两种联苯酚类化合物的太赫兹时域光谱研究^{*}

葛 敏 赵红卫 张增艳 王文锋 余笑寒 李文新

(中国科学院上海应用物理研究所,上海 201800)

摘要利用太赫兹时域光谱技术获得了 295 K 时 2,2'-二羟基联苯(2,2'-biphenol, 2BP)和 4,4'-二羟基联苯(4,4'-biphenol, 4BP)在 0.1~1.6 THz 波段的光谱. 实验结果显示, 两种同分异构体在太赫兹频率范围内的吸收谱有显著的差异. 结合量子化学计算, 2BP 中的两个羟基间能够形成分子内氢键, 在 1.45 THz 的运动模式初步判断为包含 氢键在内的两个苯环的低频摆动.

关键词: 联苯酚, 太赫兹时域光谱技术, 弱相互作用, 量化计算 中图分类号: O657.61, O641

频率介于 0.1~10 THz (1 THz =10¹² Hz, 波长 300 μm, 波数 33.3 cm⁻¹)的电磁辐射称为太赫兹(terahertz, THz)辐射,它位于微波和红外光之间,是最近电磁 波领域取得重要进展的一个波段^[1]. 近十年来超快 激光技术的迅速发展为 THz 脉冲的产生提供了稳 定、可靠的激发光源,极大地促进了 THz 技术的发 展,并成为一个迅速发展的前沿领域.太赫兹时域 光谱分析(terahertz time domain spectroscopy, THz-TDS)是基于飞秒超快激光技术的远红外波段光谱 测量新技术,它是利用物质对 THz 频带的特征吸收 谱来分析物质的低频运动. THz 测量技术的高信噪 比和单个 THz 脉冲所包含的宽频带, 使得 THz 技 术能够对材料组成及结构的细微变化做出分析和 鉴定[24]. 2000年,德国科学家 Walther 等对视黄醛分 子不同异构体 9-cis, 13-cis, all-trans 的结构特点进 行了研究,视觉过程的进行以及光合成循环的起始 正是通过这三种异构体之间的结构转变来触发的. 实验测得这三种异构体的 THz 吸收谱明显不同, 表 明这种方法可以用来研究分子结构转换机制,并能 够推断定位视网膜分子的不同振动模式⁶¹. 2002年, 他们又利用 THz-TDS 技术研究测试了苯甲酸及其 羟基衍生物等4个结构相似的化合物,结果显示其 THz-TDS 吸收谱有着明显的区别⁶⁰. 最近, 对甲基取 代苯甲酸衍生物的 THz 时域光谱研究也证实 THz 波段范围内的吸收谱对于物质结构存在的微小差 异和变化非常灵敏,可以反映化合物结构与环境的

指纹特性^[7].这种方法可望用于化合物分析鉴定,污 染物检测以及药物示踪技术等领域.

酚类化合物能够和许多物质形成分子间氢键, 同时多酚化合物自身也可以形成分子内及分子间 氢键.本文利用 THz-TDS 技术测量了联苯酚的两种 同分异构体 2,2'-二羟基联苯和 4,4'-二羟基联苯在 0.1 到 1.6 THz 波段的吸收光谱.并利用量子化学理 论计算对这两种化合物的结构进行了分析,在此基 础上对 THz 低频波段的运动模式进行了初步探讨.

1 实验部分

2,2'-二羟基联苯(2,2'-biphenol, 2BP): Acros 公司, 4,4'-二羟基联苯(4,4'-biphenol, 4BP): TCI 公司, 纯度 均为 99%, 未经过进一步纯化直接使用, 结构见图 1. 样品制备采用红外压片方法, 制样时的压强约为 22 MPa, 样品厚度约为 1 mm, 且保证表面无裂缝, 两平面保持平行, 以减少测量时的多重反射.

实验所用设备为 Zomega 公司生产的 Z-1 型太 赫兹时域光谱装置. Ti: Sapphire 超快激光器产生的 激光波长为 805 nm, 重复频率为 80 MHz, 脉冲宽度 小于 100 fs. 激光脉冲被分为两路, 一路作为泵浦光, 激发太赫兹发射元件 GaAs 晶体产生太赫兹波. 另 一路作为探测光与太赫兹脉冲汇合后共线通过太 赫兹探测元件 ZnTe 晶体. 通过延迟装置改变探测 光与泵浦光之间的光程差, 使探测光在不同的时刻 对太赫兹脉冲的电场强度进行取样测量, 最后获得

2005-01-11 收到初稿, 2005-04-28 收到修改稿. 联系人:王文锋(E-mail:wfwang@sinap.ac.cn; Tel:021-59554602). *中国科学院知识创 新工程资助项目

图 1 2,2'-二羟基联苯(a)和 4,4'-二羟基联苯(b)的结构示意图 Fig.1 Structures of 2 2'-biphenol(2BP)(a) and 4,4'-biphenol(4BP)(b)

太赫兹脉冲电场强度的时间波形[®]. 设备的有效频率 范围为 0.1~1.8 THz, 信噪比大于 1000, 光谱分辨率 约为 40 GHz. 测量过程中样品始终处于氮气氛围 中, 且湿度低于 2%, 以减少空气中水份产生的 THz 吸收干扰[®]. 测量温度为(22.0±0.5) ℃.

2 结果与讨论

太赫兹电磁辐射的原始信号多是在时域获得, 由于有关电磁波在介质中传播的各种物理现象的描述都与频率相关,因此在处理数据时将 THz 时间波 形进行快速傅立叶变换,从而得到频域的相位及振 幅信息,进而获得材料的光学常数如吸收系数、折射 指数等^[940].图2就是实验所获得的 2BP 和 4BP 在 0.3 到 1.6 THz 波段的吸收光谱.考虑到样品的多重反 射的影响,频率在 0.3 THz 以下的数据没有选用.从 图中可以看出两种物质的吸收谱明显不同, 2BP 在 1.45 THz 处有一个较强的吸收峰,而 4BP 在实验测 量范围内没有特征吸收.

为进一步了解这两种联苯酚在 THz 波段所对 应的分子低频运动模式,用 Gaussian 03 软件对它们

图 2 2BP和4BP在0.3~1.6 THz 波段的 THz 吸收谱 Fig.2 The THz-TDS spectra of 2BP and 4BP from 0.3 to 1.6 THz

的分子构型进行了优化,对振动频率进行了分析.表 1 为利用 AM1 计算所得的一系列 2BP 和 4BP 的结 构参数,可以看出计算所得键长、键角等数值和文献 通过 X 射线衍射所得晶体结构的结果基本一致[11-12]. 其中两个环之间的 C4-C7 键长(146.2 pm)明显比苯 环的键长长.从二面角可以看出,两个化合物中的两 个苯环均不在同一个平面上, 夹角分别为 53.637°和 40.704°. 在 4BP 中两个羟基距离很远, 相互影响很 小.2BP 分子中两个羟基为顺式构象, 氧原子之间的 距离为 287.8 pm, 邻近的氢与氧(H24…O13)之间的距 离为 221.7 pm, O14—H24…O13 角度为 124.5°. 这些数 值大都比文献报道的晶体结构的数值大¹¹¹,可能是因 为理论计算体现的是气态状况且是单分子行为,而 实际所测的是晶体结构,分子和分子之间还存在一 定的相互作用,同时实验结果还会受到环境等因素 的影响.氢键是由供质子基团 X—H 与受质子基团 Y之间形成的弱相互作用, X…Y之间的距离是氢 键的一个特征值, 一般 O—H…O 中 O…O 的距离为 270.0 pm 时表现出较强的氢键[13], 这就意味着 2BP 分子中两个羟基能够构成分子内氢键. 通过振动频 率计算获得 2BP 在 0~100 cm⁻¹ 有三个峰值, 其中 56 cm⁻¹即 1.68 THz 处的运动模式为两个苯环间的低 频摆动,并影响到分子内氢键的强度.而 4BP 在 100 cm⁻¹以下未获得明显的吸收峰, 与实验所测结果相 符.结合两种化合物分子结构特点,可以推断联苯酚 的这两种同分异构体在 1.45 THz 处吸收峰的差异 应该是由于 2BP 分子内的氢键所引起的.

3 结 论

本文利用 THz-TDS 技术获得了室温条件下 2BP 和 4BP 两种同分异构体在 0.1 至 1.6 THz 波段

Parameter $\frac{2BP}{Exp.^{(0)}}$ AMI $\frac{4BP}{Exp.^{(0)}}$ $r(0_{15}-C_5)$ 137.4 137.8 $r(0_{17}-C_1)$ 138.5 137.6 $r(0_{17}-C_1)$ 138.1 137.3 $r(0_{17}-C_{12})$ 138.5 137.6 $r(0_{17}-C_{12})$ 138.1 137.3 $r(C_5-C_6)$ 138.3 140.3 139.2 139.2 $r(C_5-C_6)$ 138.9 141.1 139.3 140.2 $r(C_5-C_6)$ 137.7 139.1 138.9 140.2 $r(C_5-C_6)$ 137.0 139.5 137.7 140.5 $r(C_2-C_5)$ 137.7 140.5 $r(C_5-C_6)$ 138.0 138.9 140.4 $r(C_5-C_6)$ 139.5 140.2 139.3 138.0 138.9 140.4 $r(C_5-C_6)$ 139.5 140.2 139.3 140.4 $r(C_7-C_6)$ 148.6 146.2 149.5 146.0 $r(C_7-C_6)$ 139.6 140.5 139.3 140.4 $r(C_6-C_6)$ 139.6 139.2 139.2 139.2 $r(C_7-C_6)$
ParameterExp.®AM1Exp.®AM1 $r(O_{15}-C_5)$ 137.4137.8138.5137.6 $r(O_{14}-C_1)$ 138.1137.3137.6 $r(O_{14}-C_{12})$ 138.1137.3137.6 $r(O_{15}-C_{10})$ 138.3140.3139.2139.2 $r(C_5-C_4)$ 138.9141.1139.3140.2 $r(C_6-C_1)$ 137.2139.1138.9140.2 $r(C_6-C_4)$ 137.7139.5137.7140.5 $r(C_7-C_2)$ 137.0139.5137.7140.5 $r(C_7-C_4)$ 139.5140.2139.3140.4 $r(C_7-C_5)$ 137.7139.3138.0138.9 $r(C_7-C_4)$ 139.5140.2139.3140.4 $r(C_7-C_6)$ 139.6140.5139.3140.4 $r(C_7-C_6)$ 139.6140.5139.3140.4 $r(C_7-C_6)$ 137.5139.0139.2139.2 $r(C_7-C_6)$ 137.5139.0139.2139.2 $r(C_7-C_6)$ 137.6138.8137.7140.5 $r(C_9-C_{10})$ 137.6138.8137.7140.5 $r(U_{11}-C_{12})$ 137.8140.9138.0138.9 $\angle(O_{11}-C_{12})$ 137.8140.9138.0138.9 $\angle(O_{11}-C_{12})$ 137.8140.9138.0138.9 $\angle(O_{11}-C_{12})$ 137.8140.9138.0138.9 $\angle(O_{11}-C_{12})$ 137.8140.9138.0138.9 $\angle(O_{11}-C_{12})$ 117.07 </th
$r(O_{13}-C_5)$ 137.4137.8 $r(O_{14}-C_1)$ 138.1137.3 $r(O_{14}-C_{12})$ 138.1137.3 $r(O_{17}-C_{10})$ 138.3140.3139.2 $r(C_5-C_6)$ 138.3140.3139.2 $r(C_5-C_6)$ 138.9141.1139.3 $r(C_5-C_1)$ 137.2139.1138.9 $r(C_6-C_1)$ 137.2139.1138.9 $r(C_7-C_2)$ 137.0139.5137.7 $r(C_5-C_6)$ 137.7139.3138.0 $r(C_7-C_2)$ 137.7139.3138.0 $r(C_5-C_6)$ 139.5140.2139.3 $r(C_7-C_6)$ 139.5140.2139.3 $r(C_7-C_6)$ 139.6140.5139.3 $r(C_7-C_6)$ 139.6140.5139.3 $r(C_7-C_6)$ 137.5139.0139.2 $r(C_7-C_6)$ 137.5139.0139.2 $r(C_7-C_6)$ 137.6138.8137.7 $r(C_9-C_6)$ 137.8140.9138.0 $r(O_{10}-C_{7-6})$ 121.30121.500 $(C_{0,1}-C_{7-6})$ 117.7122.735 $(C_{0,1}-C_{7-6})$ 121.60121.200121.71 $(O_{10}-C_{7-6})$ 121.60121.200121.71 $(O_{10}-C_{7-6})$ 121.60121.200121.71 $(O_{10}-C_{7-6})$ 120.6019.60019.91 $(O_{10}-C_{7-6})$ 120.60120.05120.11 $(O_{10}-C_{7-6})$ 121.60121.200121.71
$r(O_{14}-C_{12})$ 138.1137.3 $r(O_{14}-C_{12})$ 138.1137.3 $r(O_{14}-C_{12})$ 138.1137.3 $r(O_{14}-C_{10})$ 138.3140.3139.2 $r(C_5-C_6)$ 138.9141.1139.3140.2 $r(C_5-C_1)$ 137.2139.1138.9140.2 $r(C_6-C_1)$ 137.2139.1138.9140.2 $r(C_7-C_2)$ 137.0139.5137.7140.5 $r(C_2-C_3)$ 137.7139.3138.0138.9 $r(C_5-C_4)$ 139.5140.2139.3140.4 $r(C_7-C_2)$ 139.5140.2139.3140.4 $r(C_7-C_6)$ 139.6140.5139.3140.2 $r(C_7-C_6)$ 137.5139.0139.3140.2 $r(C_7-C_6)$ 137.5139.0139.3140.2 $r(C_7-C_6)$ 137.6138.8137.7140.5 $r(C_{10}-C_{12})$ 137.8140.9138.0138.9 $L(O_{10}-C_{10})$ 137.6138.8137.7140.5 $L(O_{10}-C_{10})$ 137.8140.9138.0138.9 $L(O_{10}-C_{10})$ 137.8140.9138.0138.9 $L(O_{10}-C_{10})$ 117.07117.3612.12116.500 $L(O_{10}-C_{10})$ 121.60121.200121.71120.744 $L(C_{10}-C_{10})$ 120.60129.035120.11129.700
$r(O_{14}-C_{12})$ 138.1137.3 $r(O_{14}-C_{10})$ 138.3140.3139.2137.6 $r(C_5-C_6)$ 138.3140.3139.2139.2 $r(C_5-C_6)$ 138.9141.1139.3140.2 $r(C_6-C_1)$ 137.2139.1138.9140.2 $r(C_1-C_2)$ 137.0139.5137.7140.5 $r(C_2-C_6)$ 137.7139.3138.0138.9 $r(C_5-C_1)$ 137.7139.3138.0138.9 $r(C_7-C_2)$ 139.5140.2139.3140.4 $r(C_7-C_7)$ 148.6146.2149.5146.0 $r(C_7-C_6)$ 139.6140.5139.3140.2 $r(C_7-C_6)$ 139.6140.5139.3140.4 $r(C_7-C_7)$ 148.6146.2149.5146.0 $r(C_7-C_7)$ 148.6140.5139.3140.2 $r(C_7-C_6)$ 139.6140.8139.3140.2 $r(C_7-C_6)$ 137.5139.0139.2139.2 $r(C_7-C_9)$ 137.6138.8137.7140.5 $r(C_{10}-C_{10})$ 137.6138.8137.7140.5 $r(O_{10}-C_{10})$ 121.30121.500121.71120.744 $r(O_{10}-C_{10})$ 117.07117.336120.11120.744 $r(C_{10}-C_{10})$ 119.60119.600119.91119.323 $r(C_{10}-C_{10})$ 120.30120.035120.11120.704
$r(O_{11}-C_{10})$ 138.5137.6 $r(C_5-C_6)$ 138.3140.3139.2139.2 $r(C_5-C_6)$ 138.9141.1139.3140.2 $r(C_6-C_1)$ 137.2139.1138.9140.2 $r(C_7-C_2)$ 137.0139.5137.7140.5 $r(C_2-C_3)$ 137.7139.3138.0138.9 $r(C_5-C_6)$ 137.7139.3138.0138.9 $r(C_5-C_6)$ 139.5140.2139.3140.4 $r(C_7-C_6)$ 139.6146.2149.5146.0 $r(C_7-C_6)$ 139.6140.5139.3140.2 $r(C_7-C_6)$ 139.6140.5139.3140.2 $r(C_7-C_6)$ 137.5139.0139.2139.2 $r(C_7-C_{12})$ 137.5139.0139.2139.2 $r(C_9-C_{10})$ 137.6138.8137.7140.5 $r(C_{11}-C_{12})$ 137.8140.9138.0138.9 $\angle(O_{11}-C_{1}-C_{6})$ 121.30121.500122.735 $\angle(O_{11}-C_{1}-C_{6})$ 117.07117.336 $(C_{11}-C_{12})$ 116.500 $\angle(O_{11}-C_{1}-C_{12})$ 121.60121.200121.71120.744 $\angle(C_{12}-C_{10})$ 120.30120.035120.11120.700
$r(C_5-C_6)$ 138.3140.3139.2139.2 $r(C_5-C_1)$ 138.9141.1139.3140.2 $r(C_6-C_1)$ 137.2139.1138.9140.2 $r(C_1-C_2)$ 137.0139.5137.7140.5 $r(C_2-C_3)$ 137.7139.3138.0138.9 $r(C_3-C_4)$ 139.5140.2139.3140.4 $r(C_7-C_4)$ 139.5140.2149.5146.0 $r(C_7-C_6)$ 139.6140.5139.3140.2 $r(C_7-C_6)$ 139.0140.8139.3140.2 $r(C_7-C_{12})$ 139.0140.8139.3140.4 $r(C_6-C_6)$ 137.5139.0139.2139.2 $r(C_9-C_{10})$ 136.7139.7138.9140.2 $r(C_9-C_{10})$ 137.6138.8137.7140.5 $r(C_{10}-C_{11})$ 137.6138.8137.7140.5 $r(C_{10}-C_{12})$ 137.8140.9138.0138.9 $\angle(O_{11}-C_{12})$ 137.8140.9138.0138.9 $\angle(O_{11}-C_{12})$ 137.8140.9138.0138.9 $\angle(O_{11}-C_{12})$ 117.07117.336 $=$ $\angle(O_{11}-C_{12})$ 121.60121.200121.71120.744 $\angle(C_{12}-C_{11})$ 119.60119.600119.91119.323 $\angle(C_{12}-C_{12})$ 120.30120.035120.11120.700
$r(C_5-C_6)$ 138.9141.1139.3140.2 $r(C_6-C_1)$ 137.2139.1138.9140.2 $r(C_1-C_2)$ 137.0139.5137.7140.5 $r(C_2-C_3)$ 137.7139.3138.0138.9 $r(C_5-C_6)$ 139.5140.2139.3140.4 $r(C_4-C_7)$ 148.6146.2149.5146.0 $r(C_7-C_6)$ 139.6140.5139.3140.2 $r(C_7-C_1)$ 138.0140.8139.3140.2 $r(C_7-C_1)$ 139.6140.5139.3140.2 $r(C_7-C_1)$ 139.0140.8139.3140.2 $r(C_7-C_1)$ 137.5139.0139.2139.2 $r(C_9-C_10)$ 136.7139.7138.9140.2 $r(C_9-C_10)$ 137.6138.8137.7140.5 $r(C_1-C_2)$ 121.30121.500138.0138.9 $\angle(O_{11}C_1-C_6)$ 117.07117.336 $\underline{4}(O_{11}C_1-C_2)$ 120.744 $\angle(C_6-C_5-C_4)$ 121.60121.200121.71120.744 $\angle(C_5-C_5-C_1)$ 119.60119.600119.91119.323 $\angle(C_6-C_5-C_6)$ 120.30120.035120.11120.700
$r(C_6-C_1)$ 137.2139.1138.9140.2 $r(C_1-C_2)$ 137.0139.5137.7140.5 $r(C_2-C_3)$ 137.7139.3138.0138.9 $r(C_3-C_4)$ 139.5140.2139.3140.4 $r(C_4-C_7)$ 148.6146.2149.5146.0 $r(C_7-C_6)$ 139.6140.5139.3140.2 $r(C_7-C_1)$ 139.6140.5139.3140.2 $r(C_7-C_1)$ 139.0140.8139.3140.4 $r(C_6-C_9)$ 137.5139.0139.2139.2 $r(C_9-C_{10})$ 136.7139.7138.9140.2 $r(C_{10}-C_{10})$ 137.6138.8137.7140.5 $r(C_{11}-C_{12})$ 137.8140.9138.0138.9 $\angle(O_{11}-C_1-C_6)$ 121.30121.500122.735 $\angle(O_{11}-C_1-C_2)$ 121.60121.200121.71120.744 $\angle(C_6-C_5-C_4)$ 121.60120.03120.13120.700
$r(C_1-C_2)$ 137.0139.5137.7140.5 $r(C_2-C_3)$ 137.7139.3138.0138.9 $r(C_5-C_4)$ 139.5140.2139.3140.4 $r(C_4-C_7)$ 148.6146.2149.5146.0 $r(C_7-C_8)$ 139.6140.5139.3140.2 $r(C_7-C_{12})$ 139.0140.8139.3140.4 $r(C_7-C_{12})$ 139.0140.8139.3140.4 $r(C_7-C_{12})$ 139.0140.8139.3140.4 $r(C_7-C_{12})$ 137.5139.0139.2139.2 $r(C_9-C_{10})$ 136.7139.7138.9140.2 $r(C_{10}-C_{11})$ 137.6138.8137.7140.5 $r(C_{11}-C_{12})$ 137.8140.9138.0138.9 $\angle(O_{13}-C_3-C_6)$ 121.30121.500117.78122.735 $\angle(O_{13}-C_5-C_6)$ 121.60121.200121.71120.744 $\angle(C_5-C_5-C_4)$ 121.60121.200121.71120.744 $\angle(C_5-C_5-C_1)$ 119.60119.600119.91119.323
$r(C_2-C_3)$ 137.7139.3138.0138.9 $r(C_3-C_4)$ 139.5140.2139.3140.4 $r(C_4-C_7)$ 148.6146.2149.5146.0 $r(C_7-C_6)$ 139.6140.5139.3140.2 $r(C_7-C_1)$ 139.0140.8139.3140.4 $r(C_6-C_9)$ 137.5139.0139.2139.2 $r(C_9-C_{10})$ 136.7139.7138.9140.2 $r(C_{10}-C_{11})$ 137.6138.8137.7140.5 $r(C_{10}-C_{12})$ 137.8140.9138.0138.9 $\angle(O_{13}-C_5-C_6)$ 121.30121.500122.735 $\angle(O_{13}-C_5-C_4)$ 117.07117.336122.12 $\angle(O_{14}-C_1-C_2)$ 121.60121.200121.71 $\angle(C_5-C_6-C_1)$ 119.60119.600119.91119.323 $\angle(C_5-C_6-C_1)$ 120.30120.035120.11120.700
$r(C_3-C_4)$ 139.5140.2139.3140.4 $r(C_4-C_7)$ 148.6146.2149.5146.0 $r(C_7-C_8)$ 139.6140.5139.3140.2 $r(C_7-C_{12})$ 139.0140.8139.3140.4 $r(C_8-C_9)$ 137.5139.0139.2139.2 $r(C_9-C_{10})$ 136.7139.7138.9140.2 $r(C_{10}-C_{11})$ 137.6138.8137.7140.5 $r(C_{11}-C_{12})$ 137.8140.9138.0138.9 $\angle(O_{13}-C_5-C_6)$ 121.30121.500 2.735 $\angle(O_{14}-C_1-C_2)$ 117.07117.336 2.735 $\angle(O_{14}-C_1-C_2)$ 121.60121.200121.71120.744 $\angle(C_5-C_6-C_1)$ 119.60119.600119.91119.323 $\angle(C_2-C_2-C_6)$ 120.30120.035120.11120.700
$r(C_sC_7)$ 148.6146.2149.5146.0 $r(C_7C_9)$ 139.6140.5139.3140.2 $r(C_7C_{12})$ 139.0140.8139.3140.4 $r(C_8C_9)$ 137.5139.0139.2139.2 $r(C_9C_{10})$ 136.7139.7138.9140.2 $r(C_{10}C_{11})$ 137.6138.8137.7140.5 $r(C_{10}C_{12})$ 137.8140.9138.0138.9 $\angle(O_{13}-C_5-C_6)$ 121.30121.500 2.735 $\angle(O_{13}-C_5-C_4)$ 117.07117.336 2.2735 $\angle(O_{13}-C_5-C_4)$ 121.60121.200121.71 $\angle(C_6-C_5-C_4)$ 121.60119.600119.91119.323 $\angle(C_6-C_5-C_4)$ 120.30120.035120.11120.700
$r(C_7C_8)$ 139.6140.5139.3140.2 $r(C_7C_{12})$ 139.0140.8139.3140.4 $r(C_8C_9)$ 137.5139.0139.2139.2 $r(C_9C_{10})$ 136.7139.7138.9140.2 $r(C_{10}C_{11})$ 137.6138.8137.7140.5 $r(C_{10}C_{12})$ 137.8140.9138.0138.9 $\angle(O_{13}-C_5-C_6)$ 121.30121.500122.735 $\angle(O_{13}-C_5-C_4)$ 117.07117.336122.735 $\angle(O_{13}-C_5-C_4)$ 121.60121.200121.71 $\angle(C_6-C_5-C_4)$ 121.60119.600119.91 $\angle(C_5-C_6-C_1)$ 119.60119.600119.91
$r(C_7C_{12})$ 139.0140.8139.3140.4 $r(C_8C_9)$ 137.5139.0139.2139.2 $r(C_9C_{10})$ 136.7139.7138.9140.2 $r(C_{10}C_{11})$ 137.6138.8137.7140.5 $r(C_{11}C_{12})$ 137.8140.9138.0138.9 $\angle(O_{13}-C_5-C_6)$ 121.30121.500 2.735 $\angle(O_{13}-C_5-C_4)$ 117.07117.336 2.735 $\angle(O_{13}-C_5-C_4)$ 121.60121.200121.71 $\angle(C_5-C_5-C_4)$ 121.60119.600119.91 $\angle(C_5-C_5-C_4)$ 120.035120.11120.700
$r(C_8-C_9)$ 137.5139.0139.2139.2 $r(C_9-C_{10})$ 136.7139.7138.9140.2 $r(C_{10}-C_{11})$ 137.6138.8137.7140.5 $r(C_{11}-C_{12})$ 137.8140.9138.0138.9 $\angle(O_{13}-C_5-C_6)$ 121.30121.500 2.735 $\angle(O_{13}-C_5-C_4)$ 117.07117.336 $2.2.735$ $\angle(O_{14}-C_1-C_2)$ 121.60121.200121.71 $\angle(C_5-C_5-C_4)$ 121.60119.600119.91 $\angle(C_5-C_6-C_1)$ 119.60119.600119.91
$r(C_9-C_{10})$ 136.7139.7138.9140.2 $r(C_{10}-C_{11})$ 137.6138.8137.7140.5 $r(C_{11}-C_{12})$ 137.8140.9138.0138.9 $\angle(O_{13}-C_5-C_6)$ 121.30121.500122.735 $\angle(O_{14}-C_1-C_6)$ 117.07117.336122.12 $\angle(O_{14}-C_1-C_2)$ 121.60121.200121.71 $\angle(C_5-C_5-C_4)$ 121.60121.200121.71 $\angle(C_5-C_6-C_1)$ 119.60119.91119.323 $\angle(C_5-C_5-C_4)$ 120.30120.035120.11120.700
$r(C_{10}C_{11})$ 137.6138.8137.7140.5 $r(C_{11}C_{12})$ 137.8140.9138.0138.9 $\angle(O_{13}-C_5-C_6)$ 121.30121.500 $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$r(C_{11}-C_{12})$ 137.8 140.9 138.0 138.9 $\angle(O_{13}-C_5-C_6)$ 121.30 121.500 117.78 122.735 $\angle(O_{13}-C_5-C_4)$ 117.07 117.336 122.12 116.500 $\angle(O_{14}-C_1-C_2)$ 121.60 121.200 121.71 120.744 $\angle(C_5-C_5-C_4)$ 119.60 119.600 119.91 119.323 $\angle(C_5-C_5-C_4)$ 120.30 120.035 120.11 120.700
$\begin{array}{ccccc} \angle (O_{13}\text{-}C_5\text{-}C_6) & 121.30 & 121.500 \\ \angle (O_{14}\text{-}C_1\text{-}C_6) & & 117.78 & 122.735 \\ \angle (O_{13}\text{-}C_5\text{-}C_4) & 117.07 & 117.336 \\ \angle (O_{14}\text{-}C_1\text{-}C_2) & & 122.12 & 116.500 \\ \angle (C_6\text{-}C_5\text{-}C_4) & 121.60 & 121.200 & 121.71 & 120.744 \\ \angle (C_5\text{-}C_6\text{-}C_1) & 119.60 & 119.600 & 119.91 & 119.323 \\ \angle (C_2\text{-}C_5\text{-}C_4) & 120.30 & 120.035 & 120.11 & 120.700 \end{array}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c cccc} \angle (O_{13}\text{-}C_5\text{-}C_4) & 117.07 & 117.336 \\ \medskip (O_{14}\text{-}C_1\text{-}C_2) & & 122.12 & 116.500 \\ \medskip (C_6\text{-}C_5\text{-}C_4) & 121.60 & 121.200 & 121.71 & 120.744 \\ \medskip (C_5\text{-}C_6\text{-}C_1) & 119.60 & 119.600 & 119.91 & 119.323 \\ \medskip (C_5\text{-}C_6\text{-}C_2) & 120.30 & 120.035 & 120.11 & 120.700 \\ \end{array}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
\angle (C ₆ -C ₅ -C ₄)121.60121.200121.71120.744 \angle (C ₅ -C ₆ -C ₁)119.60119.91119.323 \angle (C ₂ -C ₂ -C ₂)120.30120.035120.11120.700
\angle (C ₅ -C ₆ -C ₁) 119.60 119.600 119.91 119.323 \angle (C ₅ -C ₆ -C ₁) 120.30 120.035 120.11 120.700
(CCC.) 120.30 120.035 120.11 120.700
$(c_0 c_1 c_2)$ 120.00 120.000 120.11 120.100
$\angle (C_1 - C_2 - C_3)$ 119.80 120.137 119.35 119.100
$\angle (C_2 - C_3 - C_4)$ 121.60 121.293 122.07 120.959
$\angle (C_3 - C_4 - C_5)$ 116.90 117.727 116.88 119.138
$\angle (C_5 - C_4 - C_7)$ 123.23 123.100 121.61 120.436
\angle (C ₃ -C ₄ -C ₇) 119.80 119.143 121.54 120.400
$\angle (C_4 - C_7 - C_8)$ 119.10 118.447 121.61 120.436
$\angle (C_4 - C_7 - C_{12})$ 124.20 123.400 121.54 120.400
$\angle (C_8 - C_7 - C_{12})$ 116.70 118.150 116.88 119.138
$\angle (C_7 - C_8 - C_9)$ 121.80 121.151 121.71 120.744
$\angle (C_{g}-C_{0}-C_{10})$ 119.90 120.024 119.91 119.323
$\angle (C_0 - C_{10} - C_{11})$ 119.90 120.300 120.11 120.700
$\angle (C_{10}-C_{12})$ 120.00 119.600 119.35 119.100
$\angle (C_7-C_{12}-C_{11})$ 121.50 120.786 122.07 120.959
$\angle (O_{14}-C_{12}-C_7)$ 121.20 124.156
$\angle (O_{14}-C_{12}-C_{11})$ 117.20 115.000
$\angle (O_{13}-C_{10}-C_{9})$ 117.78 122.735
$\angle (O_{13}-C_{10}-C_{11})$ 122.12 116.500
$\angle (C_1 - O_{14} - H_{24})$ 105.39 107.910
$\tau(C_{4}-C_{7}-C_{4}-C_{3})$ 48.4 53.637 40.704

表 1 AM1 计算所得 2BP 和 4BP 的结构参数

bond distances r in pm, bond angles (\angle) and dihedral angles τ in (°); a) Ref.[11], b) Ref.[12]

的光谱.实验结果显示两种物质的 THz 吸收谱有显 著的差异. AM1 计算结果表明, 2BP 和 4BP 分子中 两个苯环呈一定的夹角,其中 2BP 中的两个羟基间 能够形成分子内氢键,它在 1.45 THz 的运动模式为 包含氢键在内的两个苯环的低频摆动. THz-TDS 技术的出现为光谱学研究者提供了 新的独特的机遇.因为分子之间弱的相互作用,如氢 键、范德华力以及晶体中晶格的低频振动吸收往往 对应于 THz 红外波段范围,同时许多凝聚态材料以 及生物大分子的振动和转动能级也都在 THz 波段 内有响应, THz 时域光谱将作为傅立叶变换红外光 谱技术和拉曼光谱技术的重要互补技术, 用于研究 物质的结构、组成及其相互作用等方面.

References

- 1 Dragoman, D.; Dragoman, M. *Prog. Quantum Electron.*, **2004**, **28** (1): 1
- 2 Zhang, X.C. Phys. Med. Biol., 2002, 47(21): 3667
- 3 Zhao, G. Z.; ter Mors, M.; Wenckebach, T.; Planken, P. C. M.
 J. Opt. Soc. Am. B, 2002, 19(6): 1476
- 4 Zhao, H. W.; Ge, M.; Wang, W. F.; Li, Q. N.; Yu, X. H. Chemistry,
 2005, 68(2): 87 [赵红卫, 葛 敏, 王文锋, 李晴暖, 余笑寒. 化学通报(Huaxue Tongbao), 2005, 68(2): 87]
- 5 Walther, M.; Fischer, B.; Schall, M.; Helm, H.; Jepsen, P. U. *Chem. Phys. Lett.*, **2000**, **332**(3-4): 389
- 6 Walther, M.; Plochocka, P.; Fischer, B.; Helm, H.; Jepsen, P.U.
 Biopolymers, 2002, 67(4-5): 310

- 7 Ge, M.; Zhao, H. W.; Ji, T.; Yu, X. H.; Wang, W. F. Nuclear Techniques, 2004, 27(7): 545 [葛 敏, 赵红卫, 吉 特, 余笑寒, 王文 锋. 核技术(Hejishu), 2004, 27(7): 545]
- 8 Ferguson, B.; Zhang, X. C. Nature Materials, 2002, 1(1): 26
- 9 Xu, X. L.; Wang, X. M.; Li, F. L.; Wang, L. Chinese Journal of Quantum Electronics, 2002, 19(6): 563 [徐新龙, 王秀敏, 李福 利, 汪 力. 量子电子学报(Liangzi Dianzi Xuebao), 2002, 19(6): 563]
- Han, J. G.; Zhu, Z. Y.; Wang, Z. X.; Zhang, W.; Yu, L. P.; Sun, L.
 T.; Wang, T. T.; He, F.; Liao, Y. *Phys. Lett. A*, **2003**, **310**: 457
- Byrne, J. J.; Chavant, P. Y.; Averbuch-Pouchot, M. T.; Vallée, Y. Acta Cryst. C, 1998, 54: 1154
- Jackisch, M. A.; Fronczek, F. R.; Geiger, C. C.; Iiale, P. S.; Daly,
 W. H.; Butler, L. G. Acta Cryst. C, **1990, 46:** 919
- Xu, G. X.; Wang, X. Y. The structure of matter. 2nd edition. Beijing:Higher Education Press, 1987:586 [徐光宪, 王祥云. 物质结构. 第二版. 北京:高等教育出版社, 1987:586]

Far-infrared Spectra of 2,2'-biphenol and 4,4'-biphenol Measured by Terahertz Time-Domain Spectroscopy^{*}

GE, Min ZHAO, Hong-Wei ZHANG, Zeng-Yan WANG, Wen-Feng YU, Xiao-Han LI, Wen-Xin (Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800)

Abstract The far-infrared spectra of 2,2'-biphenol(2BP) and 4,4'-biphenol(4BP) in the frequency range between 0.1 and 1.6 THz were measured by terahertz time-domain spectroscopy at 295 K. We observed distinct differences between the two isomers. 2BP has an absorption band at 1.45 THz while 4BP shows no peaks through all experimental frequency range. To investigate the relationship between the THz spectra and the low-energy modes of the molecules, quantum chemical calculations with full geometry optimizations and frequency analysis of the optimized structures were performed using the Gaussian 03 program package. The structure analyses with AM1 show that the hydroxyl groups in 2BP can form intramolecular hydrogen bond. The origin of the observed absorption at 1.45 THz is assigned to the low-frequency torsions of the two-phenyl rings which contain the hydrogen bond.

Keywords: Biphenol, Terahertz time-domain spectroscopy (THz-TDS), Weak interaction, Quantum calculation

Received; January 11, 2005; Revised; April 28, 2005. Correspondent; WANG, Wen-Feng(E-mail; wfwang@sinap.ac.cn; Tel; +8621-59554602). * The Project Supported by Knowledge Innovation Program of Chinese Academy of Sciences