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Abstract: A result on vanishing cohomology for finite-dimensional modular Lie superalge-

bras was obtained, with aid of the approach provided by Dzhumadil’daev for modular Lie

algebras. Some examples are given as demonstration of the vanishing result, as well as its

applications.
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1 Main results

In this paper, all algebras and modules are finite dimensional over a given algebraically
closed field k of characteristic p > 0. Let g be a Lie superalgebra, U(g) the universal enveloping
algebra and Z(g) the center of U(g).

Definition 1.1[1,2] A Lie superalgebra g = g0̄⊕g1̄ is called a restricted Lie superalgebra,
if the following conditions are satisfied.

(a) g0̄ is a restricted Lie algebra with p-mapping [p]: g0̄ −→ g0̄ in the sense of [3,Chap 4].

(b) g1̄ is a restricted g0̄-module via the adjoint action, i.e. ad(X [p])(X1) = ad(X)p(X1), for
X ∈ g0̄, X1 ∈ g1̄.
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A polynomial of the form f(t) =
∑
i>0

λit
pi ∈ k[t] is called a p-polynomial. With every

element l ∈ g0̄ we can associate a p-polynomial z(t) such that replacing t by l gives a central
element z(l) ∈ Z(g). Thus we obtain a map z : g0̄ −→ Z(g). Let M be a g-module and

l 7−→ (l)M , l ∈ g, (l)M ∈ End M,

its associated representation. The main result can be stated as follows.
Theorem 1.2 Let g be a Lie superalgebra over k, an algebraically closed field of prime
characteristic p, and M an arbitrary g-module. Suppose for some l ∈ g0̄, the endomorphism
z(l)M is not degenerate, with z(l) as above. Then the cohomology H∗(g,M) is zero.

A direct corollary can be obtained:
Corollary 1.3 Assume g is a restricted Lie superalgebra, M is an irreducible g-module, but
not restricted. Then H∗(g,M) is zero.

2 Cohomology of modular Lie superalgebras with coeffi-

cients in a nontrivial module

At first, let us recall the definition of Lie superalgebra cohomology (for more details, the
reader is referred to ([4,5]). Let g be a Lie superalgebra and M a g-module. The Z-graded
superspace C∗(g,M) is defined as

C∗(g,M) =
⊕
q>0

Cq(g,M) with Cq(g,M) = Hom(
∧q

(g),M),

where
∧q(g) =

∑
i∈Z2

∧q
i (g) is the superspace of Z2-graded q-alternating tensors on g, with∧q

i (g) the k-span of all elements x1 ∧ x2 ∧ · · · ∧ xq, (xj ∈ g) satisfying
q∑

j=1

x̄j = i (denote by x̄j

the Z2 degree of xj), i = 0, 1, and

x1 ∧ · · ·xj ∧ xj+1 ∧ · · · ∧ xq = −(−1)x̄j x̄j+1x1 ∧ · · ·xj+1 ∧ xj ∧ · · · ∧ xq.

We also set C0(g,M) = M and Cq(g,M) = 0, if q < 0.
The coboundary operator is an even linear operator of Z-degree +1 on C∗(g,M) given by

dφ = φ′ + φ′′ where φ′, φ′′ ∈ Cq+1(g,M) are the cochains corresponding to φ ∈ Cq(g,M) and
determined by the formulas

φ′(x1, . . . , xq+1) =
∑
i<j

(−1)σi,j(x1,...,xq+1)φ([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xq+1),

φ′′(x1, . . . , xq+1) =
∑

i

(−1)γi(x1,...,xq+1,φ)xiφ(x1, . . . , x̂i, . . . , xq+1), (1)

where x1, . . . , xq+1 and φ are taken to be homogeneous and

σi,j(x1, . . . , xq) := i + j + xi(x1 + . . . + xi−1) + xj(x1 + . . . + xj−1 + xi),

γi(x1, . . . xq, φ) := i + 1 + xi(x1 + . . . + xi−1 + φ).
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We write d(q) for the restriction of d to Cq(g,M). It is indeed a cochain complex since
d2 = 0, i.e. d(q+1) ◦ d(q) = 0 for all q in Z. By Bq(g,M) we denote the space of q-coboundaries,
by Zq(g,M) the space of q-cocycles and by Hq(g,M) the space of cohomology classes. By
definition, Hq(g,M) is the q-th cohomology of g with coefficients in M .

Let θ be a representation of g in C∗(g,M) of the form

(θ(l)φ)(x1, . . . , xq) = (l)Mφ(x1, . . . , xq) +
∑

i

(−1)i+xi(x1+...+xi−1)+l̄φ̄φ([l, xi], . . . , x̂i, . . . , xq).

This extends to a representation of the universal enveloping algebra U(g). Every element l ∈ g

determines an endomorphism of degree -1 (adjoint endomorphism) i(l) of the cochain complex
C∗(g,M), if we put

(i(l)φ)(x1, . . . , xq−1) = (−1)l̄φ̄φ(l, x1, . . . , xq−1), φ ∈ Cq(g,M). (2)

Lemma 2.1 Maintain the notations as above, then

dθ(l) = θ(l)d, l ∈ g, (3)

di(l) + i(l)d = θ(l), l ∈ g. (4)

Proof Let φ ∈ Cq(g,M), q > 0, we verify that

θ(l)φ′ = (θ(l)φ)′, (5)

θ(l)φ′′ = (θ(l)φ)′′. (6)

θ(l)φ′(x1, . . . , xq+1)

= (l)Mφ′(x1, . . . , xq+1) +
q+1∑
i=1

(−1)i+xi(x1+...+xi−1)(−1)l̄φ̄φ′([l, xi], . . . , x̂i, . . . , xq+1)

= (l)Mφ′(x1, . . . , xq+1) +
q+1∑
i=1

(−1)1+l(x1+...+xi−1+l̄φ̄)φ′(x1, . . . , [l, xi], . . . , xq+1)

= (l)M

∑
i<j

(−1)σi,j(x1,...,xq)φ([xi, xj ], . . . , x̂i, . . . , x̂j , . . . , xq+1) +
q+1∑
i=1

(−1)1+l(x1+...+xi−1+l̄φ̄)

∑
j<s

(−1)σj,s(x1,...,[l,xi],...,xq+1)φ([xj , xs], . . . , x̂j , . . . , x̂s . . . , xq+1)

(θ(l)φ)′(x1, . . . , xq+1)

=
∑
j<s

(−1)σj,s(x1,...,xi,...,xq+1)θ(l)φ([xj , xs], . . . , x̂j , . . . , x̂s, . . . , xq+1)

= (l)M

∑
j<s

(−1)σj,s(x1,...,xq)φ([xj , xs], . . . , x̂j , . . . , x̂s, . . . , xq+1) +
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∑
j<s

(−1)σj,s(x1,...,xq)(−1)l̄φ̄((−1)φ([l, [xj , xs]] . . . , x̂j , . . . , x̂s, . . . , xq+1)

+
j−1∑
i=1

(−1)i+1+xi(xj+xs+x1+...+xi−1)φ([l, xi], [xj , xs], . . . , xq+1)

+
s−1∑

i=j+1

(−1)i−1+1+xi(xj+xs+x1+...+xi−1+xj)φ([l, xi], [xj , xs], . . . , xq+1)

+
q+1∑

i=s+1

(−1)i−2+1+xi(xj+xs+x1+...+xi−1+xj+xs)φ([l, xi], [xj , xs], . . . , xq+1)),

according to the relations of i, j, s, and together with the Jacobi identity(super version), it’s
not difficult to obtain the equation (5).

θ(l)φ′′(x1, . . . , xq+1)

= (l)Mφ′′(x1, . . . , xq+1) +
q+1∑
i=1

(−1)i+xi(x1+...+xi−1)(−1)l̄φ̄φ′′([l, xi], . . . , x̂i, . . . , xq+1)

= (l)M (
∑

i

(−1)γi(x1,...xq+1,φ)xiφ(x1, . . . , x̂i, . . . , xq+1)) +
q+1∑
i=1

(−1)1+l(x1+...+xi−1+l̄φ̄)

∑
j

(−1)γj(x1,...,[l,xi],...,xq,φ)xjφ(x1, . . . , [l, xi], . . . , x̂i, . . . , xq+1)

(θ(l)φ)′′(x1, . . . , xq+1)

=
∑

i

(−1)γi(x1,...xq,θ(l)φ)xi(θ(l)φ)(x1, . . . , x̂i, . . . , xq+1)

=
∑

i

(−1)γi(x1,...xq,θ(l)φ)xi

(
(l)Mφ(x1, . . . , x̂i, . . . , xq+1)

+(−1)l̄φ̄
i−1∑
s=1

(−1)s+xs(x1+...+xs−1)φ([l, xs], . . . , x̂s, . . . , x̂i, . . . , xq+1)

+(−1)l̄φ̄

q+1∑
s=i+1

(−1)s−1+xs(x1+...+xs−1+xi)φ([l, xs], . . . , x̂i, . . . , x̂s, . . . , xq+1)
)
.

Similarly, according to the relations of s, i, (6) can be obtained. Therefore,

dθ(l) = θ(l)d, l ∈ g.

(di(l)φ)(x1, . . . , xq) + (i(l)dφ)(x1, . . . , xq)

=
∑
i<j

(−1)σi,j(x1,...,xq)(i(l)φ)([xi, xj ], . . . , x̂i, . . . , x̂j , . . . , xq)

+
∑

i

(−1)γi(x1,...,xq,i(l)φ)xi(i(l)φ)(x1, . . . , x̂i, . . . , xq) + (−1)l̄φ̄dφ(l, x1, . . . , xq).
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Computing each term applying the equations (1) and (2), the above equation reduces to

(di(l)φ)(x1, . . . , xq) + (i(l)dφ)(x1, . . . , xq)

= (−1)l̄φ̄
∑

i

(−1)σ1,i+1(x,x1,...,xq)φ([l, xi], . . . , x̂i, . . . , xq)

+(−1)l̄φ̄(−1)γ1(x,x1,...,xq,φ)(l)Mφ(x1, . . . , xq).

On the other hand,

θ(l)φ(x1, . . . , xq)

= (l)Mφ(x1, . . . , xq) +
∑

i

(−1)i+xi(x1+...+xi−1)(−1)l̄φ̄φ([l, xi], . . . , x̂i, . . . , xq).

Comparing the indexes of each term in the two equations, (4) is immediately obtained.

Lemma 2.2 Let f(t) be a p-polynomial in k[t]and l an element in g0̄. Then

θ(f(l)) = f(θ(l)).

Proof We may restrict ourselves to the case f(t) = tp
s

. Then it suffices to prove that
(θ(l))ps

φ = θ(lp
s

)φ, φ ∈ Cq(g,M), q > 0.

We consider the map θi : g −→ EndCq(g,M), 0 6 i 6 q, given by

θ0(l) = (l)M ,

(θi(l)φ)(x1, . . . , xq) = (−1)l̄φ̄(−1)i+xi(x1+...+xi−1)φ([l, xi], x1, . . . , x̂i, xq).

First, θi is a representation of g on Cq(g,M).

θi(l1)θi(l2)φ(x1, . . . , xq)

= (−1)l2φ̄(−1)i+xi(x1+...+xi−1)θi(l1)φ([l2, xi], x1, . . . , x̂i, xq)

= (−1)l2φ̄−1+l2(x1+...+xi−1)θi(l1)φ(x1, . . . , [l2, xi], . . . , xq)

= (−1)(l1+l2)(φ̄+(x1+...+xi−1))φ(x1, . . . , [l1, [l2, xi]], . . . , xq)).

Similarly,

θi(l2)θi(l1)φ(x1, . . . , xq) = (−1)(l1+l2)(φ̄+(x1+...+xi−1))φ(x1, . . . , [l2, [l1, xi]], . . . , xq).

Then

(θi(l1)θi(l2) − (−1)l1l2θi(l2)θi(l1))φ(x1, . . . , xq)

= (−1)(l1+l2)(φ̄+(x1+...+xi−1))[φ(x1, . . . , [l1, [l2, xi]], . . . , xq)

−(−1)l1l2φ(x1, . . . , [l2, [l1, xi]], . . . , xq)]

= θi([l1, l2])φ(x1, . . . , xq),

that is to say, θi([l1, l2]) = [θi(l1), θi(l2)].
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For 0 < i < j < q, we also can get the following equations:

θi(l)θj(l)φ(x1, . . . , xq) = (−1)lθj(l)θi(l)φ(x1, . . . , xq).

So θi(l), θj(l) are supercommutative.

Clearly, θ(l) =
q∑

i=0

θi(l). Then (θ(l))ps

=
q∑

i=0

(θi(l))ps

, for l ∈ g0̄.

Corollary 2.3 Let z(l) be a central element associated with an element l ∈ g0̄. Then

θ(z(l)) = z(l)M .

Proof Recall that z(θi(l)) = θi(z(l)), 0 < i 6 q, by Lemma 2.2,

z(θ(l) = z
( q∑

i=0

θi(l)
)

= z((l)M ) = z(l)M .

Lemma 2.4 Suppose the endomorphism z(l)M , l ∈ g0̄ be invertible and denote the inverse by
l̃. Then

l̃d = dl̃.

Proof Let φ ∈ Cq(g,M). It suffices to verify (l̃φ)′ = l̃(φ)′, (l̃φ)′′ = l̃(φ)′′.

l̃(φ)′(x1, . . . , xq+1)

= l̃
( ∑

i<j

(−1)σi,j(x1,...,xq+1)φ([xi, xj ], . . . , x̂i, . . . , x̂j , . . . , xq+1)
)

= (l̃φ)′,

l ∈ g0̄, for any x ∈ g, z(l)x = xz(l), then (z(l))M (x)M = (x)M (z(l))M , therefore, l̃(x)M =
(x)M l̃.

(l̃φ)′′(x1, . . . , xq+1)

=
∑

i

(−1)γi(x1,...,xq+1,l̃φ)(xi)M (l̃φ)(x1, . . . , x̂i, . . . , xq+1)

=
∑

i

(−1)i+1+xi(x1+xi−1+l̃φ) l̃(xi)Mφ(x1, . . . , x̂i, . . . , xq+1)

= l̃φ′′(x1, . . . , xq+1).

With the above Lemmas, we complete the proof of Theorem 1.2 now.
Proof of Theorem 1.2

Multiplying both sides of (4) by an element of the form θ(l)q on the right and considering
(3) gives that

di(l)θ(l)q + i(l)θ(l)qd = θ(l)q+1.

Passing to linear combinations of such relations , we derive that for any p-polynomial f(t) ∈ k[t]
there exists an endomorphism of degree -1 such that

dif ′ (l) + if ′ (l)d = f(θ(l)),
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where f
′
(t) = t−1f(t). In particular, for z(l), making use of corollary 2.3, we find that

dl̃iz′ (l) + l̃iz′ (l)d = idM .

Thus the theorem is proved.

Corollary 2.5 Let M be an irreducible g-module. The cohomology is nonzero only if all the
endomorphisms of the form (z(l))M are zero.

Proof By Schur Lemma for Lie superalgebra, Endg(M) is spanned by idM if M is absolutely
irreducible, or by {idM , σ} if dimM0 = dimM1, where σ is a non-singular operator in g per-
muting M0 and M1. That is σ̄ = 1. Since z(l) ∈ g0̄, the endomorphism (z(l))M is invertible if
and only if it is nonzero.

As a special case, Corollary 1.3 follows from the implication of the above corollary.

Example 2.6 Let g = osp(1|2). It contains three bosonic generators E+, E−,H which form
the Lie algebra sl(2) and two ferminic generators F+, F−.

H =

1 0 0
0 −1 0
0 0 0

 , E+ =

0 1 0
0 0 0
0 0 0

 , E− =

0 0 0
1 0 0
0 0 0

 ,

F+ =

0 0 1
0 0 0
0 1 0

 , F− =

0 0 0
0 0 −1
1 0 0

 .

The non-vanishing commutation relation in the generators read as

[H,E±] = ±2E± [E+, E−] = H [H,F±] = ±F±,

[F+, F−] = H [E±, F∓] = −F± [F±, F±] = ±2E±.

It has p-restricted structure. Furthermore, (E±)[p] = 0, and H [p] = H. According to Corollary
2.5, the cohomology H∗(g,M) of the Lie superalgebra osp(1|2) with coefficients in an irreducible
module M is nontrivial only in the case where

((E+)p)M = 0, ((E−)p)M = 0, (Hp)M = (H)M .

3 Cohomology of W (n) with trivial coefficient

In the following, we consider the cohomology of Cartan type Lie superalgebra W (n) with
trivial coefficient in k.

We recall that W (n) = Der Λ(n) is the derivation superalgebra of the Grassmann super-
algebra Λ(n) (cf. [6]). Any derivation D ∈ W (n) is written as

D =
∑

i

Pi∂i,

where Pi ∈ Λ(n), ∂i is the derivation defined by ∂i(ξj) = δij .
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Letting deg ξi = 1̄, i = 1, · · · , n, we obtain a consistent Z-grading of Λ(n), which induces

the grading of W (n) =
n−1⊕
l=−1

W (n)l, where

W (n)l = {ΣPi∂i | deg Pi = l + 1}.

In particular, [W (n)li ,W (n)lj ] ⊆ W (n)li+lj .
W (n) is a restriced Lie superalgebra (cf. [7]). Furthermore, (ξi∂i)[p] = ξi∂i, (ξi∂j)[p] =

0, i 6= j, and D[p] = 0, D ∈ W (n)l, l 6= 0.
Let g = W (n). Denote by the complex C∗(g) := C∗(g, k), where for each q > 0, Cq(g) :=

Cq(g, k) =
⊕

q0+q1=q
Hom(Λq0(g0̄) ⊗ Sq1(g1̄), k). Then the coboundary operator defined in (1) is

simplified, i.e.

dφ(g1, g2, ...gq+1) =
∑
i<j

(−1)σi,j(g1,...,gq)φ([gi, gj ], g1, . . . , ĝi, . . . , ĝj , . . . , gq+1).

Define Cq
[l](g) = {φ ∈ Cq(g) | φ(g1, g2, ...gq) = 0, gi ∈ gli ,

q∑
i=1

li = l}. For φ ∈ Cq
[l](g), we have

dφ ∈ Cq+1
[l] (g).

Set C∗
[l̄]

(g) =
⊕
s>0

C∗
[sp+l](g), 0 6 l < p, which is a complex. So we have the cohomology:

H∗
[l̄]

(g). Here [l̄] is regarded to be the residue class of l in Z/pZ.
Lemma 3.1 If q > 0, l(mod p) 6≡ 0, then Hq

[l]
(g) = 0.

Proof Let g0 =
n∑

i=1

ξi∂i, for any ξi1ξi2 ...ξis∂j ∈ gs−1. It has

[g0, ξi1ξi2 ...ξis∂j ] = (s − 1)ξi1ξi2 ...ξis∂j .

Define the map:

i(q)(g0) : Cq
[l](g) −→ Cq−1

[l] (g),

φ 7−→ i(q)(g0)(φ),

where i(q)(g0)(φ)(g1, g2, ..., gq−1) = φ(g0, g1, g2, ..., gq−1). Then for a homogenous element φ ∈

Cq
[l](g), g1 ∈ gl1 , g2 ∈ gl2 , ..., gq ∈ glq ,

q∑
i=1

li ≡ l(mod p), we have

i(q+1)(g0)(d(φ))(g1, g2, ..., gq)

= d(φ)(g0, g1, g2, ..., gq)

=
q∑

s=1

(−1)σ1,s+1(g0,g1,g2,...,gq)φ([g0, gs], g1, ..., ĝs, ..., gq)

+
∑

16s6q

(−1)σs+1,t+1(g0,g1,g2,...,gq)φ([gs, gt], g0, ..., ĝs, ..., ĝt..., gq)

=
q∑

s=1

ls(−1)φ(g1, ..., gs, ..., gq)

+
∑

16s6q

(−1)σs,t(g1,g2,...,gq)(−1)(iq(g0)(φ))([gs, gt], ..., ĝs, ..., ĝt, ..., gq)

= (−1)(lφ + d(q−1)iq(g0)(φ))(g1, ..., gs, ..., gq).
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Therefore, 1
−l̄

(i(q+1)(g0)(d(q)) + d(q−1)iq(g0)) = id. Thus, we construct a contracting homotopy
in the case when l(mod p) 6≡ 0, q > 0.
Example 3.2 Let n = 2, g = W (2).

We have g =
1⊕

i=−1

gi, where g0 = k-span{ξi∂j , i, j = 1, 2}, g−1 = k-span{∂i, i = 1, 2},

g1 = k-span{ξ2ξ1∂i, i = 1, 2}. And it’s clear that g[0̄] = g0 and g1̄ = g−1 + g1.
When q < p,

Cq(g) =
q⊕

l=−q

Cq
[l](g).

The cochain complex is the following:

0 −→ C0(g) d(0)

−−→ C1(g) d(1)

−−→ C2(g) d(2)

−−→ C3(g) −→ · · ·

Since d(0)(k)(x) = x · k = 0, for any x ∈ g, so Kerd(0) = k, then H0(g) ∼= k.
To compute the Hq(g), for 0 < q < p. We only need to consider the subcomplex C∗

[0](g)
by Lemma 3.1.

Cq
[0](g) =

⊕
q0+q1+q2=q

q1=q2

Hom(∧q0(g0) ⊗ Sq1(g−1) ⊗ Sq1(g1), k). (7)

In particular, if q = 2m,

Cq
[0](g) =

2⊕
i=0

Hom(∧2i(g0) ⊗ Sm−i(g−1) ⊗ Sm−i(g1), k).

If q = 2m + 1,

Cq
[0](g) =

1⊕
i=0

Hom(∧2i+1)(g0 ⊗ Sm−i(g−1) ⊗ Sm−i(g1), k).

Now let us begin to compute the dimensions of lower components of complex and coho-
mology. The main computing result is that

dimH0(g) = 1 = dimH3(g), dimH1(g) = 0 = dimH2(g).

First, by (7) one has

dimC1
[0](g) = 4,dimC2

[0](g) = 10,dimC3
[0](g) = 20,dimC4

[0](g) = 34.

When q = 1,
Ker d

(1)
[0] = φ ∈ C1

[0](g) | φ([g1, g2]) = 0 = 0,

since [g−1, g1] = g0. Therefore H1(g) = 0, and dim Im d
(1)
[0] = dimC1

[0](g) = 4.

When q = 2, choose the bases of
∧2(g0) and S(g−1) ⊗ S(g1) respectively,

X1 = ξ1∂1 ∧ ξ1∂2, X2 = ξ1∂1 ∧ ξ2∂1, X3 = ξ1∂1 ∧ ξ2∂2, X4 = ξ1∂2 ∧ ξ2∂1,

X5 = ξ1∂2 ∧ ξ2∂2, X6 = ξ2∂1 ∧ ξ2∂2, X7 = ∂1 ⊗ ξ2ξ1∂1,

X8 = ∂1 ⊗ ξ2ξ1∂2, X9 = ∂2 ⊗ ξ2ξ1∂1, X10 = ∂2 ⊗ ξ2ξ1∂2.
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For φ ∈ Ker d
(2)
[0] , i.e.

d
(2)
[0] φ(g1, g2, g3) =

∑
i,j,k

(−1)σi,j(g1,g2,g3)φ([gi, gj ], gk)

= (−1)3[φ([g1, g2], g3) − (−1)ḡ3ḡ2φ([g1, g3], g2) + (−1)ḡ2ḡ1φ([g2, g3], g1)]

= 0.

Assume φ =
10∑

i=1

aiφi, ai ∈ k. where {φi}10
i=1 is the dual basis of C2

[0](g) such that φi(Xj) =

δij , i, j = 1, 2, ..., 10. It can be computed that
φ = a1φ1 + a2φ2 + (a8 + a9)φ4 + a1φ5 + a2φ6 + a2φ7 + a8φ8 + a9φ9 + a1φ10.
So dim Ker d

(2)
[0] = 4 = dim Im d

(1)
[0] , and dim H2(g) = 0.

When q = 3, let φ ∈ C3
[0](g), φ =

20∑
i=1

biφi, {φi, i = 1, 2, ..., 20} is the basis of C3
[0](g) bi ∈ k.

For φ ∈ Ker d
(3)
[0] , we have

d(3)φ(g1, g2, g3, g4) =
∑

16i<j64

(−1)σi,j(g1,g2,g3,g4)φ([gi, gj ], g1, ..., g4) = 0.

By similar computation and discussion, we have

dim Ker d
(3)
[0] = 7, and dim H3(g) = 1,

since dim Im d
(2)
[0] = dim C2

[0](g) − dim Ker d
(2)
[0] = 6.
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