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Abstract: The energy E(G) of a graph G is the sum of the absolute values of all the

eigenvalues of the adjacency matrix of G. It is used in chemistry to approximate the total

π-electron energy of a molecule. This paper presented some new lower bounds for E(G),

and characterized those graphs for which these bounds were attained.
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0 Introduction

Let G be a simple graph on n vertices and m edges with vertex set V (G) and edge set E(G).
Let A(G) be the adjacency matrix of G. Since A(G) is symmetric, its eigenvalues λ1, λ2, · · · , λn

are all real, and we assume that λ1 > λ2 > · · · > λn. It is obvious that
∑n

i=1 λi = 0 according
to the zero trace of A(G).
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The energy of G, denoted by E(G), was first defined by Gutman in 1978 as

E(G) =
n∑

i=1

|λi|.

This concept of graph energy arose in chemistry where certain numerical quantities, such as
the heat of formation of a hydrocarbon, are related to the total π-electron energy that can be
calculated as the energy of an appropriate “molecular” graph(see, e.g., [1-3]). It turns out that
the graph energy is not affected by isolated vertices, and the energy of a complete bipartite
graph Kn1,n2 is E(Kn1,n2) = 2

√
n1n2.

In this work, we are primarily interested in the lower bounds for graph energy. A general
lower bound was obtained by McClelland[4] as

E(G) >
√

2m + n(n − 1)|det A(G)|2/n. (0.1)

A lower bound only in terms of the number of edges is[5]

E(G) > 2
√

m. (0.2)

And a lower bound depending only on the number of vertices is[5]

E(G) > 2
√

n − 1. (0.3)

This bound (0.3) applies to graphs without isolated vertices, and it can be improved as E(G) > n

when det A(G) 6= 0 from (0.1)(see [1]). More lower bounds can be found in [1].
In this work, we present some new lower bounds(see Theorems A-B and its consequences

Corollaries 2.1-2.4) and also characterize the situation when these bounds are attained. All the
proofs will be given in Section 2.

Theorem A Let G be a graph without isolated vertices, which has n vertices and m

edges. Suppose G contains two induced subgraphs G1 and G2, where Gi has ni vertices and
mi edges (i = 1, 2), V (G1) ∩ V (G2) = φ and n1 + n2 = n.

(1) If m > m1 + m2 + 2
√

m1m2, then

E(G) > 2

√
(
m1

n1
− m2

n2
)2 +

(m − m1 − m2)2

n1n2
,

and equality holds if and only if G = Kn1,n2 and Gi = niK1 (i = 1, 2).

(2) If m 6 m1 + m2 + 2
√

m1m2, then E(G) >
2m1

n1
+

2m2

n2
.

Theorem B Let G be a k-regular graph with n vertices. Suppose G contains two induced
subgraphs G1 and G2, where Gi has ni vertices and mi edges (i = 1, 2), V (G1) ∩ V (G2) = φ

and n1 + n2 = n. Then
E(G) > k +

∣∣∣2m1

n1
+

2m2

n2
− k

∣∣∣,
and equality holds if and only if G = Kk,k and G1 = G2 = kK1.
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1 Preliminaries

In this section, we cite some concepts from [6] and give some preliminary results, which
will be used in the proofs of our main results about the lower bounds for energy of graphs.

Let s1 = (ξ1, ξ2, · · · , ξn) and s2 = (η1, η2, · · · , ηm) with m < n be two real tuples in
nonincreasing order (ξ1 > ξ2 > · · · > ξn and η1 > η2 > · · · > ηm). s2 is said to interlace s1 if

ξi > ηi > ξn−m+i for i = 1, 2, · · · ,m.

Without loss of generality, we assume throughout that all the tuples are real and arranged in
nonincreasing order.

Lemma 1.1 Let s1 = (ξ1, ξ2, · · · , ξn) and s2 = (η1, η2, · · · , ηm) be two tuples. If s2

interlace s1, then
n∑

i=1

|ξi| >
m∑

i=1

|ηi|,

and equality holds if and only if

ηi =

ξi, 1 6 i 6 k,

ξn−m+i, k + 1 6 i 6 m,
and ξi = 0 for k + 1 6 i 6 n − m + k, (1.1)

where k =
∣∣{i | ηi > 0}

∣∣ (
0 6 k 6 m

)
.

Proof Since k =
∣∣{i | ηi > 0}

∣∣, we have

ξi > ηi > 0 (1 6 i 6 k) and 0 > ηi > ξn−m+i (k + 1 6 i 6 m).

Hence,
n∑

i=1

|ξi| >
k∑

i=1

|ξi| +
n∑

i=n−m+k+1

|ξi| >
k∑

i=1

|ηi| +
m∑

i=k+1

|ηi| =
m∑

i=1

|ηi|.

And it’s easy to see that the equality holds if and only if (1.1) holds.

For an induced subgraph G′ of a graph G, as is well-known, the eigenvalues of A(G′)
interlace those of A(G) by using the famous Cauchy’s interlacing theorem[7]Theorem 4.3.15. So,
as an extra result of this paper, the following corollary immediately follows from Lemma 1.1.

Corollary 1.2[8] Let G′ be an induced subgraph of a graph G. Then E(G′) 6 E(G),
and the equality holds if and only if E(G′) = E(G).

Lemma 1.3 Let s1 = (ξ1, ξ2, · · · , ξn) and s2 = (η1, η2) be two tuples. Suppose s2

interlace s1 and
∑n

i=1 ξi = 0. Then
∑n

i=1 |ξi| = |η1| + |η2| if and only if ξ1 = −ξn = η1 = −η2

and ξi = 0 (i 6= 1, n).
Proof The sufficiency part is obvious. For the necessity part, put k =

∣∣{i | ηi > 0}
∣∣.

Then according to the tightness of the inequality in Lemma 1.1, we have

ηi =

ξi, 1 6 i 6 k,

ξn−2+i, k + 1 6 i 6 2,
and ξi = 0 for k + 1 6 i 6 n − 2 + k. (1.2)
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We can claim that k 6= 0. Suppose not, i.e., k = 0. Then 0 > η1 = ξn−1 > η2 = ξn and
ξi = 0 (i 6= n − 1, n), which leads to a contradiction because

0 < |η1| + |η2| = −η1 − η2 = −ξn−1 − ξn = −
n∑

i=1

ξi = 0.

Hence, we distinguish between the following two cases.

Case 1 k=1. From (1.2) we have η1 = ξ1, η2 = ξn and ξi = 0 (i 6= 1, n). Since∑n
i=1 ξi = 0, it follows that ξ1 = −ξn = η1 = −η2. Therefore, the conclusion is true.

Case 2 k=2. Then η1 = ξ1 > η2 = ξ2 > 0 and ξi = 0 (i 6= 1, 2). So we have

n∑
i=1

|ξi| =
n∑

i=1

ξi = 0,

which implies that ξ1 = ξ2 = · · · = ξn = 0, and thus η1 = η2 = 0. Consequently, the conclusion
is also true.

Lemma 1.4[9]Theorem 6.5 Let G be a bipartite graph with eigenvalues λ1 > λ2 > λ3

with respective multiplicities m1,m2 and m3. Then λ3 = −λ1, λ2 = 0, m3 = m1, and G is
the direct sum of m1 complete bipartite graphs Kri,si where risi = λ2

1 (i = 1, · · · ,m1), and
m2 −

∑m1
i=1(ri + si − 2) isolated vertices.

Lemma 1.5[9]Theorem 6.6 A regular graph G has eigenvalues k, 0, and λ3 if and only if

the complement of G is the direct sum of − k

λ3
+ 1 complete graphs of order −λ3.

Now we cite another important concept from [6]. Let M be a real symmetric block-
partitioned matrix. The quotient matrix of M is the matrix whose entries are the average row
sums of the blocks of M . For example, let {1, 2, · · · , n} be partitioned as X1 ∪ X2 ∪ · · · ∪ Xm

with |Xi| = ni > 0. Consider the corresponding blocking

Mn×n =


M11 · · · M1m

...
...

Mm1 · · · Mmm

 ,

so that Mij is an ni × nj block. Let sij be the sum of the entries in Mij , then the quotient
matrix of M is

Qm×m =


s11

n1
· · · s1m

n1
...

...
sm1

nm
· · · smm

nm

 .

Lemma 1.6[6] Let M be a real symmetric block-partitioned matrix, and Q be the quo-
tient matrix of M. Then the eigenvalues of Q interlace the eigenvalues of M.
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2 Proofs

Proof of Theorem A Due to G1 and G2, A(G) has a quotient matrix as

Q =

 2m1

n1

m − m1 − m2

n1
m − m1 − m2

n2

2m2

n2


with eigenvalues µ1 > µ2. The characteristic polynomial of Q is

|xI −Q| = x2 − (
2m1

n1
+

2m2

n2
)x +

4m1m2 − (m − m1 − m2)2

n1n2
,

with µ1 + µ2 =
2m1

n1
+

2m2

n2
> 0 and µ1µ2 =

4m1m2 − (m − m1 − m2)2

n1n2
.

(1) if m > m1 + m2 + 2
√

m1m2, then 4m1m2 < (m − m1 − m2)2. Thus µ1µ2 < 0 and

(|µ1| + |µ2|)2 = (µ1 − µ2)2 = (µ1 + µ2)2 − 4µ1µ2 = 4
(
(
m1

n1
− m2

n2
)2 +

(m − m1 − m2)2

n1n2

)
.

Using Lemma 1.6 and 1.1, we have

E(G) =
n∑

i=1

|λi| > |µ1| + |µ2| = 2

√
(
m1

n1
− m2

n2
)2 +

(m − m1 − m2)2

n1n2
. (2.1)

Now if G = Kn1,n2 , then E(G) = 2
√

n1n2. With Gi = niK1 (i = 1, 2), we have m1 =
m2 = 0 and m = n1n2, it’s easy to verify that the equality holds.

Conversely, if the equality in (2.1) holds, by Lemma 1.3, we have λ1 = −λn = µ1 = −µ2

and λi = 0 (i 6= 1, n). Since 0 = µ1 + µ2 =
2m1

n1
+

2m2

n2
, it follows that m1 = m2 = 0, i.e.,

Gi = niK1 (i = 1, 2). So G is a bipartite graph. Moreover, from Lemma 1.4 we deduce that

G = Kr,s ∪ (n − r − s)K1, where rs = λ2
1 = −µ1µ2 =

m2

n1n2
=

(rs)2

n1n2
, i.e., rs = n1n2. Since G

has no isolated vertices, we have r + s = n(= n1 + n2). And therefore, G = Kn1,n2 .

(2) if m 6 m1 + m2 + 2
√

m1m2, then 4m1m2 > (m − m1 − m2)2. Thus µ1µ2 > 0. Recall
that µ1 + µ2 > 0 and we have µ1 > µ2 > 0. Consequently,

E(G) =
n∑

i=1

|λi| > |µ1| + |µ2| = µ1 + µ2 =
2m1

n1
+

2m2

n2
. (2.2)

In the following, we will show that the inequality of (2.2) is strict. Suppose to the contrary
that the equality in (2.2) holds. According to the proof of Lemma 1.3, we have λ1 = λ2 = · · · =
λn = 0. This implies that G consists of n isolated vertices, which yields a contradiction.

Let G1 and G2 be two vertex disjoint graphs, then the join of G1, G2, denoted by G1∨G2,
is obtained from their union by including all edges between the vertices in G1 and the vertices
in G2. A subset S of V (G) is called an independent set of G if no two vertices in S are adjacent.

The following Corollary 2.1 and 2.2 are consequences of Theorem A.
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Corollary 2.1 Let G = G1∨G2, where each Gi is a graph with ni vertices and mi edges
(i = 1, 2). Then

E(G) > 2
√

(
m1

n1
− m2

n2
)2 + n1n2,

and equality holds if and only if Gi = niK1 (i = 1, 2).

Proof Since mi 6 ni(ni − 1)
2

<
n2

i

2
(i = 1, 2), it follows that m = m1 + m2 + n1n2 >

m1 + m2 + 2
√

m1m2. Then Theorem A gives the result.
Corollary 2.2 Let G be a graph without isolated vertices, which has n vertices and m

edges. Suppose S is an independent set of G with |S| = t and G − S having m′ edges. Then

E(G) > 2

√
(

m′

n − t
)2 +

(m − m′)2

t(n − t)
,

and equality holds if and only if G = Kt,n−t and G − S = (n − t)K1.
Proof Now n1 = t, n2 = n − t,m1 = 0 and m2 = m′. It follows that m > m′ =

m1 + m2 + 2
√

m1m2. Then Theorem A gives the result.
Proof of Theorem B G1 and G2 give rise to a partition of A(G) with quotient matrix

Q =

 2m1

n1
k − 2m1

n1

k − 2m2

n2

2m2

n2


with eigenvalues µ1 = k (row sum) and µ2 = tr(Q) − µ1 =

2m1

n1
+

2m2

n2
− k. Hence

E(G) =
n∑

i=1

|λi| > |µ1| + |µ2| = k +
∣∣∣2m1

n1
+

2m2

n2
− k

∣∣∣.
By Lemma 1.3, the equality holds if and only if λ1 = −λn = µ1 = −µ2(= k) and

λi = 0 (i 6= 1, n). And this is true if and only if
2m1

n1
+

2m2

n2
− k = −k and G = Kk,k because

of Lemma 1.5, i.e., m1 = m2 = 0 (G1 = G2 = kK1) and G = Kk,k.
The following Corollary 2.3 and 2.4 are consequences of Theorem B.
Corollary 2.3 Let G be a k-regular graph with n vertices. Suppose G contains t (t > 1)

independent vertices. Then

E(G) > kn

n − t
,

and equality holds if and only if G = Kk,k and t = k.

Proof Now n1 = t, n2 = n − t,m1 = 0 and m2 =
kn

2
− kt. Theorem B gives the result.

Corollary 2.4 Let G be a k-regular graph with n vertices. Suppose G contains an
induced subgraph G′ with n′ (0 < n′ < n) vertices and m′ edges. Then

E(G) > k +
∣∣2m′

n′ − n′k − 2m′

n − n′

∣∣,
and equality holds if and only if G = Kk,k and G′ = kK1.
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