ISSN 1673-9418 CODEN JKYTAS E-mail : fest@public2.bta.net.cn
Journal of Frontiers of Computer Science and Technology http : //www.ceaj.org
1673-9418/2008/02(04)-0389-16 Tel : +86-10-51616056
DOI:10.3778/}.issn.1673-9418.2008.04.006

Using Abstract Quality Types to Construct High Quality Internetware”

QU Youtian", WU Zejun*, JIAO Wenpin®*, CHEN Tianzhou’, HE Guolong'

1. College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, Zhe-
jiang 321004, China

2. China Construction Bank (Hubei Branch), Wuhan 430015, China

3. Software Institute, School of Electronics Engineering and Computer Science, Peking University, Beijing
100871, China

4. Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing
100871, China

5. Department of Computer Science, Zhejiang University, Hangzhou 310027, China

+ Corresponding author: E-mail: quyt@zjnu.cn

Ul G)i IRt v Dotk PR K A

ERH v, ZEE2EXE M BRRNS,AEA !
ALIFE R KRB L RS, T 24 321004
P R ARAT (H AL 5-47), X 430015

TR ZEAFHRFR KMAEA, LT 100871
BTN BEARBF I ETEERE, LT 100871
LR AR AN 310027

A e

WO AR TR RS R (P ARG MM B, BT A TR0 BB E B4 B3 2 40
S AR F B AR R M B 69 T A AR B R SR A T BB AT S AR TR AT 2 R F A B AT
Bk — AT IRAEFe IR, B T — AT RS, PR B R A KR ARG BER S AR R A9 ARAE
T % B P A BARAE I S A3 LI R H R e — N — 09355 20, Am A BRSO RIS L Ak
FodE Db B R T — A BB F R IKIT TR TR R A M AR R ZABOHEREEAGEE XA

* the National Natural Science Foundation of China under Grant No.60773151 ([H% HXEIF3E4); the National Grand Fundamental
Research 973 Program of China under Grant No.2005CB321805 (5 H s EREIFIT & EMLEI(973)); the National High—Tech
Research and Development Plan of China under Grant No.2006AA01Z175 (R @AM & J&11%)(863)); the Natural Sci-
ence Foundation of Zhejiang Province of China under Grant No.M603245,Y106469 (T4 ARElIFH4).

Received 2008-02, Accepted 2008-05.

390 Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

MIEGHRERABAFRBET OB RE, EHE T — N EARRAERETTARMERE LM
BB, SFBRIEfRR S MR AL E T Z B,

SRt A AR R R R A R AR A

SCiRAR B :A - rpIEl 4y R85 TP301

QU Youtian, WU Zejun, JIAO Wenpin, et al. Using abstract quality types to construct high quality
internetware. Journal of Frontiers of Computer Science and Technology, 2008,2(4):389-404.

Abstract: In the development of software systems on the Internet (referred to as Internetware), multiple quality
properties should be considered along with the development process so that the quality of Internetware can be
inferred and predicted at the specification and design stages and be evaluated and verified at the deployment
and execution stages. A new abstraction notion, Abstract Quality Type (AQT), is put forward to encapsulate
data types, associated operations, quality properties and the environment guaranteeing the qualities into an u-—
niform syntactical unit, which provides rigorous ways to model software entities and to reason about the func—
tional and non—functional properties. The composition of AQTs is also studied based on the software architec—
ture and the process of interactions, which offers a solid foundation for constructing high quality Internetware.
Finally, a prototype is described to illustrate how to construct Internetware by using AQTs as well as how to
verify and improve a special kind of quality property of Internetware.

Key words: component; software quality; abstract quality type; Internetware

service

1 Introduction

The worldwide expansion of the Internet has re—
sulted in the dramatic change of the mode of con-
structing software systems on the Internet (referred
to as Internetware in the paper). Service —oriented
architecture!'! has been becoming the foundation of
constructing Internetware. Services scattered on the
Internet are independent and they can be put together
dynamically at run time and possibly across admin-
istrative domains. Service providers are autonomous
and can decide by themselves whether and how to re—
spond to requests for services, and they even change
their behavior modes without notifying the service

consumers. Consumers should be assured that they

could be served as required. Furthermore,
providers and consumers generally take actions on
behalf of diverse interest groups and execute in dif-
ferent administrative domains, and their behaviors
must not damage the profit of each other. Therefore,
services cannot be invoked in the traditional sense
and Internetware may have to be dynamically formed
by independent and autonomous software entities.
How to construct high quality Internetware has become
one of the grand challenges in the era of the Internet.

To model and construct high quality Internet—
ware, we should take into consideration both the
functional requirements and the non—functional re—

quirements (or quality properties)'. However, cur—

"'In the literature, non—functional requirements, constraints, goals and qualities are often referred to the same properties of soft—

ware systems!'"®

BAHH T AL RERA RS R E MRt

391

rent existing approaches usually model those func—
tional and quality properties separately. For exam-—
ple, in the component—based software development,
component developers are required to only focus on
the business logic of applications whilst the non-—
functional properties (i.e., quality constraints of the
components) are left to the component deployment
phase, which will be specified in the deployment in—
formation and finally guaranteed by the running
support platform of components.

Separating the functional and non—functional re—
quirements in the development of components can
bring us many advantages. For instance, when the
functional requirements change, we can modify inde—
pendently the implementation of the component of
the rest of the application. When the non-functional
requirements change, we even need only to re—de—
scribe the deployment information without modifying
the component’s implementation.

However, the separation of functional and non-
functional requirements results in much bewilderment
in the process of assembling systems.

First, the composition of quality properties is even
impossible or it is possible but not at the same
phase as that of functionalities, which makes it dif-
ficult to reason about the whole characteristics of
the systems according to the properties of the in-
volved components. Quality properties usually cannot
be refined, which makes it impossible to decide the
quality requirements of components according to the
global quality requirements of the systems.

Second, it is a paradox dealing with the func—
tional and quality requirements of components sep—
arately. When we are constructing systems by using
components, we must be concerned with the system

quality properties. However, if we consider the sys—

tems as composite components, we should only fo—
cus on the business logics of the applications while
developing the composite components based on the
philosophy of the traditional component—based devel-
opment approaches.

Thirdly, the outstanding advantage of components
is that it is possible to separate the process logics of
components from their running environment. Howev-
er, the qualities of a software system are not only
related to the involved components but also depen—
dent on the environment where the system is situat—
ed and runs. The separation will make it impossible
to reason about the system properties based on the
properties of components at the development phases.

Currently, software qualities have become one
of the main concerns in the development of software
systems. If we cannot reason about the wholeness of
the system based on the properties of the involved
components, it will be very difficult to construct
high quality software systems. In that case, the de—
velopment of high quality software systems will lack
of a rigorous foundation and developers will have to
take ad hoc methods to cope with specific quality
requirements of software systems.

In this paper, we put forward a new notion to
abstract and model software entities as a foundation
for constructing high quality Internetware.

Generally, there are two fundamental kinds of
abstraction in the development of software systems,
i.e., data abstraction and process abstraction. In the
early time, these two kinds of abstraction were dealt
with separately and until abstract data type and ob-
ject—orientation became the mainstream techniques in
the development of software systems, they were
combined into a unit.

In our opinions, there is another kind of ab-

straction crucial to the development of contemporary

392 Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

software systems, i.e., quality abstraction. The con—
tributions of this paper are as follows.

First, we propose a new notation to integrate
data abstraction, process abstraction and quality ab-
straction together. As people do while naming ab-
stract data type, we name an unit encapsulating da—

ta types, processes (or operations) and qualities as

Abstract Quality Type (Abbreviated as AQT).

By encapsulating data types, associated opera—
tions and qualities into an unit, it will be possible
for us to develop a rigorous way to integrate and
reason about non—functional properties of software en—
tities from design—time to run—time.

Second, with the uniformity, we can truly de—
fine Internetware recursively from simple components
and composite components. Subsequently we can in—
fer the properties of systems from integrated compo-—
nents and inversely select components to integrate
systems and improve the quality of the integrated
systems.

In the following context, Section 2 describes
the formal definition of AQT and gives some exam-—
ples of AQTs. Section 3 probes into the composition
of AQTs to offer a foundation for composing high
quality Internetware. Section 4 describes a prototype
for verifying and improving the quality of Internet—
ware. The last two sections compare with some re—
lated work and make some conclusion remarks on

our current work.

2 Abstract Quality Type

Before giving the formal definition of abstract
quality type, we will first introduce some prelimi—
nary concepts.
2.1 Related Concepts

Environment. While seeing about the qualities

of software entities, we should consider all factors

that may affect the qualities. However, currently,
software systems are often presumed as closed worlds
and only pure software factors are taken into consid—
eration.

In fact, the qualities of Internetware are affected
not only by the systems’ own properties, such as
coding and architecture, but also by the environments
where the systems are situated. Therefore, while ex—
ploring properties of the AQT, we should take the
environment factors into consideration as well.

The environment of a software entity provides
the living space and resources for the entity to per—
form actions and achieve goals. A software entity
can interact with the environment via perceiving and
affecting the environment. Without the environment,
an entity cannot exist and run to implement its
functionality.

If we view the environment that an AQT is sit—
uated as a world formed purely by other AQTs, we
can regard the environment of an AQT as a collec—
tion of other AQTs that are closely related with the
AQT. Those AQTs involved in the environment will
contribute more or less to the implementation and
run of the AQT.

Suppose that 4Q7 is the set of AQTs, an

AQT’s environment (notated as ‘%,) is a subset of

AQT in which there is a tight relationship between
the AQT and each element.

£, e P 4QT \ YV x € AQ7(dependOn(a,x)) (1)
P 4QT is the power set of 4AQT and dependOn(x,y)
is a predicate representing that x depends on y in
terms of functionality as well as non—functionality,
which will be discussed in detail in the following
context.

Quality. Quality is a kind of evaluation to a
specific discussed object, which reflects how well

the object satisfies the expectation of people (or the

BAHH T AL RERA RS R E MRt

393

reviewer).

The quality of a software entity is related with
its internal states (including data, processes and
other qualities) and the external environment.

Suppose that ¢ is one of the quality properties
to which that the software entity A is devoted and

E, is the environment where A is situated, then a

quality can be specified as a mapping from its de-
pending factors to an evaluation (i.e., a real value
ranged from 0 to 1).

q: ExA—[0 .. 1] (2)

Environment Dependency. Generally speaking,
a software entity may rely on others to achieve its
design objectives, including its computation and
quality. We say that a software entity is dependent
on an object if the entity will invoke the object’s
computation or use the object as a resource when
the entity is engaged in the accomplishment of its
goals. In the following context, we will not distin—

cuish the different connotations of “invoke” and

“use”?. Since all of those software entities on which
the software entity depends are part of the entity’s
environment, we refer all dependencies between the
entity and others to as environment dependency.

The dependencies between a software entity and
into two cate—

the environment can be classified

gories, i.e., computation and quality dependency.
Computation dependency represents that part of the
entity’s computation must be carried out by other
computation entities whilst quality dependency indi-
cates that the entity’s quality is impacted by the

qualities of other entities involved in the environment.

Generally, computation dependencies will definitely

affect the quality of the entity, but quality depen—
dencies may not be resulted from computation de—
pendencies. Since functionality can also be consid—
ered as a special quality property, we will not pur—
posely differentiate computation dependency from
quality dependency in the following context.

When the quality of an AQT is dependent on
multiple other objects, the dependency relations can
be further specified as concatenated (or linear),
parallel (or selective), or hybrid dependency.

Concatenated dependency means that the quality
property is simultaneously dependent on several ob-
jects. For example, an AQT needs to contiguously
invoke several services provided by other AQTs to
implement its computation, then the quality property
of the AQT

(e.g., correctness or performance) is

determined by those depended services together.

Suppose that A’s quality property (), is concatenat—

edly dependent on the related qualities of a list of
other AQTs, we can represent this dependency rela—
tion as follows.

Q, cDependOn(Q, ,Q, ,*,0,) (3)

Q, (1<i<n) is a specific quality property of AQT
A,. In the dependency relation,), can be another
type of quality different from (Q,% For instance, the

A’s correctness may be affected by another AQT’s
reliability.

Parallel dependency means that the quality
property is selectively dependent on one or some of
a collection of objects. For example, an AQT may

select different other AQTs to request for services

in different situations and the AQT will depend on

2 In the following context, we may directly use A dependOn(A’) instead of @, dependOn((,) when we do not care about the

concrete qualities or the depended and the depending qualities are the same ones.

394 Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

different AQTs when the selection is varied. A par
allel dependency relation can be notated as follows.

Q, pDependOn(QA, ’QA:"",QA,,) (4)

Hybrid dependency is a mixed case of the
above two kinds of dependency and a hybrid depen-—
dency relation can be represented as a composition
of concatenated and parallel relations.

In a dependency relation, an AQT’s quality
can be dependent on the same or different quality
properties of other AQTs. For instance, an AQT’s
availability may be dependent on another AQT’s se—
curity in the case that the depended AQT’s security
threshold is so high that it often does not provide
services, which will result in a low availability of
the depending AQT.

The dependency between AQTs can be qualita—
tive as well as quantitative. Further, qualitative de—
pendency can be positive or negative. Positive (or
negative) dependency means that the higher the
depended AQT’s quality is, the higher (or lower)
the depending AQT’s quality is.

Q, +cDependOn(Q,) or Q, —cDependOn(Q,)
The sign (+/-) indicates the dependency relation is
positive or negative.

For quantitative dependency, the measurement
of an AQT’s quality can be calculated from those
depended qualities. For different dependency rela—
tions, the computations of qualities may be distinct.
For example, suppose that A’s qualities are depen—
dent on the qualities of A, ,4,,:*,A,.

For the concatenated dependency, A’s reliability
can be computed as RA=HRL., where R, is A,’s
p

reliability. Differently, for the parallel dependency,

if the depended AQTs are used to realize a redun—

dancy-based fault-tolerant mechanism, A’s reliabili—
ty can be calculated as follows.

RA:]:][Rl.—

n

Z R, xR, +--+

iy ,0,=150, #i,

0" Y IIr

iy, =i, Eiy A £ =1

If the depended AQTs are accessed randomly to
provide services, A’s reliability is R, = Zpi xR,
i=1

assumed that the probabilities of selecting and ac—
cessing those AQTs’ services are p,(1<i<n).

Environment Requirement. The environment
dependency accounts for how the existing environ—
ment restricts and affects the behavior of AQTs
while they are realizing their objectives. Differently,
the environment requirements specify the prerequisite
that an AQT could realize its goals, which de-
scribes the environment conditions required for the
AQT to run and implement its functionality. Howev—
er, even though the environment requirements of the
AQT are satisfied, the AQT is not assured of realiz—
ing its goals if the environment dependencies are
damaged. For instance, an AQT needs to invoke
another AQT’s service to implement its own service.
Then the AQT’s environment is required to situate
the other AQT for the invocation. Nevertheless, if the
other AQT is unreliable, the AQT depending on it
will be unreliable, either.

The environment requirements of an AQT can
be divided into two classes, i.e., requirements for
implementing the AQT and requirements for running
the AQT. The implementation requirements denote
the assistance, mainly including those invoked ser—
vices, which are provided by other AQTs for the

AQT to implement its functionality; and that the

BAHH T AL RERA RS R E MRt

395

running requirements are the demands on the runtime
environment after the AQT is deployed and executed.
For instance, in a client/server—based system, the
implementation of the AQT at the client end relies
on the services provided by the server, while the
execution of the AQT lies on the stable connection
to the server.

However, because an AQT may be integrated
into different Internetware and executed in different
running environments (for example, in a client/server—
based or layered software system), its runtime envi—
cannot be determined and

ronment requirements

fixed at the specification and design phases of the
AQT. Therefore, while discussing the environment
requirements of AQTs, we will only specify the im—
plementation requirements in the specifications of
AQTs whilst the runtime environment requirements
and dependency will be discussed when we investigate
the composition of AQTs in the following section.
Only when the environment meets the require—
ments can the AQT provide services properly; and
only under the environment satisfying the AQT’s re—
quirement can the AQT’s qualities be computed ac-
cording to the environment dependency relations.
2.2 Abstract Quality Type and Example
Similarly as ADT (Abstract Data Type), an AQT
encapsulates the data types, associated operations,
and expected quality properties of a software entity
in an uniform syntactical unit and meanwhile uses
axioms to formally specify the relationships among
them, especially the dependency relations between
the quality properties and the environment. An
AQT’s specification is independent of any particular

implementations of its data types and the operations.

For specifying the quality properties formally

and the dependency relations between quality prop—
erties and the environment in an appropriate way,
we also include the environment requirements of the
AQT in the specification. Then an AQT can be de-
fined in a quintuple.

AQT=<DT,OP,Q,Env—Req ,Ax> (5)
DT is the data types of variables encapsulated in
the AQT, OP is the set of operations exported by
the AQT, and @ is the quality properties expected
by the AQT.

Env-Req is the environment requirements on
which the AQT depends to perform its operations
with expected quality guarantees.

Ax is the set of axioms for specifying the rela—
tionships among the elements of the AQT, especial—
ly including the relationships among operations and
dependency relations between quality properties and
the environment. Since the AQT’s environment must
satisfy its environment requirements, the environ—
ment dependency relations can be defined on the
environment requirements.

For the environment dependency specified in
Ax, it can include qualitative dependency relations
as well as quantitative relations. For a quantitative
quality, its computation can also be specified as an
axiom.

To illustrate how to use AQTs to specify soft—
ware entities, we give an example.

First, stack is a well-known data type and it
can be specified as an ADT, in which the relation—
ships among the data and the operations are con-—
strained through the axioms.

Now, we can extend the ADT into an AQT.
Assumed that the stack is regarded as a closed

world and we are only interested in the reliability of

396 Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

the stack. The reliability of the stack will depend
on the correctness of the executions of its associated
operations, the availability of the memory allocated
for the stack, and the exclusive or concurrent ac—
cessibility to the stack. The corresponding AQT of
the stack can be specified as following.

In the extension, both the qualitative and quan—
titative dependency relations are specified in the ax—
ioms section.

R denotes the measurement of the reliability of
the stack, which depends on its computation, its
memory allocation and the access type. Among the
dependency relations, the reliability negatively de—
pends on the number of concurrent access if the ac—
cess type is concurrence enabled.

Then, the computation depends parallel on the
reliabilities of pushing and popping data in/out the
stack, which further concatenatedly lie on the con—
crete operations push(), pop() and the operations
checking the states of the stack, respectively.

Meanwhile, the reliability of the stack is also
quantitatively dependent on the operations and the
memory allocation. In the quantitative dependency

relation, R_ denotes the reliability of the operation

= Stack
element : Integer

push(),pop () ,top(),empty() ,full(),init()
R:Q

EnvReq : Env

.../laxioms

EnvReq={Memory,AccType ,ConcNo}
AccType=Concurrent=>R —DependOn(AccType , ConcNo)
AccType=Exclusive=R +DependOn(AccType)

R +cDependOn(A4, R)

R, +pDependOn(R, ,R)

in >~ “out
R, +cDependOn(Rm,, ’R/ull)

R +cDependOn(R,, R,)

R=h((A,,, ,AccType f(R R,)+g(R R,))2)

mem pop " “empty

push ?

x and f, g, and h are the functions of the reliabil—
ities of push() and full(), and pop() and empiy(),

and the availability of the memory, respectively.

3 AQT-based Internetware

The wholeness of Internetware lies on not only
the behaviors of individual software entities (e.g.,
AQTs) involved in the systems but also the interac—
tions among the software entities. To some extent,
we can say that the wholeness of Internetware is
synthetically emerged from the interactions among
AQTs.

3.1 AQT-based Composition

The interactions among AQTs can be character—
ized by the interconnection relations and the process
of the interactions.

First, the AQT model is independent of the
implementation so it is not concerned about how an
AQT is connected with the depended AQTs. Be -
cause an AQT may be assembled into different In-
ternetware running in varied environments, the in-
terconnections between the AQT and the depended
AQTs can only be determined in the assembly. The
interconnections among AQTs can be considered as

first order software entities?.

Suppose A, is a depended AQT of A, the de-
pendency relation between A and A, can be either
is the connector

concatenated or parallel, and ¢

linking A and A,. Let w simulate the wrapper to

wrap ¢ and A, into an unit, the connection between

A and A, is specified by the predicate
isConnectedVia(A , A, c)

Then A directly depends on w and further w con-

catenatedly depends on ¢ and A,. The composite of

A and A, can primarily be described as following.

BAHH T AL RERA RS R E MRt

397

= Composite AQT
CompA : AQT
Q-list: Q
EnvDep :AQTs+Connections+Wrappers
CompA=A
AQTs={A, ,-+,A}
Y q € Q-list(g hDependOn(A QTs,Connections ,Wrappers))
YV aeAQTs 3¢ e Connections 3w € Wrappers
(A dependOn(a)) NisConnectedVia(A ,a,c)=
(A dependOn(w cDependOn(c,a)))

Q-list is the set of quality requirements of the
AQT. EnvDep is the

composite environment on
which the composite AQT depends. In the previous
section, the environment information specified in an
atomic AQT only focuses on the implementation re—
quirements. Differently, the environment of a com-
posite AQT is concerned with those AQTs involved
in the composition and the connections among them
as well.

Second, when there is not a dependency rela—

tion between two interconnected AQTs (e.g., A, and
Aj) participating in the composite, the quality of
the composite will concatenatedly depend on the two

AQTs and the connector between them.

——Composite AQT
CompA : 2QT
Q-list: Q
EnvDep : Connections
CompA={A, A}

Y q € Q-list(¢ hDependOn(Connections))
YV a,b € CompA I ¢ € Connections
(CompA cDependOn(a,b)) N
isConnectedVia(a,b,c)=
(CompA cDependOn(a,c,b))

Thirdly, the process of interactions among the
AQTs involved in the system specifies how inter—

connected AQTs act and interact to realize the sys—

3 If the process is well structured, any loop has only one entry.

tem objectives. In general, the interaction process
among AQTs can be recursively specified as the
compositions of sequential, branched and iterative
activities™. When the interaction among components
is sequential, the composite entity will concatenat—
edly depend on those components involved in the
interaction. When the interaction is a branch, the
dependency will be parallel. When the interaction is
a loop, the dependency will be hybrid, in which
the composite concatenatedly depends on the itera—
tion body in the prescribed number of times.

Suppose the composite AQT is composed of
components A, ,A,,-=+,A, , the process of interactions
among them can be formally described like a finite
automaton.

P=<4QT, ACT, Tx > (6)
AQT={A,,A,, -, A }.

performed by the AQTs involved in the composition.

ACT is the set of activities

Tx is the transitions among activities in the process,
ie., Tx ©A40TxACT.

® When one activity (e.g., a’) is the subse—
quence of another activity (e.g., a) and suppose
the AQTs that perform the two activities is com—
posed into a new AQT (e.g., A’), A’ will concate—
natedly depend on the two AQTs.

® When several activities (for example, a' is
one of them) are branches after an activity (e.g.,
a), the composite AQT will parallelly depend on
the AQTs performing the activities.

® When some transitions form a loop, the
whole loop can be considered as a single activity’
and the dependency relation between the composite

and the loop body is similar as a relation between

the composite and a simple activity.

398 Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

Then the composite can be enhanced and de-—

scribed as follows.

—Composite AQT
CompA : AQT
Q-list: Q
EnvDep : Connections+Wrappers+Pr
CompA={A ,A,,+,A)}
Y q € Q-list(q¢ hDependOn(Connections , Wrappers ,Pr))
...//[Connection Dependencies
dq e Q-list(Ja,a' e PrA, ALA "e aQa(
(Perform(A, ,a) \Perform(A, ,a') NisSubsequence Ofta,a’) \
A=A, A} Nq dependOn(A, A,)=
q dependOn(A’ cDependOn(A,,A;)))V
(Perform(A, ,a) \ Perform(A ,a") NisBranchOfCa,a’) \
q dependOn(A, A,)=q pDependOn(Aj)V
(Perform(A, ,a) NisLoopBody(a)=q hDependOn(A.))))

In the enhanced specification, the process is
added in the environment as a new dependency factor.

The above specification just describes the qual-
itative dependency between the composite and its
environment. We can also specify quantitative depen—
dency for the composite on the components.
3.2 Inference and Improvement of the
Quality

Based on the specifications of AQTs involved in
the integration and the integrated Internetware itself,
we can infer and improve the quality of the Inter—
netware at different stages of the system’s lifecycle.

First, at the specification and design stages,
the qualitative and quantitative dependency relations
offer the basis for reasoning about and predicting
the quality of the system.

Second, at the integration stage, those positive
or negative dependencies can facilitate the decision—
making on the selections of components.

Thirdly, at the runtime, the dependency rela—

tions can be used to dynamically select compo—
nents (or service providers) to improve the quality
of the executing system.

In the next section, we will describe a proto—
type system for quantitatively inferring and improving

the quality of Internetware.

4 Prototype for High Quality Internetware
4.1 Implementation Structure of AQTs

In the implementation of an AQT, the depen-—
dency relations are no longer solely used for infer—
ring the quality of Internetware in which the AQT
involved; instead, they are mainly used for the
AQT to improve the quality of Internetware. There—
fore, the dependency is specified via behavior rules
concerned with how the AQT reacts to the environ—
ment to improve its performance.

In the prototype, an AQT is implemented with
the following structure, in which the environment

dependency of the AQT is defined in the environ—

ment model.

Behavior

Rules

7| Self ModelHRule Engine ‘4’| Action ‘
7y

|Effevcter‘

‘ Sensor ‘—4 Env Model‘
N

AQT

Environment

Fig.1 The simplified architecture of AQTs

Pl 1 AQTs Fifk ik 2R 451

In an AQT, the self -model stores the data
specifying the state of the AQT, the actions per—
formed by the AQT and the rules controlling the

AQT’s behavior. The rule engine will reason about

the AQT behavior on the AQT’s internal and exter—

BAHH T AL RERA RS R E MRt

399

nal states (i.e., its data and the environment) and
then trigger the performance of the actions. In the
environment model, the depended resources or ser—
vices are defined as the friends (or acquaintances) of
the AQT and the AQT has some beliefs on the
qualities of their friends. Each belief is on one special
quality property and it is expressed as an equation.
For example, expression Bel(A, F, S, Reliability):
0.8 means that A believes that the reliability of its
friend F to provide the required service S is about
80 percent. The percentage will be referred to as
trust value in the following sub-sections.
4.2 Experimental Prototype

The current prototype mainly focuses on the re—
liability of Internetware. On the Internet, for each
service requested by the system, there may be more
than one service provider and then the system may
parallelly depend on those different service providers
with varied reliabilities.

® In the system, every service provider is
wrapped into an AQT, which will request for (or
invoke) some services to realize its functionality.
The providers of those depended services are mod-—
eled as the AQT’s friends.

® When the AQT commits itself to a task, it
will decompose the task into parts and delegate the
sub—tasks to its friends according to the dependency
relations.

® When an AQT’s friend enters the environ—
ment, it will declare its reliability to the AQT. The
AQT may not completely trust its friend’s declara—
tion since the declaration has not been tested or

verified via real invocations. Nevertheless, the AQT

can assign an initial trust value to the friend based

on the declared quality value.

® The AQT will designate a selection probabili-
ty to each friend according to the trust value and
when the AQT requests for service, it will select a
service provider from its friends according to the
specified probability distribution. The AQT can revise
the trust values according to the successes or failures
of requests. The AQT can also modify the selection
probabilities based on the current trust values.

4.3 Verification of Quality Properties

To verify the prototype that it can gain the
theoretically high quality, we implement a simple
application based on the prototype.

The application is a travel agency, which is
designed to assist the customer to reserve flights. To
accomplish the flight reservation, the agency may
depend on different friends who may assist the agen—
cy in varied ways. For instance, the agency may di—
rectly reserve the flight on the airline company that
offers the flight course, so it will directly depend
on the company’s service. The agency may also
have to depend on other agencies when it tries to
reserve a long—distance flight that includes transfers
among different airline companies. The dependency
relationships between the agency and other service

providers are shown in Fig.2.

Friend List
B, (r=0.85 ,p=0.3)

Friend List

C, (=0.85,p=0.6)
B,(r=0.9,p=0.3) C,(=0.80,p=0.4)
pDependOr/ B, (r=0.95,p=0.4)
Agency B,
=
(r=0.95) .
cDependOn Local Services : :
L, (r=1) Friend List

D, (:=095,p=1)

L,(r=1)

Fig.2 Relationships among service providers

B2 RS540 i 2] 18 G 2

400 Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

As Fig.2 shows, the agency is concatenatedly
dependent on its local services and parallelly de—
pendent on its friends. For the simplicity, we as—
sume that the local services are always reliable. In
the friend list, r represents the reliability of a ser—
vice and p denotes the probability of selecting the
service provider.

Theoretically, the highest reliability of the sys—
about 85.74% if the

tem s invocation path

(Agency—B,—D,) is selected, the worst reliability
is about 68.4% for the path(Agency—B,—C,), and
the average reliability is about 80% which can be
calculated as following.

R=R, x(Ry xPy +R; X(R; XP; +R ;. XP;)xPy +

Ry xR, %P, xPy)=79.81%

Experimentally, we run the application system

for 20 000 times, and the reliability of the system

is recorded in Fig.3.

S0P 00090ty s 009000t

Reliability/%
o
S

2 4 6 8 10 12 14 16 18 20
Run times (thousand)
Fig.3 Average reliability of the application
Pl 3 BRI 132l Gk
As Fig.3 shows, the reliability of the system
vibrates around 80%.
4.4 Improvement of Quality Properties
From the above theoretical analysis, we can
conclude that a higher quality (e.g., the reliability)

of the depended service will result in a higher reli-

ability of the whole system and a higher probability

of selecting the more reliable depended service will
also lead to a more reliable system.

To make the application gain the highest relia—
bility, we implement the AQTs with the ability to
adjust the trust values and the selection probabilities
autonomously via designating new adaptive behavior
rules to AQTs.

® First, raise the selection probability of de-
pended services with higher trust values to make
sure that more reliable services are selected more
frequently.

® Second, modify the trust values of depended
services so that successful services would be trusted
more whilst failed services would be trusted less.

® Thirdly, when another service provider enters
the environment, the AQT will add the newcomer
into its friend list automatically so that the applica—
tion could gain a higher reliability than before once
if the newcomer has a very high reliability.

In the upgrade application, we allow the maxi—
mal selection probability to be adjusted to 0.90 and
the minimal probability to 0.09 so that all depended
services will have chances to be selected and al-
ways—unreliable services will be discarded from the
friend list.

After 20 000 times of run, the change of the
reliability of the application is shown as Fig.4.

As Fig.4 shows, with the increasing of the run
times, the reliability of the application becomes
higher and gradually (when the application runs
about 11 thousand of times) tends to the theoreti—
cally maximal value, 85.74%.

Finally, we designedly deploy a new service

provider B, in the environment, whose reliability is

EA#H FAmEREXR M RE MRt

401

as high as 0.95 and on which the agency will di-

rectly depend.

90 [
20 W

Reliability/%
o
S

2 4 6 8 10 12 14 16 18 20
Run times (thousand)

Fig.4 Gaining the highest reliability
Pl 4 AR sl SEPE
The reliability of the application is shown as
Fig.5 in another 20 000 times of run. When the ap-
plication runs about 10 thousand of times, the new
deployed service provider enters the agency’s vision.
Then, the application will more frequently select the
new path including the new highly reliable provider

and gain a higher reliability.

o w
80

Reliability/%

2 4 6 8 10 12 14 16 18 20
Run times (thousand)

Fig.5 Adapting to a higher reliability
Pl 5 3R e ml SEPE

5 Related Work

By now, many component models, besides
those popular ones based on commercial standards
such as COM, CORBA and J2EE, have been pro—
posed to model software entities. For example, [5]
proposes a unifying component description language

for integrated descriptions of structure and behavior

of software components and component-based soft-
ware systems. [6] describes how components are
specified at the interface level, design level and
how they are composed.

There is also some work on modeling compo—
nents considering the environments. For example, [7]
presents a component model for encapsulating ser—
vices, which allows for the adjustment of structure
and behavior of autonomous components to change
or previously unknown contexts in which they need
to operate. [8] introduces service—oriented concepts
into a component model and execution environment
and defines a model for dynamically available com—
ponents.

However, those component models do not in-—
clude quality properties. Quality properties are inde—
pendent of components at the design phase and they
have to be coped with after components are de—
ployed.

There is other work on relating non—functional
properties (or quality) with functionalities of software
entities. For example, [9] introduces a framework
dealing with interface signature, interface constraints,
interface packaging and configurations, and non—func—
tional properties of software components. [10] pre—
sents a framework for integrating NFRs into the ER
and OO models, where NFRs are modeled as special
objects. [11] and [12] propose two formal description
languages for non—functional attributes, NoFun and
Process—NFL, respectively, which combine non-func—
tional specifications and architectural descriptions.
However, in that work, quality is not specified as

inseparable properties of software components but as

data and operations.

402 Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

In addition, much work focuses on modeling soft—
ware quality!™. For example, [14] surveys a signifi—
cant number of quality models and meanwhile de—
scribes the design of a quality model that assesses a
software product’s efficiency and effectiveness. How—
ever, those proposed quality models are wusually
merely concerned with the quality properties of soft—
ware entities after software entities have been de—
veloped, which cannot be used to reason about the
quality properties of software entities at the model-
ing and design phases. [15] and [16] propose some
rigorous approaches to specifying non—functional at-
tributes, which can provide a good expressiveness
on the specifications. Nevertheless, their approaches
are too mathematical to be mastered and used by
the developers of software systems.

In the study of the relationships and composi-
tions of quality properties, some work also takes the
software architecture or the process into considera—
tion. [17] defines key requirements for an architec—
ture —based approach to composing components and
provides an architecture definition language RADL
with a focus on compositionality and extra—functional
properties. However, the extra—functional properties
with which the work deals are different from those
quality with which high quality software systems are
concerned. [18] proposes a comprehensive framework
for representing and using non—functional requirements
during the development process, which is unlike our
work where the process is to specify the interactions

among components.

6 Conclusions and Future Work

In the development of high quality software sys—

tems, multiple quality properties should be considered
along with the development process so that the
quality of software systems can be inferred and pre—
dicted at the specification and design stages and be
evaluated and verified at the deployment and execu-—
tion stages.

In this paper, we introduc a new kind of ab-
straction into the development of Internetware, i.e.,
quality abstraction, and put forward a new abstrac—
tion notion to encapsulate data, operations and
quality properties in an uniform unit, i.e., the ab-
stract quality type. So far as we know, it is the
first time to model data, operations and quality in a
single syntactical unit and relate a software entity’s
quality properties directly to the entity’s attributes.
Like ADT, AQT provides a rigorous way to reason
about the functional and non—functional properties.

We also explored the composition of AQTs by
considering the software architecture and the process
of interactions. The study on the composition of
AQTs will offer a solid foundation for reasoning
about the whole quality properties of Internetware
since the whole quality properties rely on both the
systems’ internal states and the external environ—
ments.

At last, this paper describes a prototype to
verify and improve the quality of Internetware. Al-
though the prototype is so preliminary and only
deals with the reliability of the application, it can
be easily extended for other quality properties.

In the next we will

stage, investigate the

methodology of constructing high quality Internetware

BAHH T AL RERA RS R E MRt

403

based on AQTs and upgrade the prototype for more

quality properties.

References:

[1

[—

Papazoglou M, Georgakopoulos D. Service—oriented com—
puting[J]. Communications of the ACM, 2003,46(10):25-28.
Pamas D L. On a ‘Buzzword’, hierarchical structure[C]//
the Proceedings of IFIF Congress 74. [S.L]: North Holland
Publishing Company, 1974:336-339.

Shaw M, Garlan D. Software architecture: perspectives on
an emerging discipline[M]. NJ, USA: Prentice Hall PTR,
1996.

Talib M A, Yang Z K, Ilyas Q M. Modeling the flow in
dynamic web services composition[J]. Information Technol—
ogy Journal, 2004,3(2)184-187.

Teschke T, Ritter J. Towards a foundation of component—
oriented software reference models[CJ/Butler G, Jarzabek S.
Generative and component-based software engineering. LNCS
2177: the Second International Symposium, GCSE 2000,
Erfurt, Germany, October 9-12, 2000, Revised Papers.
[S.L]: Springer, 2001:70-84.

Liu Z M, He J F, Li X S. Contract-oriented development
of component software[C]//the Proceedings of IFIP WCC-
TCS2004, Toulouse, France, 2004:355-372.

Ben—Shaul I, Holder O, Lavva B. Dynamic adaptation
and deployment of distributed components in Hadas [J].
IEEE Transactions on Software Engineering, 2001,27(9):
769-787.

Humberto C, Richard H. Autonomous adaptation to dynamic
availability using a service—oriented component model[C]//
the 26th International Conference on Software Engineering
(ICSE’04), Edinburgh, Scotland, United Kingdom, 2004:
614-623.

Han J. A comprehensive interface definition framework for

software components[C]//the 1998 Asia—Pacific Software En—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

gineering Conference, Taipei, Taiwan, 1998:110-117.
Cysneiros . M, do Prado Leite] C S, de Melo Sabat
Neto J. A framework for integrating non —functional re—
quirements into conceptual models[J]. Requirements Engi—
neering, 2001,6:97-115.

Franch X, Botella P. Putting non—functional requirements
into software architecture[C]//Proceedings of the Ninth In-
ternational Workshop Software Specification and Design.
[S.L]: IEEE Press, 1998, :60-67.

Rosa N S, Justo G R R, Cunha P R F. A framework
for building non—functional software architectures|C]//Pro—
ceedings of the 2001 ACM Symposium on Applied Com—
puting. [S..]: ACM Press, 2001:141-147.

Chung L, Nixon B, Yu E, et al. Non—functional requi-
rements in software engineering[M]. [S.L.]: Kluwer Publish—
ing, 2000.

Ortega M, Perez M, Rojas T. Construction of a systemic
quality model for evaluating a software product[]J]. Software
Quality Journal, 2003,11:219-242.

Issarny V, Bidan C, Saridakis T. Achieving middleware
customization in a configuration-based development envi—
ronment: experience with the Aster prototype[C]/Proceed—
ings of the 4th International Conference on Configurable
Distributed Systems, Maryland, 1998:207-214.

Zarras A, Issarny V. A framework for systematic synthe—
sis of transactional middleware[C]//Proceedings of Middle—
ware’ 98, England, 1998:257-272.

Schmidt H. Trustworthy components compositionality and
prediction[J]. The Journal of Systems and Software, 2003
(65):215-225.

Mylopoulos J, Chung L, Nixon B. Representing and us—
ing non-functional requirements: a process—oriented ap-—
proach[J]. IEEE Trans on Software Eng, Special Issue
on Knowledge Representation and Reasoning in Software

Development, 1992,18(6):483-497.

404

Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

QU Youtian was born in 1962. He received the B.S. degree in Architecture of Computer Science from
Nanjing University in 1986. He is a professor and master supervisor at Zhejiang Normal University. His
research interests include component techniques, Agent—oriented software engineering and intelligent database
techniques, etc.

BATH(1962-), 55 WHLABH A, 1986 4F T R 5 R =~ i, W R 80% , FEM T Sk i
] Agent i T A% R REER FER AR SR

WU Zejun was born in 1972. He received the B.S. degree in Computer Science from Yangtze University in
1994. He is an economic engineer at Hubei Branch of China Construction Bank.

REF(1972-), 5 ALK T, 1994 4ETVLECH AR (IIT RS) 3R a2 2 0r, o it i iR 7l
Sy 4T T AR ZE 570

JIAO Wenpin was born in 1969. He received the B.S. and M.S. degrees in Computer Science from East
China University of Science and Technology in 1991 and 1997, respectively, and the Ph.D. degree from
Chinese Academy of Sciences in 2000. He is an associate professor at Peking University. His research inte—
rests include software engineering, intelligent software, internetware and formal methods, etc.

B0 (1969-), 55 IH1AERT TN, 2000 4 BLA B A ST AR LAl s, AL SO R , 12508
AR A TR AR

CHEN Tianzhou was born in 1970. He received the Ph.D. degree in Computer Science from Zhejiang
University in 1998. He is a professor and doctoral supervisor at Zhejiang University. His research interests
include embedded system and architecture.

BRI (1970-), 3B, WHLI/K A , 1998 4E T ARZF3R T EHUN H Tl 5207 WL k72802 S, 128
BTN TR GE Ak R, K RIBTL 140 KR, 15T 20 R E R E 4 =BG 7 863 . A RHE T
X)WiH .

HE Guolong was born in 1966. He received the Ph.D. degree in Mathematics from Zhejiang University in
2004. He is an associate professor at Zhejiang Normal University. His research interests include functional
analysis and factal geometry.

fafFE I (1966-) , 55, WRTHTE N , 2004 4F T W TR E AR 507, W TIME R 2 Bl , Ml
HEHC: 2T, AR 20 RE.

