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Abstract: The boundedness of solutions of a chaotic T-system was proved by constructing

a new Lyapunov function. Furthermore, the theoretical results of the boundedness of a

T-system can be used for chaos control and synchronization. Effective linear feedback

controller was proposed for stabilizing chaos to unstable equilibrium(0, 0, 0).
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0 Introduction

Chaos has been found in many engineering systems. Sensitivity to initial conditions is the
fundamental characteristic of a chaotic system. In 1963, Lorenz found the first chaotic attractor
in a three-dimensional autonomous system when he studied the atmospheric convection[1]. In
1999, Chen and Ueta introduce a 3D polynomial system known as the Chen system[2]. In 2002,
Lü and Chen further found a chaotic system, named as Lü system[3]. Gh. Tigan found a new
3D polynomial differential system given by

ẋ = a(y − x),
ẏ = (c − a)x − axz,

ż = −bz + xy,

(1)
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where a, b, c are real parameters, named as T-system[4]. There are some dynamic properties
are already studied in [4-6]. T-system allows a larger possibility in choosing the parameters, so
it plays a more complex dynamics. A chaotic attractor is ensured by two things, one is that
the system has a trapping region which guarantees the existence of an attractor, and the other
is that the system displays chaotic behavior on the attractor. It is very important to find a
trapping region in chaos synchronization and chaos control. However, it is difficult to find an
attracting domain that include the chaotic attractor. In 2003, Pogromsky et al. investigated
the globally attractive set of the Lorenz system[7]. In 2006, Qin investaged the boundedness
of the solutions of the Chen system with a > c > 0 and b > 2c > 0[8]. But it is not include
the most interesting situation with the chaotic attractor. The chaotic behavior of the T-system
has been studied in [4]. However, the problem that the existence of a trapping region is not
solved. Considering the similar nature between the T-system and the Chen system, this paper
makes some improvements based on the Lyapunov function in [8]. Now the chaotic attractor
of the T-system is in it. Based on Lyapunov stability theory, the T-system is stabilized to its
equilibrium by using linear feedback control.

1 The boundedness of the solutions of the T-system

The main result is summarized as follows. Let

θ = 2aτ, µ = a + 4a2τ. (2)

ω = 2bµ − (2a(2a + b)τ + aα)2

4aτ
. (3)

Lemma1.1 if c > a > 0, and α =
b

2a + b
, then ω > 0 for a suitableτ > 0.

Proof

ω > 0 ⇔ 2bµ >
(2a(2a + b)τ + aα)2

4aτ

⇔ 8abτ(a + 4a2τ) > 4a2(2a + b)2τ2 + 4a2(2a + b)ατ + a2α2

⇔ 4(2a − b)2τ2 + 4((2a + b)α − 2b)τ + α2 < 0.

Because α =
b

2a + b
, so 4((2a+ b)α−2b) < 0. And the discriminant is greater than 0. It means

that we will be able to get τ > 0 such that ω > 0.

Theorem 1.1 The solutions of system (1) with c > a > 0 are globally bounded for
t ∈ [0,+∞).

Proof constructing a Lyapunov function as follow

V = (αx − y)2 + µz2 − 2θx2z + τx4 − 2rz + r2

a

= (αx − y)2 + a(z − r
a )2 + τ(2az − x2)2.

(4)

The values of θ and µ follows from (2).
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For the derivative of Lyapunov function (4), along the trajectories of the T-system (1), we
have

V̇ = 2(αx − y)(αẋ − ẏ) + 2µzż − 4θxzẋ − 2θx2ż + 4τx3ẋ − 2rż

= 2aα2xy − 2aαy2 − 4aθxyz + 4aτx3y − 2aα2x2 + 2aαxy − 4aτx4

+4aθx2z + 2(c − a)xy − 2(c − a)αx2 − 2axyz + 2aαx2z

−2bµz2 + 2bθx2z + 2brz + 2µxyz − 2θx3y − 2rxy

= −2(aα2 + (c − a)α)x2 − 2aαy2 − 2bµz2 − 4aτx4 + 2brz + 2(µ − 2aθ − a)xyz

+2[aα2 + (c − a) + aα − r]xy + 2(2aθ + bθ + aα)x2z + 2(2aτ − θ)x3y

= −2(aα2 + (c − a)α)x2 − 2aαy2 − ωz2 − (2
√

aτx2 − 2a(2a + b)τ + aα

2
√

aτ
z)2 + 2brz.(5)

In the above, we suppose that r = aα2 + (c − a) + aα, and the values of θ , µ , and ω

follow from (2) and (3).
According to Lemma 1.1, there is a τ > 0 such that ω > 0, and

V̇ (x, y, z) 6 −2(aα2 + (c − a)α)x2 − 2aαy2 − ω(z − br

ω
)2 +

b2r2

ω
.

Therefore, we can find large enough S0 such that

2(aα2 + (c − a)α)x2 + 2aαy2 + ω(z − br

ω
)2 > b2r2

ω
.

Here (x, y, z)satisfies V (x, y, z) = S with S > S0. It shows that V̇ (x, y, z) < 0 on the surface
{(x, y, z)|V (x, y, z) = S}. Hence, we can say that the solutions of the T-system are globally
bounded.

2 Controlling chaos via linear feedback control

In this section, simple but effective linear feedback controller is designed to drive the
chaotic trajectories to the unstable equilibrium.

The T-system exhibits a horseshoe chaos at the parameter values a = 2.1, b = 0.6, c =
30(see Fig. 1). There is only one equilibriumE0 = (0, 0, 0) with a > c. There are three equilibria

E0 = (0, 0, 0), E1 = (

√
(c − a)b

a
,

√
(c − a)b

a
,
(c − a)b

a
),

E2 = (−
√

(c − a)b
a

,−
√

(c − a)b
a

,
(c − a)b

a
) with c > a.

The equilibrium E0 = (0, 0, 0) of the controlled system
ẋ = a(y − x)
ẏ = (c − a)x − axz + u

ż = −bz + xy

(6)

is asymptotically stable with the controlleru = −cx − y.
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Theorem 2.1 The origin of the controlled T-system (6) with parameters a = 2.1, b =
0.6, c = 30 is asymptotically stable.

Proof Choose the following Lyapunov candidate:

V = x2 + y2 + az2.

The differential of the Lyapunov function is

1
2
V̇ = xẋ + yẏ + azż = −ax2 − abz2 + y(u + cx)

= −ax2 − abz2 + y(−y − cx + cx) = −ax2 − y2 − abz2

Since V is positive definite and V̇ (x, y, z) is negative definite with controlleru, according to
Lyapunov stability theory, the equilibrium (0, 0, 0) of the system (6) is asymptotically stable,
namely, the controlled system (6) can asymptotically converge to the equilibrium (0, 0, 0). The
T-system is stabilized to its unstable equilibrium by use only one linear controller, compari-
son with other control methods, linear feedback controller more simple in practice, numerical
simulations demonstrate the effectiveness and feasibility.

3 Numerical simulations

In simulation, we select the parameters of T-system as a = 2.1, b = 0.6, c = 30, the initial
value of the controlled T-system is (x0, y0, z0) = (0.1,−0.3, 0.2). The horseshoe chaos is shown
in Fig. 1, the controlled T-system is stabilized to equilibrium (0, 0, 0) in Fig. 2.

Fig. 1 Horseshoe chaos
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Fig. 2 The controlled T-system is stabilized equilibrium (0, 0, 0)

4 Conclusions

In this paper, by constructing a new Lyapunov function, the solutions of the T-system are
globally bounded was proved, which include the horseshoe chaos. Linear feedback controller is
designed to control the T-system to the equilibrium(0, 0, 0).
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