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一种确定反应中间态几何特征和能量的综合性方法

郑 铮异 刘振明异,鄢 张亮仁
(北京大学药学院药物化学系,天然药物及仿生药物国家重点实验室,北京 100191)

摘要： 通过综合使用传统的过渡态优化算法、数学统计工具以及人工神经网络算法(ANN)找到一种不依赖于
反应物起始构象而得到化学反应中过渡态结构和能量的方法.在两个反应物互相接近的过程中,每一步的几何
构象都对应着一个系统能量值.本研究的目的是尽可能地收集处在反应能量面上的这种能量点值.通过采用几
何参数作为自变量对势能面进行模拟研究,得到了势能面上对应过渡态结构的一阶鞍点.采用乙醛负离子和甲
醛作为反应物,对经典的醛醇缩合反应中的亲核进攻步骤进行了研究.对内禀反应坐标(IRC)路径的计算是从反
应物的三组不同起始构象出发,最终获得了反应势能面上的 96个点.本研究中的势能面采用人工神经网络算法
进行模拟研究,并利用交叉验证方法评估得到的结果,避免了采用人工神经网络算法时过度拟合情况的发生.
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A Combined Method for Determining Reaction Transition State
Geometry and Energy
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(State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry,
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Abstract： We found an alternative method for the derivation of transition state structure energy in chemical
reactions which would be less dependent on the starting geometry of reactants by combining a mathematical tool and
artificial neural networks (ANN) with conventional transition state optimization algorithms. When two reactants approach
each other, every geometric structure corresponds to a system energy value. The purpose of this investigation was to
collect as many energy values on the reaction energy surface as possible. By simulating the energy surface using the
geometric parameters as independent variables, the first order saddle point in the energy surface corresponding to the
transition state structure was derived. The nucleophilic attack step of a classical Aldol reaction was studied using
acetaldehyde anion and formaldehyde as reactants. The intrinsic reaction coordinate (IRC) path calculation started with
3 different sets of starting reactant geometries and 96 points on the reaction energy surface were derived. The energy
surface was simulated using ANN. Cross鄄validation was applied to evaluate the result and avoided a possible
overfitting of the ANN.
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In the investigation of reaction dynamics, finding transition
state structure is a difficult task for many reasons [1-3]. The most

serious problem is that the starting geometry is easy to make the
algorithms fail to derive the correct transition state structure and
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get the local minimum in the reaction energy surface. With
Quasi鄄Newton technique, the optimization will only be able to
find the correct geometry if the starting geometry is sufficiently
close to the transition state geometry. The starting geometry
should also be closer to the reaction transition state structure
than to any other structures satisfying the same mathematical
criteria. As the results of conventional transition state optimiza-
tion algorithms were to a great extent bound to the starting ge-
ometry of reactants in the reaction dynamic research of many re-
actions, sorts of combined methods that were more reliable and
accurate were raised for finding the transition state structures
and the intrinsic reaction coordinate paths these years[4-9].

Artificial neural networks (ANN) was introduced in calcula-
tion of finding transition state. ANN is a learning system based
on a computational technique, which attempts to simulate the
neurological processing ability of the brain[10-12]. ANN could be
applied to quantify a non鄄linear relationship between the causal
factors and outputs by means of iterative training of the input da-
ta. Generalization capacity of trained networks is far exceeding
that of poly multiple regression. Back propagation (BP) algorithm
was employed in the current investigation[13].

The nucleophilic attack step of classical Aldol reaction was
selected (Fig.1). Acetaldehyde anion and formaldehyde acted as
reactants and 3鄄hydroxy鄄propionaldehyde anion was the product.

1 Methods
In the current investigation, three starting geometries were set

firstly by fixing the distance between reactive spots on two opti-
mized reactants to van der Waals distance (D), D+0.005 nm, D+
0.01 nm, D+0.015 nm, and D+0.02 nm. Quadratic synchronous
transit method (QST3) was performed and hence five local mini-
mum energy values were derived. Then HF calculation was per-
formed based on the five structures corresponding to these local
energy minima in order to find the reaction paths from the start-
ing geometries leading to these corresponding structures. Ninety鄄
six points on the reaction energy surface and their corresponding
geometric parameters were derived. To ensure the simulation a-
bility of ANN, input variables should be orthogonal and signifi-
cant. In the current investigation, distance of C—C bond of ace

taldehyde anion (D1) and that of C襒O double bond of formalde-
hyde (D2) were selected to act as inputs to the ANN for simulating
the reaction energy surface. Saddle point of the surface can then
be calculated.

2 Results and discussion
2.1 Data preparation and standardization

Firstly, the two reactants, acetaldehyde anion and formalde-
hyde, were optimized using RHF/6鄄31G with Gaussian 98W [14].
As second step, distance between 琢鄄carbon of acetaldehyde an-
ion and carbon of formaldehyde was set to van der Waals dis-
tance (D), D+0.01 nm, and D+0.02 nm, respectively. Using QST3
method and IRC algorithm performed by Gaussian 98W, ninety鄄
six eigenvalues of frontier molecular orbitals derived from D1,
D2 and system energies were collected (listed in Supporting In-
formation, Table S1, which is available free of charge via the in-
ternet at http://www.whxb.pku.edu.cn).

Data standardization is crucial for both input and output data
in BP algorithm. The purpose of data standardization of causal
factors is to avoid the plateau phenomenon in training and accel-
erating the learning speed of the network [15,16]. Activation func-
tions between biases are saturated nonlinear functions; hence
saturation of training readily occurs in the training process,
which makes the accuracy of training increase slowly or even
hardly. Meanwhile, any input of nodes in the secondary or final
bias is the weighted sum of all the outputs of the nodes connect-
ed to it in the former bias. Range restriction of the causal factor
data can reduce the difficulties in training the weights of all con-
nections and avoid the saturation of training. For data of the bio-
logical activity, widely ranged data are readily causing dead
links in training[17]. In polynomial simulation, standardization is
crucial as well. Quite often the data sets are a mixture of various
measurements made on different scales and/or in different units.
Standardization is to eliminate the measurement units and mini-
mize the influence of one component with very large magnitudes
as opposed to other data components that are small in magni-
tude.
2.2 BP algorithm models, artificial neural networks

training and cross鄄validation
In the current investigation, standardization is performed as

follows:

x忆= x-xmin+0.01
xmax-xmin+0.01 (1)

y忆= y-ymin+0.01
ymax-ymin+0.01 (2)

where, xmax and xmin are frontier orbital eigenvalues in the x direc-
tion on the maximum distance and minimum distance, respec-
tively; x is the characteristics of the orbital in the front line in the
x direction of the value of the actual distance; x忆 is frontier orbital
eigenvalues in the x direction after normalized values. ymax and
ymin are frontier orbital eigenvalues in the y direction on the max-
imum distance and minimum distance, respectively; y is the
characteristics of the orbit in the front line in the y direction of
the value of the actual distance; y忆 is frontier orbital eigenvalues

Fig.1 (a) Nucleophilic attack step of classical Aldol
reaction; (b) distance of C—C bond of acetaldehyde anion

(D1) and C襒O double bond of formaldehyde (D2)
D1 and D2 are selected to act as inputs to the ANN for simulating

the reaction energy surface.
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in the y direction after normalized values. This method made the
distribution of data between 0 and 1. We added 0.01 in both nu-
merator and denominator in order to avoid the minimum value
in data of inputs or outputs turning to zero (Fig.2).

Theoretically, BP algorithm is a model of nonlinear fitting
process. As a useful module of Matlab 6.5 software package,
ANN was performed in the current investigation. Briefly, the
model of BP algorithm is composed of connections of the pro-
cessing elements (nodes). The processing elements transfer data
from one bias to the next through activation functions until the
output bias. Three鄄bias BP model was used under the current in-
vestigation, for its higher tolerance to mistakes and a compara-
tively simple structure for training.

The number of hidden nodes has a particularly large effect on
the generalization capability of the network. The principle for
determining the number is to use as few hidden neurons as pos-
sible on the prerequisite to maintain the precision of training.
According to Kolmogorov忆s theorem[18], networks with 1 hidden
neuron to 7 were all tested. The network with 6 hidden neurons
was found to be the simplest in structure while with compara-
tively fast decent velocity of error.

The network passes through activation functions defined as
the sigmoid function. Under the current investigation, tansig(x)
is selected as the activation function that defines the transference
from input bias to hidden bias. lgsig(x) is selected as the activa-
tion function that defines the transference from hidden bias to
output bias.

TRAINGDX, a network training function that updates weight
and bias values according to gradient descent momentum and an
adaptive learning rate, was selected to the model that deals with
the relationship between the data of inputs and the data of out-
puts. Comparing with other training strategies, TRAINGDX had
the highest convergent velocity in training in the current investi-
gation. Performance goal was set to 0.001 in the current investi-
gation and minimum performance gradient to 10-10. Cross鄄valida-
tion (leave鄄1鄄out method) of the training results was employed
in order to monitor and avoid overfitting in training.

Cross鄄validation (leave鄄n鄄out method) of the training results was

employed in order to monitor and avoid the phenomenon of
overfitting. Leave鄄1鄄out method was introduced under the cur-
rent investigation to judge the ending of training, because test set
with one datum makes the test more objective and more accept-
able. From all the compounds, test set is chosen one by one.

The result of cross鄄validation was listed in Supporting Infor-
mation (Table S2), R2 reached 0.979. This proved that surface of
reaction energy simulated by BP algorithm of ANN was con-
vincing.

Hence a quantitative relationship was built between the geo-
metric parameters and the system energy in reaction using BP al-
gorithm. The first order saddle point that was an energy maxi-
mum in one direction and a minimum in all others in the surface
should correspond to the transition state. Based on the trained
networks, two stagnation points existed in the surface and one of
them was saddle point. The energy of transition state was
0.28357 (standardized datum) or -266.15721 hartree, its corre-
sponding D1 was 0.2634 (standardized datum) or 0.1545382 nm;
eigenvalue of the length according to LUMO was 0.78466 (stan-
dardized datum) or 0.1338472 nm.

Contour line was ploted in Fig.3. Two stagnation points were
marked with cross in the figure with the left one indicating the
energy of transition state.

3 Conclusions
In conclusion, the current investigation provided a method to

search the energy of transition state structure and the corre-
sponding geometric character. The more points on the reaction
energy surface were found, the more convincing and accurate
the simulation of ANN would be. Geometric parameters are the
best chose to act as input variables to the ANN for the simula-
tion of system energy, because they are orthogonal and indepen-
dent to each other, and because they are the most direct and ex-
act descriptors to define a structure, which increases the simula-
tion accuracy of ANN. In the current investigation, two signifi-
cant geometric descriptors were selected as the independent
variables, for the simplification. However, the disadvantage of
this method is that reaction with complex reagents would require
a large number of geometric descriptors. Large amount of input
variables would add to the difficulty of ANN training. It would
lower the accuracy of the simulation of ANN, and take much

Fig.3 Contour line of reaction energy surfaceFig.2 Data plot of the system energy related with
LUMO and HOMO

HOMO: the highest occupied molocular orbital,
LUMO: the lowest unoccupied molecular orbital; E, D1 and D2 are normalized
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longer CPU time to complete the work.
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