The Interaction of Noise Pollution and Blood Pressure in a Textile Factory in Ilam, Iran

PARVIN NASSIRI ${ }^{1 *}$, ALI MOHAMMAD ABBASI ${ }^{2}$
${ }^{1}$ Occ. Hyg. Dep, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.; ${ }^{2}$ Ilam University of Medical Sciences, Ilam, Iran.

Received July 22, 2009; Revised August 24, 2009; September August 1, 2009
This paper is available online at http:///ijoh.tums.ac.ir

Abstract

The aim of the present study was to assess the industrial noise pollution and its effects on the blood pressure of workers during activities in textile factory in llam,which is situated in west of Iran. A crosssectional study was performed on a group included 81 workers and 30 people as sample and control group, respectively. A questionnaire was filled out and then the other measurements including the total sound pressure level, weight, height, pulse, blood pressure and all the rest of medical examinations have been respectively done. The average sound pressure level measured for sample and control group was respectively (94.86 ± 6.63) and (61.93 ± 4.56) dBA. The result also showed that by taking mean values for each quantitative variable, statistically only the age has significant difference between opposing groups. Sound frequency analysis in A and C networks over a frequency range between 125 to 16000 Hz revealed a significant differences in such away that sound pressure level for the sample group was higher than the limited threshold (85 dBA). Moreover, the results from the survey of the total sound pressure level in A -and C - weighted according to blood pressure status, BMI and age indicate a significant statistical correlation between the mentioned variables. A highly significant correlation was found by χ^{2} test between the level of sound pressure, blood pressure status, BMI and the age group in different octave band center frequencies. It is concluded that planning for working hours of workers to decrease the noise exposure and employment of young workers with appropriate BMI may reduce the adverse effects of noise.

Keywords: Blood pressure, Industrial activities, Noise pollution

Introduction

Noise is one of the many stressors people have to cope with in their everyday lives, especially in the developed countries, where the models of social and economical organization, the technological development and the growth of population are key factors in the increase of noise pollution [1, 2].

Indeed, noise pollution has been recognized as a serious health hazard [3]. Noise-related health hazards cause damage to humans ranging from annoyance to insanity and death [4]. Noise-induced sleeping problems and their influence on mood and performance the next day are part of every normal life. However, at some

[^0]point, sleeping problems or sleep disturbance may become clinically significant as normal physical, mental, and social functioning are hampered. Furthermore, an effect such as the elevation of blood pressure caused by noise exposure might fall largely within normal homeostasis [5]. Long term noise-induced stress may lead to disturbance of blood pressure regulation through the raise of circulatory stress hormones: adrenaline, noradrenaline [6]. On the other hand, an increase in blood pressure may also induce in the prevalence and mortality of cardiovascular disease [7].

Noise-related disorders have been identified in exposed workers and have led to the concept of vibroacoustic disease (VAD). Investigation of VAD prevalence is of particular importance in workers of industries where noise prevails (e.g., airplane and textile plants) [8].

Table 1. Values (percentage and abundance distribution) of blood pressure among workers by studied groups

Parameter	Sample group		Control group	
		number	percentage	number
Systolic blood pressure	Normal (≤ 140)	72	88.9	29
	Borderline $(141-159)$	8	9.87	$67-96$
Total	Hypertension (≥ 160)	1	1.23	-
		81	100	30
Diastolic blood pressure	Normal (≤ 140)	73	9.12	29
	Borderline $(141-159)$	7	8.64	100
Total	Hypertension (≥ 160)	1	1.24	96.7
		81	100	36.33

Table 2. Mean and abundance distribution of quantitative variables among workers by studied groups

*Sample group $=\mathrm{S}$

* *Control group $=$ C

To gain more insight into the relation between noise exposure and its potential health impact, a descriptive-
analytical investigation was conducted in order to estimate the interactive effect of noise pollution on blood pressure among the workers of a textile factory.

Materials and Methods

A cross sectional study was conducted on 111 subjects from a textile factory in Ilam which is situated in west of Iran. The sample group included 81 workers who were exposed to a noisy environment and were

Table 3．Percentage and abundance distribution of sample group according to frequency，sound pressure level dBA，BMI，and blood pressure status

	BMI			19－27（Normal）						＞27							
	Blood pressure	Systolic＜ 140\＆Dia－ stolic <90		Systolic＜ 140 \＆Dia－ stolic <90		$\begin{gathered} \text { Systolic } \\ 140-159 \& \\ \text { Diastolic }< \\ 90 \end{gathered}$		Total		Systolic＜ 140\＆Dia－ stolic <90		Systolic 140 －159\＆Dia－ stolic <90		Systolic＞ 160 \＆Dia－ stolic <90		Total	
	Sound pressure level	N	P	N	P	N	P	N	P	N	P	N	P	N	P	N	P
む̃	＜ 84	1	33.3	14	22.5	－	－	14	22.5	2	12.5	－	－	－	－	2	12.5
	85－99	2	66.7	47	75.8	1	1.6	48	77.4	7	43.7	5	31.2	2	12.5	14	87.5
	Total	3	100	61	98.3	1	1.6	62	100	9	56.2	5	31.2	2	12.5	16	100
荅	＜ 84	1	33.3	14	22.5	－	－	14	22.5	2	12.5	－	－	－	－	2	12.5
	85－99	2	66.7	47	75.8	1	1.6	48	77.4	7	43.7	5	31.2	2	12.5	14	87.5
	Total	3	100	61	98.3	1	1.6	62	100	9	56.2	5	31.2	2	12.5	16	100
	<84	1	33.3	14	22.5	－	－	14	22.5	2	12.5	－	－	－	－	2	12.5
in	85－99	2	66.7	47	75.8	1	1.6	48	77.4	7	43.7	5	31.2	2	12.5	14	87.5
	Total	3	100	61	98.3	1	1.6	62	100	9	56.2	5	31.2	2	12.5	16	100
8	＜ 84	1	33.3	14	22.5	－	－	14	22.5	2	12.5	－	－	－	－	2	12.5
	85－99	2	66.7	47	75.8	1	1.6	48	77.4	7	43.7	5	31.2	2	12.5	14	87.5
	Total	3	100	61	98.3	1	1.6	62	100	9	56.2	5	31.2	2	12.5	16	100
	＜ 84	1	33.3	14	22.5	－	－	14	22.5	2	12.5	－	－	－	－	2	12.5
O	85－99	2	66.7	47	75.8	1	1.6	48	77.4	7	43.7	5	31.2	2	12.5	14	87.5
	Total	3	100	61	98.3	1	1.6	62	100	9	56.2	5	31.2	2	12.5	16	100
合	＜ 84	1	33.3	14	22.5	－	－	14	22.5	2	12.5	－	－	－	－	2	12.5
	85－99	2	66.7	47	75.8	1	1.6	48	77.4	7	43.7	5	31.2	2	12.5	14	87.5
	Total	3	100	61	98.3	1	1.6	62	100	9	56.2	5	31.2	2	12.5	16	100
$\stackrel{8}{8}$	＜84	1	33.3	14	22.5	－	－	14	22.5	2	12.5	－	－	－	－	2	12.5
	85－99	2	66.7	47	75.8	1	1.6	48	77.4	7	43.7	5	31.2	2	12.5	14	87.5
	Total	3	100	61	98.3	1	1.6	62	100	9	56.2	5	31.2	2	12.5	16	100
$\begin{aligned} & 8 \\ & \hline 0 \\ & \hline \end{aligned}$	＜ 84	1	33.3	14	22.5	－	－	14	22.5	2	12.5	－	－	－	－	2	12.5
	85－99	2	66.7	47	75.8	1	1.6	48	77.4	7	43.7	5	31.2	2	12.5	14	87.5
	Total	3	100	61	98.3	1	1.6	62	100	9	56.2	5	31.2	2	12.5	16	100
$\bar{\sim}$	<84	1	33.3	14	22.5	，		14	22.5	2	12.5	－	-	－		2	12.5
	$85-99$	2	66.7	47	75.8	1	1.6	48	77.4	7	43.7	5	31.2	2	12.5	14	87.5

randomly selected．In addition， 30 workers who were exposed to lower sound pressure level were also intro－ duced as a control group．The questionnaire consisted of two segments．The first part comprised general demo－ graphic data and the second part consisted of technical questions such as systolic and diastolic blood pressure． The questionnaire also included the sound pressure level over different frequencies．Based on similar surveys， expert opinions and statistical tests such as Half split method and test－retest，validity and reliability of the questionnaire was confirmed（ $\alpha=0.85$ ）．

In two stages，systolic and diastolic blood pressure was measured by a medical doctor and nurses．At first， each worker was examined by a physician and then， after the subject had been supine for $15-20 \mathrm{~min}$ ，blood pressure was measured 3 times in 5 min intervals．In a second experimental session，the above examination was carried out by another person．In the same condi－ tion，for each worker pulse rate was counted by radial artery palpitation for 1 min ．

With regard to exposure to noise in the studied area and from a noise－mapping study，sampling sites were selected for detailed investigation．At each site，the measurements of the total sound level and sound analy－ sis in $1 / 3$ octave band frequencies was carried out．To illustrate the accuracy levels of the noise，the procedure was applied different times a day and night at each of the selected measurement sites．Noise level was meas－ ured using a sound level meter type B\＆K 2230，made in Denmark．The data were statistically tested by T－test．

Results

The highest sound pressure level for sample group 104 dBA were recorded in the welding while the lowest noise levels 79.95 dBA were recorded on the twisted bobbins．The results also indicated that the entire con－ trol group was estimated under maximum sound pres－ sure of 61.93 dBA ．According to the variables of sound pressure level estimated in A and C－weighted，mean sound pressure level in sample group and control group was $94.86 \pm 4.63 \mathrm{dBA}$ and $61.93 \pm 4.56 \mathrm{dBA}$ ，respec－ tively which shows statistically a significant difference among the subjects．

Table 1 shows systolic and diastolic blood pressure of the workers．It shows that based on WHO definition， 88.9% of the sample group have a normal blood pres－ sure， 8.64% have a borderline blood pressure and 2.47% have hypertension．On the contrary，the blood pressure for control group subjects was 96.7 \％with normal blood pressure and 3.3 with hypertension．

From sample and control group，we found differ－ ences in mean of quantitative variables such as age， working history，work duration in previous job，work duration except the main job，smoking（behavior）， height，weight，a history of smoking，medical history of family and number of children were statistically insig－ nificant while，from age changes there was a statistical significant difference between sample group （30．57 ± 6.17 ）and control group（ 28.03 ± 4.76 ），$(P=0.03$ ， $d f=109$ and $t=2.21$ ）．In addition，by performing t－test a

Table 4. Percentage and abundance distribution of control group according to frequency, sound pressure level dBA, BMI, and blood pressure status

	BMI	< 19		19-27 (Normal)						>27			
		$\begin{gathered} \text { Systolic }<140 \\ \& \\ \text { Diastolic }<90 \end{gathered}$		$\begin{gathered} \text { Systolic }<140 \\ \& \\ \text { Diastolic }<90 \end{gathered}$		Systolic 140-159			Total	$\begin{gathered} \hline \text { Systolic }<140 \\ \& \\ \text { Diastolic }<90 \end{gathered}$			
	Blood pressure			 Diastolic <90									
	Sound pressure level	N	P			N	P	N	P	N	P	N	P
ล	<84	1	3.8	24	92.3	1	3.8	96.3		4	100		
	85-99	-	-	-	-					-	-		
	Total	1	3.8	24	92.3	1	43.8	25	100	4	100		
in	< 84	1	3.8	24	92.3	1	3.8	96.3		4	100		
	85-99	-	-	-	-					-	-		
	Total	1	3.8	24	92.3	1	43.8	25	100	4	100		
oin	<84	1	3.8	24	92.3	1	3.8	96.3		4	100		
	85-99	-	-	-	-					-	-		
	Total	1	3.8	24	92.3	1	43.8	25	100	4	100		
$\stackrel{\circ}{0}$	<84	1	3.8	24	92.3	1	3.8	96.3		4	100		
	85-99	-	-	-	-					-	-		
	Total	1	3.8	24	92.3	1	43.8	25	100	4	100		
O앙	< 84	1	3.8	24	92.3	1	3.8	96.3		4	100		
	85-99	-	-	-	-					-	-		
	Total	1	3.8	24	92.3	1	43.8	25	100	4	100		
ob	<84	1	3.8	24	92.3	1	3.8	96.3		4	100		
	85-99	-	-	-	-					-	-		
	Total	1	3.8	24	92.3	1	43.8	25	100	4	100		
	<84	1	3.8	24	92.3	1	3.8	96.3		4	100		
$\stackrel{8}{8}$	85-99	-	-	-	-					-	-		
	Total	1	3.8	24	92.3	1	43.8	25	100	4	100		
$\begin{aligned} & 8 \\ & \hline 8 \\ & \hline \end{aligned}$	<84	1	3.8	24	92.3	1	3.8	96.3		4	100		
	85-99	-	-	-	-					-	-		
	Total	1	3.8	24	92.3	1	43.8	25	100	4	100		

significant difference in age variable could be observed ($t=2.21, d f=109$ and $P=0.000$).

With respect to the association between noise and blood pressure, in mean systolic blood pressure no significant differences between the mentioned groups could be noticed. How ever, in mean diastolic blood pressure significant difference were evident $(t=3.262$, $d f=109$ and $P=0.001$) (Table 2). Furthermore, by the use of t-test the results showed that diastolic blood pressure had differences between sample and control groups ($P=0.000, d f=109$ and $t=3.262$). The results from sound pressure level, BMI and blood pressure level showed that subjects with BMI more than 27 and noise exposure of ($85-99 \mathrm{dBA}$), had borderline blood pressure and hypertension respectively 7.5% and 2.9% (Table 3 and 4). Moreover, the chi-squared test showed significant correlation between sound pressure level, BMI, and blood pressure status ($P=0.000, d f=4$ and $\chi^{2}=25.54$).

As shown in Table 5 and 6 , there was a significant relation between sound pressure level, BMI, blood pressure status and age at the test frequencies $(P=0.000$, $d f=4$ and $\chi^{2}=23.29$). Investigation from a noise level of $85-99 \mathrm{dBA}$ showed that the workers under the age of 29 had normal blood pressure and from workers with a age within the age group of $30-44$ years 82.86% had normal blood pressure, 14.28% border line blood pressure and 2.86% hypertension. However, only 50% of workers over the age of 45 years had normal blood pressure and the rest of them equally had borderline pressure and hypertension.

The association between blood pressure status, sound pressure level and age was statistically significant
($\chi^{2}=13.62, d f=4$ and $P=0.0009$) while among blood pressure status, sound pressure level and work history in the range of eight frequencies no significant statistical relation were detected.

Discussion

The present study was consistent with the report of Mahmood et al., (2007) [10] who noted that there was a significant rise in blood pressure in response to noise. The findings listed above are in agreement with the results of the other studies in the literature [7]. They indicate that, the group of workers which are exposed to lep, d (lep, $\mathrm{d}=$ personal daily levels of exposure (assuming an 8 -hr shift)), greater than 90 dBA had a higher mean diastolic BP and a higher frequency of diastolic hypertension than those exposed at lower noise levels. Exposure to occupational noise above 85 dBA is also reported to associate with elevated ambulatory blood pressure in male workers aged from 20 to 50 years [9 , $10,11,12]$.

This study carried out an analysis of the environmental noise exposure on blood pressure in workers of a textile factory. From WHO definition, blood pressure status of sample and control groups showed that normal blood pressure of sample and control groups were respectively 88.9% and 96.7%. In addition, the prevalence of sample group with hypertensive and borderline values of blood pressure was 2.47% and 8.64%, respectively. In addition to systolic/ diastolic blood pressure changes, t-test stated a significant difference in diastolic blood pressure among studied groups. In other words, sample group which are exposed to higher sound pressure, have increased diastolic blood pressure.

Table 5. Percentage and abundance distribution of sample group according to frequency, sound pressure level dBA, age, and blood pressure status

	Age	≤ 29		30-44								≥ 45							
	Blood pressure	Systolic < 140\& Diastolic <90		Systolic < 140 \& Dia- stolic <90		$\begin{gathered} \hline \text { Systolic } 140 \\ -159 \& \\ \text { Diastolic }< \\ 90 \end{gathered}$		Systolic > 160 \& Diastolic < 90		Total		 Diastolic < 90		Systolic 140 159\& Diastolic<90		Systolic > 160 \& Diastolic <90		Total	
	Sound pressure level	N	P	N	P	N	P	N	P	N	P	N	P	N	P	N	P	N	P
ลิ	<84	13	30.9	4	11.4	-	-	-	-	4	11.4	-	-	-	-	-	-	-	-
	85-99	29	69	25	71.4	5	14.2	1	2.8	31	88.5	2	50	1	25	1	25	4	100
	Total	42	100	29	82.8	5	14.2	1	2.8	35	100	2	50	1	25	1	25	4	100
in	< 84	13	30.9	4	11.4	-	-	-	-	4	11.4	-	-	-	-	-	-	-	-
	85-99	29	69	25	71.4	5	14.2	1	2.8	31	88.5	2	50	1	25	1	25	4	100
	Total	42	100	29	82.8	5	14.2	1	2.8	35	100	2	50	1	25	1	25	4	100
	< 84	13	30.9	4	11.4	-	-	-	-	4	11.4	-	-	-	-	-	-	-	-
$\stackrel{8}{8}$	85-99	29	69	25	71.4	5	14.2	1	2.8	31	88.5	2	50	1	25	1	25	4	100
	Total	42	100	29	82.8	5	14.2	1	2.8	35	100	2	50	1	25	1	25	4	100
8	<84	13	30.9	4	11.4	-		-		4	11.4	-	-	-	-	-	-	-	-
	85-99	29	69	25	71.4	5	14.2	1	2.8	31	88.5	2	50	1	25	1	25	4	100
	Total	42	100	29	82.8	5	14.2	1	2.8	35	100	2	50	1	25	1	25	4	100
ষ우	<84	13	30.9	4	11.4	-	-	-	-	4	11.4	-	-	-	-	-	-	-	-
	85-99	29	69	25	71.4	5	14.2	1	2.8	31	88.5	2	50	1	25	1	25	4	100
	Total	42	100	29	82.8	5	14.2	1	2.8	35	100	2	50	1	25	1	25	4	100
8	< 84	13	30.9	4	11.4	5		-		4	11.4	-		-	-	-	-	-	
	85-99	29	69	25	71.4	5	14.2	1	2.8	31	88.5	2	50	1	25	1	25	4	100
	Total	42	100	29	82.8	5	14.2	1	2.8	35	100	2	50	1	25	1	25	4	100
$\stackrel{8}{8}$	<84	13	30.9	4	11.4	-	-	-		4	11.4	-	-	,	-	-	-	-	-
	85-99	29	69	25	71.4	5	14.2	1	2.8	31	88.5	2	50	1	25	1	25	4	100
	Total	42	100	29	82.8	5	14.2	1	2.8	35	100	2	50	1	25	1	25	4	100
$\begin{aligned} & 8 \\ & \hline 8 \\ & \hline- \end{aligned}$	<84	13	30.9	4	11.4	-	-	-	-	4	11.4	-	-	-	-	-	-	-	-
	85-99	29	69	25	71.4	5	14.2	1	2.8	31	88.5	2	50	1	25	1	25	4	100
	Total	42	100	29	82.8	5	14.2	1	2.8	35	100	2	50	1	25	1	25	4	100

Considering that using t - test, no significant differences were found in quantitative variables (e.g. working history, work duration in current job, work duration
except the main job, smoking (behavior), height,
weight, a history of smoking and medical history of family among subjects, Thus, it can be concluded that the mentioned variables were relatively harmonious.

However, t - test showed considerable difference in

Table 6. Percentage and abundance distribution of control group according to frequency, sound pressure level dBA, age, and blood pressure status

	AgeBlood pressure	≤ 29						30-44						≥ 45						
		Systolic $<$140$\&$ Diastolic $<$90		Systolic > 160 \& Diastolic <90		Total		Systolic < 140\& Diastolic <90		 Diastolic < 90		Total		Systolic < 140\& Diastolic <90		$\begin{gathered} \text { Systolic } \\ 140-159 \& \\ \text { Diastolic }<90 \end{gathered}$			Total	
	Sound pressure level	N	P	N	P	N	P	N	P	N	P	N	P	N	P	N	P	N		P
\cdots	<84	18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-		-	-
	85-99	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		- -	-
	Total	18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-		-	-
	<84	18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-		- -	-
Nin	85-99	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
	Total	18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-		-	-
	<84	18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-		-	-
in	85-99	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
	Total	18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-		-	-
8	<84	18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-			
	$85-99$	18		-	-	-	-	,	-	-	-	-	-	-	-	-	-			-
	Total	18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-			-
		18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-			-
O	85-99	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-
	Total	18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-			-
\&	<84	18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-		-	-
	85-99	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
	Total	18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-		-	-
8	<84	18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-		-	-
	85-99	-		-		-	-	-		-	-	-	-	-	-	-	-		-	-
	Total	18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-		-	-
	< 84	18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-		-	-
$\begin{aligned} & 8 \\ & 8 \\ & \hline 8 \end{aligned}$	85-99	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		- -	-
	Total	18	94.7	1	5.2	19	100	11	100	-	-	-	-	-	-	-	-		- -	-

the mean age of these two groups ($P=0.03$). From the point of view of sound analysis, three types of trends can be distinguished at the range of frequencies. From 125 to 4000 Hz sound pressure level demonstrates upward trend while at frequency of 16000 Hz an opposite trend has been observed. Moreover, this trend at frequency 8000 Hz is in constant which the maximum difference of sound pressure level from that frequency range was 3.6 dBA .

With regard to the mean sound pressure level, t - test shows a significant difference in A- and C- weighted ($P=0.000$). This approach indicates that sample group is exposed to higher sound pressure than that of the control one. From the sound analysis results in octave band (8 frequencies), it can be observed that the sample group is exposed to higher sound pressure level, which shows a heterogeneous working environment among these two groups.

Conclusion

As a conclusion the following suggestions could be useful for further investigations:
1-Appropriate selection of machines with a good maintenance
2-Planning for working hours of workers to decrease the sound pressure exposure
3-Employment of young workers with appropriate BMI 4-Further research on relation of sound and blood pressure in industrial environments on young adults.

REFERENCES

1. Wallenius MA,The interaction of noise stress and personal project stress on subjective health. J Env Psyc 2004; 24:167-177.
2. Fernández MD, Quintana S, Chavarría N,Ballesteros JA Noise exposure of workers of the construction sector. Appl Acoust 2009; 70: 753-760.
3. Bies DA, Hansen CH. Engineering Noise Control: Theory and Practice. 2nd ed, E and FN SPON, London. 1996.
4. Pathak V, Tripathi BD, Mishra Vk, Evaluation of traffic noise pollution and attitudes of exposed individuals in working place. Atmos Envir 2008; 42: 3892-3898.
5. Elise EMM, Kempen V, Kruize H, Hendrick C, Boshuizen CB, The association between noise exposure and blood pressure and ischaemic heart disease. Envir Heal pros 2002; 110: 307-317.
6. Belojevic G, Jakovljevic B, Stojanov V, Paunovic K, Ilic J, Urban road-traffic noise and blood pressure and heart rate in preschool children. Envir Inter 2008; 34: 226-231.
7. Tomei F, Fantini S, Tomao E, Baccolo T P, Rostai MV, Hypertension and chronic exposure to noise. Arch Envir Heal 2000; 55(5): 319-325.
8. Oliveiraa MJR, Pereiraa AS, Ferreiraa PG, Guimaraesb L, Freitasc D, Carvalhoc APO, Grandea NR, Aguas AP, Arrest in ciliated cell expansion on the bronchial lining of adult rats caused by chronic exposure to industrial noise. Envir Res 2005; 97: 282-286.
9. Talbott EO, Gibson LB, Burks A, Engberg R, McHugh K P, Evidence for a dose-response relationship between occupational noise and blood pressure. Arch Envir Heal 1999; 54(2):71-8.
10. Mahmood R., Ghulam JH, Alam S, Safi AJ, Salahuddin Amin-ul-Haq, Effect of 90 decibel noise of 4000 Hertz on blood pressure in young adults. Noise Pollution 2007; 4: 1-4.
11. Fogari R, Zoppi A, Corradi L, Marasi G, Vanasia A, Zanchetti A, Transient but not sustained blood pressure increments by occupational noise. An ambulatory blood pressure measurement study. J Hypertens 2001;19, 1021-1027.
12. Chang T, Lai Y Hsieh H, Lai J, Liu Ch. Effects of environmental noise exposure on ambulatory blood pressure in young adults. (In press), 2009.

[^0]: * Corresponding author: Occ. Hyg. Dep, School of Public Health, Tehran University of Medical Sciences.
 E-mail: nassiri@sina.tums.ac.ir

