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Response of Photosynthetic Apparatus to Different Irradiance in Flag
Leaves of High-Yielding Winter Wheat PH01-35 Grown under Low Light
Conditions
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Abstract: To further explain the mechanism of photoinhibition and light damage in wheat (Triticum aestivum L.) leaves when it
was suddenly transferred from low light to high light conditions, the responses of photosynthetic apparatus in shaded leaves of the
high-yielding winter wheat line, PHO1-35, were examined using chlorophyll fluorescence and gas exchange techniques. After
15-day shading, the chlorophyll content increased greatly, but the net photosynthetic rate (P,), light compensation point (LCP),
light saturation point (LSP), apparent quantum yield (AQY), and carboxylation efficiency (CE) all decreased. Compared with
leaves grown in full sunlight, the initial slope (a), decline slope (B), maximum relative electron transport rate (rE7R,,,x), and
minimum saturating irradiance (Ey) of rapid light curves in leaves grown in low light were lower when the plant was transferred
from low light intensity of 250 pmol m™ s~ to high light intensity of 1 200 umol m™ s™'. Non photochemical quenching (NPQ) in
leaves grown in low light was significantly lower than that in leaves grown in full sunlight, indicating that the ability of light use
and thermal energy dissipation was limited in leaves grown in low light. The wheat leaves grown in low light were more suscepti-
ble to photoinhibition due to low CO, assimilation and photoprotective ability, such as xanthophylls cycle-dependent dissipation
of excessive energy, despite the better energy absorbability in low light conditions.
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Table 1 Effect of low light intensity on chlorophyll content in flag leaves of winter wheat

Treatment Chla (mg g”' FW) Chl b (mg g”' FW) Chl a+b (mg g™' FW) Chl a/b
Full sunlight 18.9a 54a 24.4a 35a
Low light 22.5b 7.1b 29.6 b 32b

Values within a column followed by a different letter are significantly different at the 0.05 probability level.
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Table 2 Effect of low light intensity on P,, LCP, LSP, AQY, and CE in leaves of winter wheat

Treatment P, (umol m2s™") LCP (umol m2s7") LSP (umol m2s7") AQY CE (pmol m2s™")
Full sunlight 22.4a 50.7a 1553 a 0.05a 0.13 a
Low light 202b 373b 1231b 0.04 a 0.11b

Values within a column followed by a different letter are significantly different at the 0.05 probability level.
P,: net photosynthetic rate; LCP: light compensation point; LSP: light saturation point; AQY: apparent quantum yield; CE: carboxylation effi-
ciency.
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Fig. 1 Rapid light curves of wheat leaves grown in full sunlight (A) and low light (B) after being adapted in high light and low light for 3 h
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Fig. 2 Changes of initial slope (@), decline slope (§), maximum relative electron transport rate (rETR,x), and minimum saturating irradi-
ance (Ey) derived from rapid light curves of wheat leaves
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Fig. 3 Changes of chlorophyll a fluorescence, NPQ, and @pg; derived from rapid light curves of wheat leaves
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