2 区分别为两个完整的晶粒,中间 "分界线"为一个晶界; 图 2(b)为 2(a)图的高分辨图, 从图中可以清楚看到复合材料的晶格. 图 3 为图 2 (a)中1 区和 2 区的 EDAX 图谱,可以看出这两个晶

图 2 复合材料 5LiFePO₄·Li₃V₂(PO₄)₃的 HRTEM 图像 Fig.2 HRTEM images of composite material 5LiFePO₄·Li₃V₂(PO₄)₃

Fig.3 EDAX patterns of composite material 5LiFePO₄·Li₃V₂(PO₄)₃

粒所在的区域均含有 P、O、Fe 和 V, 从 EDAX 图谱 中各元素的峰强度可以看出 1 区和 2 区所含的 Fe、 V 的比例相差很大, 其中 1 区的 V 含量明显比 Fe 的含量高, 说明 1 区的主物相应该是 Li₃V₂(PO₄)₃, 2 区的 Fe 含量比 V 的要高, 说明 2 区所在的晶粒是 LiFePO₄. 由于这两个不同的晶粒中都存在 P、O、Fe 和 V 这四种元素, 可以推断元素 Fe 和 V 已经完全 融入到LiFePO₄ 或 Li₃V₂(PO₄)₃ 的晶格之中; 结合前面 的XRD 图谱以及复合材料的晶格参数的变化, 说明 在复合材料 xLiFePO₄·yLi₃V₂(PO₄)₃ 中存在着 Fe 和 V 分别相互掺杂在 Li₃V₂(PO₄)₃ 和 LiFePO₄ 中.

2.3 XPS 分析

为了分析在合成材料中 Fe 和 V 的具体价态, 本实验对在 750 °C温度烧结 12 h 制备出的复合材 料 5LiFePO₄·Li₃V₂(PO₄)₃进行了 XPS 分析,如图 4 所 示. 从图 4 中各个峰位可以看出,制备出的复合材料 中含有 O、Li、P、Fe、V 和 C 几个元素,其中 C 元素 来自于残余的草酸热分解而产生的,Fe 2 p_3 和 V 2p的峰位分别位于 712.1 和 517.3 eV 处,表明 Fe 和 V 在复合材料的价态分别为+2 和+3 价.这一结果说明 无论是掺入 LiFePO₄ 的 V,还是掺入 Li₃V₂(PO₄)₃ 中 的 Fe,其价态均与主相 LiFePO₄ 及 Li₃V₂(PO₄)₃ 中 Fe 和 V 的价态是一致的. Ren 等¹⁰的研究表明,当 Fe掺 杂到 Li₃V₂(PO₄)₃ 中时,Fe 的价态为+3 价;这一结论 与本研究有所出入,可能是由于本研究采用的强还 原剂草酸将 Fe 还原为+2 价所致.

2.4 电化学性能

从以上分析可知,复合正极材料 xLiFePO₄· yLi₃V₂(PO₄)₃的组成非常复杂,但主要存在以下几个相: LiFePO₄、Li₃V₂(PO₄)₃、Li_mFe_{m-2}V₃PO₄和Li₃V_{2-m}Fe_m(PO₄)₃、从理论容量上来讲,LiFePO₄正极材料的理论容量 可达 170 mAh·g⁻¹,而Li₃V₂(PO₄)₃在脱两个锂离子 时的理论容量为132 mAh·g⁻¹(由于本文中所采用电 解液(1 mol·L⁻¹ LiPF₀/EC+DEC+EMC)体系的限制, 在较高的电压(>4.5 V)下容易分解,因此,未考察材 料中第3个锂离子的脱嵌),将这两种材料复合在一 起的复合材料的理论容量必然在132和170 mAh·g⁻¹ 之间.由于掺杂体系Li_xFe_x2V₃PO₄相和Li₃V₂*Fe_x(PO₄)₃ 相的出现,必然会提高复合材料总体的导电性,再加 之Li₃V₂(PO₄)₃是具有 NASION 结构的快离子导体, 所以在理论上复合材料的倍率性能较单一的 LiFePO₄和Li₃V₂(PO₄)₃都要好.

图 5 中(a)图为同一制备条件下制备出的纯相的 LFP、LVP 和 LFVP 的充放电曲线,充电为 0.1C (14 mA·g⁻¹),放电为 1C(140 mA·g⁻¹).从图中可以看出纯相的 LFP 和LVP 均表现出了各自的特征充放电平台,而LFVP 的充放电平台分别有四个,对应着一个 LFP 特征平台和三个 LVP 特征平台;从 LFVP 的特征平台可以看出,在复合材料 LFVP 中,除了 LFP 和 LVP 相的特征平台相互复合以外,没有出现 其他的未知平台.在 1C 放电时,LFVP 的充放电曲线极化最小,放电比容量最高,达 156 mAh·g⁻¹,这说明 Fe 和 V 相互掺杂使各个单一材料的导电性都有所提高,从而具有良好的电化学性能.

图 5(b)为复合材料 LFVP 的循环伏安曲线, 扫 描速率为 0.05 mV·s⁻¹, 扫描电压范围为 2.5-4.5 V. 从图中可以看出, 曲线共有四对氧化还原峰, 分别对 应着锂离子的脱嵌, 其中三对是属于 Li₃V₂(PO₄)₃ 的 特征氧化还原峰, 电位分别对应着4.03(4.10)、3.64 (3.68)和 3.57(3.60) V; 一对属于 LiFePO₄ 的特征氧化 还原峰, 电位对应着 3.38(3.54) V. 除了这四对特征 峰以外, 没有发现任何其他的特征峰. 从图中还可以 看出, 各对氧化/还原峰所对应的电位的间隔差都非 常的小, 这说明复合材料 5LiFePO₄·Li₃V₂(PO₄)₃ 的脱

(b) and (c) are magnifications of (a) at Fe $2p_3$ and V 2p peaks.

图 5 复合材料 5LiFePO₄·Li₃V₂(PO₄)₃(LFVP)的充放电曲线(a)和循环伏安曲线(b)图 Fig.5 Charge/discharge curves (a) and cyclic voltammetry curves (b) of the composite material 5LiFePO₄·Li₃V₂(PO₄)₃(LFVP)

(a) charge capacity: 0.1C (14 mA·g⁻¹); discharge capacity: 1C (140 mA·g⁻¹); (b) sweep rate: 0.05 mV·s⁻¹; sweep voltage: 2.5-4.5 V

嵌锂性能良好.

3 结 论

以 $FePO_4 \cdot xH_2O_VV_2O_5$ 、 $NH_4H_2PO_4$ 和 Li_2CO_3 为原料, 以乙二酸为还原剂, 通过湿化学还原-低温热处理制备了锂离子电池复合正极材料 xLiFePO_4 · yLi_3V_2(PO_4)_3. XRD 结果表明, 复合材料由 LiFePO_4和Li_3V_2(PO_4)_3 两相组成, 杂质 Li_3PO_4 伴随着 Li_3V_2(PO_4)_3 相的出现而出现; 从复合材料 5LiFePO_4 · Li_3V_2(PO_4)_3 中 LiFePO_4和Li_3V_2(PO_4)_3 两相的晶胞参数的收缩, 以及HRTEM和EDAX的分析结果可知, 复合材料中的LiFePO_4和Li_3V_2(PO_4)_3存在着V和Fe的相互掺杂; XPS表明掺入LiFePO_4中的V和掺入Li_3V_2(PO_4)_3中的Fe, 价态都和主相LiFePO_4及Li_3V_2(PO_4)_3中的Fe 和V的价态是一致的; 电化学测试表明, 这种相互掺杂的复合材料 5LiFePO_4·Li_3V_2(PO_4)_3具有良好的充放电性能和脱/嵌锂性能.

References

1 Padhi, A. K.; Nanjund, A. K. S.; Goodenough, J. B. J. Electrochem.

Soc., 1997, 144(4): 1188

- 2 Huang, H.; Yin, S. C.; Tracy, K. Adv. Mater., 2002, 14(2): 1524
- 3 Wu, Y. P.; Ying, J. R.; Jiang, C. Y. Lithium ion battery. Beijing: Chemical Industry Press, 2002: 56-58 [吴宇平, 应皆荣, 姜长印. 锂离子二次电池. 北京: 化学工业出版社, 2002: 56-58]
- 4 Padhi, A. K.; Nanjund, A. K. S.; Masquelier, C. *Electrochem. Soc.*, 1997, 144(5): 1609
- 5 Huang, H.; Yin, S. C.; Kerr, T. Adv. Mater., 2002, 14(21): 1525
- Liu, H.; Fu, L. J.; Zhang, H. P. *Electrochem. Solid-State Lett.*,
 2006, **9**(12): A529
- 7 Li, Y. Z.; Zhou, Z.; Ren, M. M.; Gao, X. P.; Yan, J. *Electrochim. Acta*, **2006**, **51**: 6489
- 8 Liu, H.; Fu, L. J.; Li, C. Electrochem. Commun., 2006, 8(10): 1553
- 9 Ren, M. M.; Zhou, Z.; Li, Y. Z.; Gao, X. P.; Yan, J. J. Power Sources, 2006, 162: 1357
- 10 Zheng, J. C.; Li, X. H.; Wang, Z. X. J. Power Sources, 2008, 184: 574
- Chen, X. J.; Cao, G. S.; Zhao, X. B.; Tu, J. P.; Zhu, T. J. J. Alloy. Compd., 2008, 463: 385
- Zheng, J. C.; Li, X. H.; Wang, Z. X. Journal of Inorganic Materials, 2009, 14(1): 143 [郑俊超, 李新海, 王志兴. 无机材 料学报, 2009, 14(1): 143]
- Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater., 2002, 1
 (2): 123