DOI: 10.3724/SP.J.1006.2009.00695

铝胁迫下大豆根尖细胞铝的微区分布与耐铝性分析

俞慧娜 刘 鹏* 徐根娣 蔡妙珍

浙江师范大学植物学实验室,浙江金华 321004

摘 要: 以浙春 3 号为实验材料,利用透射电镜(TEM: Transmission Electron Microscope)-X-射线能谱(EDS: Energy Dispersive X-ray),调查铝胁迫下大豆根尖铝的微区分布及耐铝性。结果表明,Al³⁺胁迫导致根尖细胞细胞壁不规则加 厚,线粒体数量增多,核膜膨胀,液泡中存在较多的电子致密沉淀物。90 mg L⁻¹ Al³⁺处理的根尖细胞内含物完全降解 消失,仅剩细胞壁。10 mg L⁻¹ Al³⁺处理的线粒体、细胞壁和液泡电子致密沉淀物中均检测到 Al;随着 Al³⁺处理浓度 的增大,各细胞器中 Al 的质量和原子数百分比逐渐增大。线粒体在 60 mg L⁻¹和 90 mg L⁻¹Al³⁺处理下,液泡电子致 密沉淀物在 90 mg L⁻¹Al³⁺处理下,均未被检测出 Al。在 60 mg L⁻¹Al³⁺处理下唯一一次在细胞核中检测到 Al。Al³⁺抑 制了根系生长,根系细胞中细胞壁的 Al³⁺含量受影响最明显。P/Al 在细胞壁和线粒体中的相对原子数随 Al³⁺浓度的 增大而下降。研究结果表明 X-射线能谱对铝在亚显微结构上的定位是一种快速、有效的方法。铝最先积累在细胞壁 上,随 Al³⁺处理浓度增大逐渐积累于部分细胞器和细胞核中,且含量在细胞中的分布亦由外向里呈递减趋势。关键词: 铝胁迫;大豆;根尖细胞;透射电镜-X-射线能谱分析;根系生长

Distribution of Al³⁺ in Subcellular Structure of Root Tips Cells and Aluminum Tolerance in Soybean

YU Hui-Na, LIU Peng*, XU Gen-Di, and CAI Miao-Zhen

Key Laboratory of Botany, Zhejiang Normal University, Jinhua 321004, China

Abstract: Aluminum (Al) toxicity is a major limiting factor for yield and quality in crop production in acid soil. Micromolar concentrations of Al^{3+} may inhibit root elongation and consequently influence water and nutrient uptake, resulting in poor plant growth. The microanalysis of the elements was conducted on Zhechun 3 by using Transmission Electron Microscope (TEM) and Energy Dispersive X-ray (EDS) to examine the distribution of Al^{3+} in root tips and Al resistance of soybean. We found that Al^{3+} stresses resulted in irregularly thickened cell wall, increased number of mitochondria, expanded nuclear membrane, and densified precipitates of vacuole. Under the highest Al^{3+} concentration, the mitochondria and other organelles disappeared but cell wall. We detected Al in cell wall, mitochondria and electron-dense precipitates of vacuole of root tip cell under the 10 mg L⁻¹Al³⁺ stresses by EDS. With the increase of external Al^{3+} concentration treated, the weight and atomic percentage of Al in the organelles increased. The Al^{3+} was found in nuclei when the external Al^{3+} was over 60 mg L⁻¹. And there was no Al^{3+} in mitochondrion under 60 mg L⁻¹ Al³⁺ treatments and electron-dense precipitates of vacuole under the 90 mg L⁻¹ Al³⁺ stresses. The 14 days Al^{3+} stresses significantly inhibited the growth of root system. The content of Al^{3+} in cell wall was most significantly impacted by the external Al^{3+} concentration. The atomic number of P/Al in cell wall and mitochondria decreased with increased Al^{3+} content. EDS can be used to determine the subcellular location of Al^{3+} . As the treatment concentrations of Al^{3+} increased, Al^{3+} primarily accumulated in the cell wall, gradually gathered in part of the organelles and nuclei. The Al^{3+} concentrations also decreased from out layer to insider in the cell.

Keywords: Al³⁺ stresses; Soybean; Root tip cell; Transmission Electron Microscope-Energy Dispersive X-ray Analysis; Root growth

铝毒是酸性土壤中限制作物生长的主要因素, 铝抑制作物根系的生长从而影响其水分和矿质吸收, 最终导致作物生长缓慢^[1]。通常认为,植物对铝毒的 反应首先表现在根系上^[2]。根尖是感受铝毒的最初

第一作者联系方式: E-mail: huina2142004@163.com

本研究由国家"十一五"科技攻关计划项目(2004BA525B06),国家自然科学基金项目(30540056),浙江省自然科学基金项目(303461和304185)资助。 *通讯作者(Corresponding author):刘鹏, E-mail: sky79@zjnu.cn

Received(收稿日期): 2008-06-07; Accepted(接受日期): 2008-12-15.

部位, 且铝在根尖细胞壁上的积累是铝对植物根尖 产生毒害的首要条件,是铝毒敏感性的主要特征^[3]。 对于植物根尖铝含量的测定已有较多的方法, 如苏 木精染色、盐酸脱色测定大麦(Hordeum vulgare L.) 根的铝相对含量^[4],电感耦合高频等离子体原子发 射光谱(ICP)测定茶树(Camellia sinensis)根中 Al 的 积累^[5],以及利用不同离心速度提取龙眼(Dimocarpus longana Lour)根系各个细胞器,测定亚细胞水 平上的铝含量^[6]。但这些方法并不能充分提供有关 铝在根尖分布的信息。X-射线能谱分析技术是利用 样品中的元素原子在受到外源电子束轰击时产生的 特征 X 射线, 对样品表面确定区域内存在的元素进 行定性和定量分析^[7]。近年来 X-射线能谱(EDS: Energy Dispersive X-ray) 仪与扫描电镜(SEM: Scanning Electron Microscope)和透射电镜(TEM: Transmission Electron Microscope)结合,对铝在植物体中 的微区分布展开了研究。何龙飞等^[8]采用 SEM-EDS 研究耐 Al 性不同的小麦(Triticum aestivum L.)品种 根系中铝、钙、钾在表皮细胞、皮层细胞和中柱细 胞壁的分布。也有的采用 TEM-EDS 结合的方式测 定 Al³⁺胁迫下玉米(Zea mays L.)根尖细胞壁和液泡 中的铝含量^[9]。不同于用苏木精、ICP 测定根系总铝 含量、用差数离心提取各细胞器测定其绝对铝含量 和以 EDS 研究铝及其他元素在细胞中的相对含量, 可更好揭示铝在细胞器中的分布规律。本文采用水 培法及 TEM-EDS 技术分析大豆根尖细胞中细胞壁、 线粒体、液泡、细胞核等细胞器的相对铝含量,并 结合根系细胞器铝含量及根系生长特性研究铝在根 尖细胞不同细胞器的分布规律, 以期从铝的微区分 布丰富大豆的耐铝毒机理。

1 材料与方法

1.1 材料和处理

以铝敏感大豆[*Glycine max* (L.) Merrill]品种浙 春 3 号^[10]为材料进行水培。选大小一致、健康饱满 的种子植入消毒过的沙土中进行萌发。当幼苗长至 第 1 片真叶完全展开时,将其移入 5 L 的不透光的塑 料水桶中,用 1/2 Hoagland 营养液,加分析纯 AlCl₃·6H₂O 配制的铝溶液胁迫培养,用羊毛铬青 R 比色法^[11]测定溶液中的 Al³⁺含量,使 Al³⁺浓度分别 为 10、30、60、90 mg L^{-1[10,12]},用不含 AlCl₃的 1/2 Hoagland 营养液为对照(CK)。培养过程中每 5 d 更 换一次营养液,用 NaOH 和 HCl 每天 2 次调节 pH, 使其控制在 5.0, 用气泵每天 2 次通气, 每次 2 h。每 个 Al³⁺处理重复 3 次。Al³⁺处理 14 d 时进行 TEM-EDS 微区成分分析及根系相关指标的测定。

1.2 TEM-EDS 微区成分分析

将大豆根系洗净、擦干,取根尖 0.5 cm,用 2.5% 的戊二醛(用 0.1 mol L⁻¹ pH 7.2 的磷酸缓冲液稀释而 成)进行前固定,0.1 mol L⁻¹ pH 7.0 磷酸缓冲液冲洗, 用 1%的锇酸后固定,酒精系列脱水、渗透,Epon 812 环氧树脂包埋,用钻石刀在超薄切片机上切成 120 nm的薄片,展开于不锈钢网(含有铁、铬)。通过JEM-2010(HR)透射电镜寻找样品细胞中电子云密度小体 的分布位点,以 EDS(Oxiford-INCA)能谱仪分析样 品中的铝等元素的亚细胞分布。以附带标样程序的 计算机判断各峰值代表的元素种类,并自动计算出 峰值中 C、O、P、Al等元素分别占细胞中相对质量 和原子数的百分数。

能谱仪的加速电压为 200 kV, 最小光斑直径 (Spotsize)为 80 nm, 样品台倾角为 35°, 保持每秒所 读信息量(CPS)为 350 左右, 收录时间为 100 s, 分辨 率 MnKα 为 133 eV, 最小微区为 5 nm。

1.3 根系细胞器铝含量的测定

参照潘根生等^[13]法提取根系细胞器,消化后, 用羊毛铬青 R 法测定铝含量,用单位鲜根所含的铝 含量(μg g⁻¹)表示。

1.4 根系干重

取大豆根系,用去离子水冲洗干净,放在称量 瓶中,在105℃下杀青0.5~2.0 h之后于75℃恒温处 理48 h,用1/10000电子天平称其干重。

1.5 根系分析

采用 STD 1600+型根系分析仪对大豆根系进行 扫描,用图像分析软件 Win RHIZO 分析根系总长 度、根系总体积。

2 结果与分析

2.1 铝对大豆根尖亚细胞结构的影响

在对照中(图 1),大豆根尖细胞结构清晰,细胞核 完整,核膜核仁清晰。线粒体结构正常,呈圆形或肾 形,分布在细胞中。液泡散在于整个细胞,内含电子 致密沉淀物。用 10 mg L⁻¹Al³⁺处理后(图 2),根尖细 胞线粒体数目增多,双层膜完好。液泡中存在较多 的电子致密沉淀物。核膜膨胀,模糊不清,不如对照 清晰。细胞壁不规则加厚,受损小。用 30 mg L⁻¹Al³⁺ 处理后(图 3),大豆根尖细胞间隙变大,质膜部分向内

图 1 正常培养后大豆根尖细胞的亚显微结构图 Fig. 1 Image of the ultrastructure of root tip cells under normal culture A: 根尖细胞的完整结构图; B: 细胞壁的正常结构; C: 细胞核的正常结构; D: 线粒体和液泡的正常结构。 cw: 细胞壁; m: 线粒体; mn: 核膜; n: 细胞核; v: 液泡; 放大倍数 2 μm。

A: complete structure of root tip cell; B: natural structure of cell wall; C: natural structure of nucleus; D: natural structure of mitochondrion and vacuoles. Scale bar is 2 µm; cw: cell wall; m: mitochondrion; mn: external membrane of nucleus; n: nucleus; v: vacuole; TEM: transmission electron microscopy.

图 2 10 mg L⁻¹ Al³⁺处理大豆根尖细胞的亚显微结构图 Fig. 2 Image of the ultrastructure of root tip cells with 10 mg L⁻¹ Al³⁺ treatment by TEM A: 细胞壁加厚; B: 细胞核结构图,核膜膨胀。cw: 细胞壁; m:

线粒体; mn: 核膜; n: 细胞核; v: 液泡; 放大倍数 2 μm。 A: thickened cell wall; B: integrity structure of nucleus, external membrane of nucleus was swollen. Scale bar is 2 μm; cw: cell wall; m: mitochondrion; mn: external membrane of nucleus; n: nucleus; v: vacuole; TEM: transmission electron microscopy. 波折。液泡中的电子致密沉淀物较对照少,细胞核 仁解体,核膜结构仍完整。线粒体内膜逐渐解体,外 膜部分出现损伤。TEM 观察发现 60 mg L⁻¹ Al³⁺处理 的大豆根尖(图 4-A),细胞结构不完整,发生严重的 质壁分离,细胞质降解,细胞核开始解体,线粒体 等细胞器消失。用 90 mg L⁻¹Al³⁺处理后(图 4-B),细 胞结构不完整,细胞内容物完全降解消失,细胞呈 空泡化,仅剩细胞壁且不完整。

2.2 铝在大豆根尖的微区分布特点

表 1 和表 2 表明, 采用 EDS 法均未检测到对照 大豆根尖各细胞器中的 Al 分布。10 mg L⁻¹ Al³⁺处理 下,用 EDS 检测到细胞壁上、线粒体和液泡电子致 密沉淀物中有 Al 存在,但在各细胞器中 Al 的质量 和原子数百分比均较小。随着 Al³⁺处理浓度的增加,

图 3 30 mg L⁻¹Al³⁺处理大豆根尖细胞的亚显微结构图

Fig. 3 Image of the ultrastructure of root tip cells with 30 mg $L^{-1} Al^{3+}$ treatment by TEM

A: 细胞核仁开始解体; B: 线粒体解体; C: 细胞间隙变大。cw: 细胞壁; cy: 细胞质; mn: 核膜; m: 线粒体; v: 液泡; 放大倍数 2 µm。 A: disorganized nucleus; B: disorganized mitochondrion; C: widened intercellulan space. Scale bar is 2 µm; cw: cell wall; cy: cytoplasm; mn: external membrane of nucleus; m: mitochondrion; v: vacuole; TEM: transmission electron microscopy.

图 4 60 mg L⁻¹和 90 mg L⁻¹ Al³⁺处理大豆根尖细胞的 亚显微结构图

Fig. 4 Image of the ultrastructure of root tip cells with 60 and 90 mg L⁻¹ Al³⁺ treatment by TEM

A: 60 mg L⁻¹Al³⁺处理, 细胞严重质壁分离, 细胞质降解, 细胞核解 体, 线粒体消失; B: 90 mg L⁻¹Al³⁺处理, 细胞内容物降解, 细胞呈空 泡化。cw: 细胞壁; cy: 细胞质; 放大倍数: A = 2 μm; B = 5 μm。 A: 60 mg L⁻¹ Al treatment, showing cell plasmolysis, degradated cytoplasm, disintegrated nucleus, disappeared mitochondrion; B: 90 mg L⁻¹ Al³⁺ treatment, showing degradated cellular content and vacuoligation. Scale bars are 2 μm for A and 5 μm for B; cw: cell wall; cy: cytoplasm; TEM: transmission electron microscopy.

细胞壁、线粒体和液泡电子致密沉淀物上 Al 的质量 和原子数百分比逐渐增大,例如线粒体的该参数在 $30 \text{ mg L}^{-1}\text{Al}^{3+}$ 处理中约为 $10 \text{ mg L}^{-1} \text{Al}^{3+}$ 处理的 3 倍 (图 5-B)。在 $60 \text{ mg L}^{-1} \text{Al}^{3+}$ 处理下,开始解体的细胞 核中检测到 Al, 这是本实验中唯一一次在细胞核中 检测到 Al的存在(图 5-D), Al的质量和原子数百分比 分别为 0.10%和 0.67%。在此处理中, 液泡电子致密 沉淀物中的 Al 的质量和原子百分比达到最大(图 5-C)。在 60 和 90 mg L⁻¹ Al³⁺处理中, 细胞质开始解 体, 线粒体消失, 因此也无法检测线粒体中是否有 Al 的存在。且 90 mg L⁻¹ Al³⁺, 残存细胞壁中的 Al 原子数百分比达到最大(图 5-A)。从空间上看, Al 的 亚细胞分布由外向里呈递减趁势, 即细胞壁>线粒 体>液泡中的电子致密沉淀物>细胞核。

2.3 铝在大豆根系的亚细胞分布特点

图 6 表明, 根细胞细胞壁和各细胞器 Al 含量为 细胞壁>线粒体>细胞核。随着 Al³⁺浓度的增大, 各 细胞器的 Al 含量均有所增加。在 90 mg L⁻¹Al³⁺浓度 下, 细胞壁达到 18.2 μ g g⁻¹, 为对照的 13.8 倍; 线粒 体达到 5.5 μ g g⁻¹, 为对照的 7.4 倍; 细胞核达到 4.9 μ g g⁻¹, 为对照的 5.8 倍。由此可见细胞壁的含 Al 量受 Al³⁺浓度的影响最明显, 细胞核的含 Al 量相对 较稳定, 线粒体铝含量的变化比细胞核明显, 各处 理与对照的差异均显著(*P*<0.05)。

表 1 不同铝浓度下大豆根尖细胞器的部分元素质量百分比

Table 1	Weight	t percen	tage for	some e	lements	in the	organel	les of ro	oot tip o	ells in s	oybean	under o	lifferen	t Al ³⁺ sti	resses (%	6)
铝浓度 Al ³⁺		细 Cell	包壁 wall	细胞核 Nucleus				线粒体 Mitochondrion				液泡电子致密沉淀物 Electron-dense precipitates of vacuole				
concentration	С	0	Р	Al	С	0	Р	Al	С	0	Р	Al	С	0	Р	Al
$0 \text{ mg } L^{-1}(CK)$	1.05	0.57	0.26	-	0.77	0.44	0.70	-	1.38	0.76	0.40	-	0.63	0.32	0.15	_
$10 \text{ mg } \mathrm{L}^{-1}$	0.52	0.34	0.15	0.09	0.68	0.35	0.40	-	1.50	0.57	0.42	0.02	0.31	0.18	0.07	0.05
$30 \text{ mg } \mathrm{L}^{-1}$	0.75	0.56	0.21	0.15	0.76	0.37	0.18	-	0.44	0.22	0.07	0.06	0.82	0.44	0.20	0.11
$60 \text{ mg } \mathrm{L}^{-1}$	0.84	0.67	0.29	0.19	0.55	0.21	0.20	0.10	-	-	-	-	0.61	0.29	0.23	0.12
00 mg I ⁻¹	0.59	0 44	0.21	0.18	_	_	_	_	_	_	_	_	_	_	_	_

-: 在细胞壁、部分细胞器和细胞核中没有发现。-: not detected in the cell wall, organelles, and nucleus.

表 2 不同铝浓度下大豆根尖细胞器的部分元素原子数百分比

Table 2	Atomicity percentage for some elements in the organelles of root tip cells in soybean under different Al ³⁺	stresses (%)

铝浓度 Al ³⁺	细胞壁 Cell wall				细胞核 Nucleus				线粒体 Mitochondrion				液泡电子致密沉淀物 Electron-dense precipitates of vacuole			
concentration	С	0	Р	Al	С	0	Р	Al	С	0	Р	Al	С	0	Р	Al
$0 \text{ mg } L^{-1}(CK)$	93.73	3.20	0.16	-	93.76	3.01	0.22	-	89.38	5.83	0.45	-	92.97	2.90	0.18	-
$10 \text{ mg } \text{L}^{-1}$	94.86	2.82	0.20	0.15	89.38	5.93	0.45	-	85.85	2.74	0.65	0.04	95.25	2.18	0.06	0.03
$30 \text{ mg } \mathrm{L}^{-1}$	92.79	5.15	0.28	0.21	92.31	2.04	0.37	-	89.11	4.15	0.21	0.11	93.98	2.89	0.18	0.10
$60 \text{ mg } \text{L}^{-1}$	92.15	6.11	0.46	0.41	90.38	3.40	1.66	0.67	-	-	-	-	77.16	7.14	2.39	1.08
$90 \text{ mg } \mathrm{L}^{-1}$	86.70	8.23	1.59	1.74	-	-	-	-	-	-	-	-	-	-	-	-

-: 在细胞壁、部分细胞器和细胞核中没有发现。-: not detected in the cell wall, organelles, and nucleus.

图 5 大豆根尖细胞细胞器的 EDS 谱图

Fig. 5 EDS spectrogram in cell organelles of root tip cells of soybean under different Al³⁺ stresses A:在 90 mg L⁻¹Al³⁺处理中的细胞壁 EDS 谱图; B:在 30 mg L⁻¹Al³⁺处理中的线粒体 EDS 谱图; C:在 60 mg L⁻¹ Al³⁺处理中的液泡电子 致密沉淀物 EDS 谱图; D:在 60 mg L⁻¹Al³⁺处理中的细胞核 EDS 谱图。图中标注的铜(Cu)、铁(Fe)和锇(Os)为样品制备过程中引入的 金属元素。图中箭处指 EDS 谱图中 Al 的位置。

A: cell wall under 90 mg $L^{-1} Al^{3+}$ treatment; B: mitochondrion under 30 mg $L^{-1} Al^{3+}$ treatment; C: electron-dense precipitates of vacuole under 60 mg $L^{-1} Al^{3+}$ treatment; D: nucleus under 60 mg $L^{-1} Al^{3+}$ treatment. The metal elements such as copper(Cu), iron(Fe), and osmic(Os) acid were adhibited with the processes of sample preparation. The arrow represented the position of Al in the EDS spectrogram.

图 6 不同铝浓度下大豆根系亚细胞铝含量的变化 Fig. 6 Change of Al³⁺content in the root subcellular structures in soybean under different Al³⁺ stresses 图中不同字母表示差异达显著水平(P<0.05)。 Letters indicate statistical significance for the content of Al³⁺. The Al³⁺contents with a different letter are significantly.

2.4 铝与其他元素微区分布间的关系

由表 1 和表 2 可见, 只有 P 的原子数百分比在 细胞壁中随着 Al^{3+} 浓度的增加而增大, 其余的变化 规律均不明显。进一步研究 C、O、P 相对于 Al 的 质量和原子数比值(表 3 和表 4)表明, C/Al 在细胞壁 和线粒体中有下降的趋势, O/Al 在线粒体中随着 Al^{3+} 浓度的增加而降低, 在细胞壁中 10 mg L⁻¹ 和 30 mg L⁻¹ Al³⁺处理的 P/Al 基本一致, 随着 Al³⁺浓度的 增加而下降, 线粒体中 P/Al 也随 Al³⁺浓度的增加而 下降, 而液泡黑色内含物的 P/Al 随着 Al³⁺浓度的增 加变化不明显。

2.5 铝对大豆根系生长的影响

铝对浙春3 号根系生长的影响主要体现在其 根系干重、根系总长度和根系总体积上(表 5)。随着 AI^{3+} 处理浓度的增加根系干重明显减小,在 AI^{3+} 浓 度为 90 mg L^{-1} 下达到最小值,与对照相比,减幅达 67.98%。 AI^{3+} 胁迫下大豆根系的伸长受抑制程度加

	Table 5 weight ratio for Ar and partial elements in the organenes of root up tens in soybean under under an stresses													
铝浓度 Al ³⁺ concentration			细胞核 Nucleus			М	线粒体 itochondri	ion	液泡电子致密沉淀物 Electron-dense precipi- tates of vacuole					
		C/Al	O/Al	P/Al	C/Al	O/Al	P/A1	C/Al	O/Al	P/A1	C/Al	O/Al	P/A1	
	$0 \text{ mg } L^{-1}(CK)$	_	_	-	-	-	-	-	-	_	_	_	_	
	$10 \text{ mg } \text{L}^{-1}$	5.78	3.78	1.67	-	-	-	75.00	28.50	21.00	6.20	3.60	1.40	
	$30 \text{ mg } \text{L}^{-1}$	5.00	3.73	1.40	-	-	-	7.33	3.67	1.17	7.45	4.00	1.82	
	$60 \text{ mg } \text{L}^{-1}$	4.42	3.53	1.53	5.50	2.10	2.00	_	_	-	5.08	2.64	1.92	
	90 mg L^{-1}	3.28	2.44	1.17	_	_	_	_	_	_	_	_	_	

表 3 不同铝浓度下大豆根尖细胞细胞器部分元素相对铝的质量比值 ht ratio for Al and partial elements in the organelles of root tip cells in soybean under dif

-: 在细胞壁、部分细胞器和细胞核中没有发现。-: not detected in the cell wall, organelles and nucleus.

表 4 不同铝浓度下大豆根尖细胞细胞器部分元素相对铝的原子数比值

Table 4 Atomicity ratio of partial elements to Al in the organelles of root tip cells in soybean under different Al³⁺ stresses

铝浓度 Al ³⁺ concentration	细胞壁 Cell wall			细胞核 Nucleus			Mit	线粒体 ochondric	'n	液泡电子致密沉淀物 Electron-dense precipitates of vacuole			
	C/Al	O/Al	P/A1	C/Al	O/Al	P/Al	C/Al	O/Al	P/A1	C/Al	O/Al	P/A1	
$0 \text{ mg } L^{-1}(CK)$	-	-	-	-	-	-	-	-	-	-	-	-	
$10 \text{ mg } \text{L}^{-1}$	632.40	18.80	1.33	_	-	-	2146.25	68.50	16.25	3175.00	72.67	2.00	
$30 \text{ mg } \text{L}^{-1}$	441.86	34.33	1.33	_	-	-	810.10	37.73	1.91	939.80	28.90	1.80	
$60 \text{ mg } \text{L}^{-1}$	224.76	14.90	1.12	134.90	5.07	2.48	-	-	-	71.44	6.61	2.21	
90 mg L ⁻¹	49.83	4.73	0.91	-	-	-	_	-	-	-	-	-	

-: 在细胞壁、部分细胞器和细胞核中没有发现。-: not detected in the cell wall, organelles and nucleus.

Table 5	Root	growth in soybean under different Al ³⁺ stresses
	表 5	不同的铝浓度对大豆根系生长的影响

性状	品浓度 Al ³⁺ concentration										
Trait	$0 \text{ mg } L^{-1}(CK)$	$10 \text{ mg } \mathrm{L}^{-1}$	$30 \text{ mg } \mathrm{L}^{-1}$	$60 \text{ mg } \mathrm{L}^{-1}$	$90 \text{ mg } \mathrm{L}^{-1}$						
根系干重 Dry matter of root system (mg)	63.40± 3.50 a	42.80±1.20 b	34.60±3.50 c	24.60±3.10 d	20.30± 4.00 d						
根系总长度 Total length of roots (cm)	622.10±8.45 a	528.10±10.65 b	377.10±22.39 c	115.00±6.01 d	85.95±8.83 e						
根系总体积 Total volume of roots (cm ³)	1.26±0.18 a	0.98±0.07 b	0.63±0.03 c	0.44±0.03 cd	0.28±0.03 d						

表中不同字母表示差异达显著水平(P<0.05)。

Values for an indicate followed by a different letter are significantly different (P < 0.05).

剧,对根系总长度的抑制明显,与对照均存在显著 差异(P < 0.05)。根系总体积在 90 mg L⁻¹ Al³⁺下达到 最小,仅为对照的 22.05%。根系干重与细胞壁铝含 量(n = 14, r = -0.960)和线粒体铝含量(n = 14, r = -0.961)均极显著负相关,根系总长度(n = 14, r = -0.980)和根系总体积(n = 14, r = -0.943)均与细胞壁 铝含量极显著负相关。

3 讨论

铝的毒害作用是铝在植物体,尤其是在根中积 累的结果。Ryan 等^[14]研究表明,将玉米根顶端 2~3 mm(包括根冠、分生组织和伸长区)暴露在 Al³⁺溶液 中,即可引起根生长的抑制,而将除根尖外的其他 部位暴露到 Al³⁺溶液中,根生长不受到影响。 Delhaize 等^[1]研究表明,根尖积累的 Al 及其产生的 物理损伤远远超过根的其他部位。因此根尖被认为 是植物受 Al 毒胁迫的首要位点^[14]。

本研究表明, 在铝毒胁迫下根尖细胞的亚显微 结构受到影响。10 mg L⁻¹ Al³⁺处理下线粒体数目增 加, 可能是因为植物增加了呼吸作用, 保持了植物 维持正常生理功能所需要的能量^[15]。在 30 mg L⁻¹ Al³⁺处理中细胞间隙增大, 是大豆对外界条件的一 种反应, 这在先前研究中均有报道^[16-17]。液泡是植 物细胞内的一个多功能细胞器, 尤其是根细胞内的 液泡,具有一定的储藏功能。有研究表明,在重力作 用下的大豆根尖细胞,液泡数目增多^[16]; Zaalishvili 等^[18]研究表明,硝基苯作用下的大豆根部液泡内有 电子致密沉淀物。本研究显示在 10 mg L⁻¹ Al³⁺处理 中液泡的电子致密沉淀物数量要比对照多,但是随 着 Al³⁺浓度的增加,电子致密沉淀物数目又有所减 少。推测电子致密沉淀物的多少可能与根系生长有 关^[18]。至于电子致密沉淀物中除了 Al 等一些基本元 素外,还有什么物质,需要进一步的研究。

细胞壁作为植物防御不良环境的第一道屏障, 在植物抗铝毒机理中的作用备受关注。铝能在细胞 壁上积累已经早有报道。早在 1967 年, Clarkson^[19] 发现,进入大麦根系的 Al 有 85%~90%以上存在于 细胞壁中, 进入黄秋葵(Abelmaschus esculentus)胚轴 细胞的 Al 也有 95%结合于细胞壁上^[20]、在珊瑚轮藻 (Chara corallina)中甚至有 99.99%的 Al 结合在细胞 壁上^[21]。但铝能否跨质膜进入细胞质一直是令人感兴 趣的问题, 也是解决铝毒害机理的前提。Marienfeld 等^[22]和 Mariedfeled 等^[23]发现在燕麦(Avena sativa Linn)根尖细胞的细胞壁上有大量 Al 积累, 但在细 胞内部没有 Al 的存在。Delhaize 等^[24]用 X-射线微 区分析对小麦根的 Al 分布进行了初步研究, 推断短 时间的 Al³⁺处理(8 h 和 24 h)后, Al 可能进入细胞质, 但缺乏直接的证据。Lazof 等^[25]用次生离子质谱法测 定 Al³⁺处理大豆根距根顶端不同距离处的 Al³⁺含量, 也认为 Al 能进入细胞质。20 μmol L⁻¹ Al³⁺处理 4 h, 在玉米根尖细胞的细胞壁和液泡内的沉积物中有 Al 被检测到^[9]。何龙飞等^[8]测定 Al³⁺处理后小麦根不同 组织细胞壁和细胞质的元素分布,表明 Al 能够进入 表皮和皮层的细胞质。本实验表明 Al 最先积累在细 胞壁上, 随后相继在线粒体、液泡电子致密沉淀物 和细胞核中被检测到。Al 在细胞壁上积累量最多, 与前人的研究结果基本一致。铝在细胞壁上大量积 累、对有效阻止铝进入细胞内部起了非常重要的作 用, 增加了铝耐性, 为铝的外部解毒机理提供了又 一佐证。由于细胞壁、细胞器和细胞核结合、积累 铝的能力有差异, X-射线能谱可以快速、有效地对铝 在亚显微结构上的定位进行分析。

植物铝毒害最容易识别的症状就是根的生长受 到抑制,肉眼可见的铝毒症状包括根伸长生长的抑 制^[1]、根尖膨大^[26]、表皮脱落^[27]等。目前有关研究 表明,水培条件下,100 mg L⁻¹ Al³⁺即抑制大豆的根 系生长,主根长、根生物量均下降^[28]。沙培条件下, 低 Al³⁺促进大豆的根系长度、体积和表面积的增长,高 Al³⁺则明显抑制根系的增长,不利于大豆的生长^[29]。本 试验在低 Al³⁺浓度下的研究结果与先前的有所差异, 随着 Al³⁺浓度的增大,根系生长受到显著抑制,这 一方面是因为沙子具有吸附作用,使得 Al³⁺浓度降 低,而水培法能更好地体现植物的 Al 毒害,另一方 面是因为 Al³⁺对大豆的胁迫时间过长,根系破坏明 显,在低浓度下就已得到充分体现。但其生长的变 化是否与根系 Al 含量存在着关系,需要做进一步的 探讨。相关分析表明,根系生长指标包括根系干重、 根系总长度和根系总体积均与根尖细胞壁的 Al 含 量极显著负相关,也表明细胞壁 Al 含量与根系生长 密切相关。根系生长慢,根尖细胞壁上 Al 含量则 增加。

磷(P)是植物生长和发育所需的一种重要的营 养元素,显著影响着植株的生长和代谢^[30]。磷能够 缓解或消除铝的毒害作用被认为是植物耐铝毒的重 要机制之一。Al³⁺胁迫下,花生^[31]、小麦^[8]幼苗对 P 的吸收与 Al³⁺胁迫浓度呈极显著负相关; Al³⁺处理 10 $d \in \overline{M}$ 随着 Al^{3+} 浓度的增加, 荞麦根中 P 含量相应增 大^[32]。P 的加入会提高大豆的 Al 耐性^[33], 且玉米根组 织受到 P 胁迫后, Al 耐性与根中固定的 Al 有关^[34]。 本实验结果发现细胞壁和线粒体中的 P/AI 随着 Al³⁺ 浓度增大而下降。细胞壁中 P 的原子数百分比随着 Al³⁺浓度增加而上升,而在其他细胞器上没有发现 类似的结果。细胞壁作为 Al 在根尖细胞中的主要积 累部位, 随着外界 Al³⁺浓度的增加, 积累在细胞壁 上的 Al 增多, 植物为了抵抗 Al 毒害, 使细胞壁中的 P 含量也有所增加。这在一定程度上缓解了植物的 Al 毒害,但P含量的增加幅度不及Al,最终导致P/Al下 降。固定在根中的铝可能与磷结合、在细胞壁上形 成铝-磷交互物、如 Al₄(PO₄)₃、以不溶的形式对铝进 入细胞质有阻碍作用。在一定程度上可能对大豆的 铝毒害起到缓解作用^[32]。

4 结论

Al³⁺胁迫首先反映在大豆根上,表现为根系生 长受到显著抑制;根尖细胞的亚显微结构受到影响, 90 mg L⁻¹ 的 Al³⁺处理下,细胞结构不完整,呈空泡 化,仅剩细胞壁且不完整;Al 最先积累在细胞壁上, 随后进入细胞内部,在线粒体、液泡电子致密沉淀 物和细胞核中被检测到;Al 可在细胞壁上大量积累, 有效地阻止了 Al 进入细胞内,增加了铝耐性,为铝 的外部解毒机理提供了又一佐证;由于细胞壁、细胞器和细胞核结合、积累铝的能力有差异,X-射线能 谱可以快速、有效地对在亚显微结构上的定位进行 分析。磷能缓解或消除铝的毒害作用是植物耐铝毒 的重要机制,本实验表明,固定在根中的铝可与磷 结合,在细胞壁上形成铝-磷交互物,以不溶的形式 阻碍铝进入细胞质。

References

- Delhaize E, Ryan P R. Aluminum toxicity and tolerance in plants. *Plant Physiol*, 1995, 107: 315–321
- [2] Juan B, Charlotte P. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: A review. *Environ Exp Bot*, 2002, 48: 75–92
- [3] Yan H(阎华), Shen X-R(沈秀荣). The mechanism of aluminum toxicity and anti aluminum in plant. J Anhui Agric Sci (安徽农业 科学), 2006, 34(20): 5201–5202, 5204(in Chinese with English abstract)
- [4] Ladislar T, Jana H, Igor M, Marta S, Beata S. Aluminum-induced drought and oxidative stress in barley roots. *J Plant Physiol*, 2006, 163: 781–784
- [5] Li H-S(李海生), Zhang Z-Q(张志权). The absorption and accumulation of aluminum and mineral nutrient in tea (*Camellia sinensis*) under different Al levels. *Ecol Environ* (生态环境), 2007, 16(1): 186–190(in Chinese with English abstract)
- [6] Xiao X-X(肖祥希). Characteristics of aluminum absorption by Longan (*Dimocarpus longan*) seedlings. *Sci Silv Sin* (林业科学), 2005, 41(3): 43–47 (in Chinese with English abstract)
- [7] Lin Y-M(林玉满). Qualitative and quantitative determination of trace elements in fruits of *Dictyophora indusiata* with SEM an EDAX. *Anal Instrum* (分析仪器), 1996, (2): 52-54 (in Chinese with English abstract)
- [8] He L-F(何龙飞), Liu Y-L(刘友良), Shen Z-G(沈振国), Wang A-Q(王爱勤), Li Y-R(李扬瑞). Effect of aluminum on the absorption and distribution of nutrient element of wheat seedling. J Chin Electron Microsc Soc (电子显微学报), 2000, 19(5): 685-694(in Chinese with English abstract)
- [9] Vázquez M D, Poschenrieder C, Corrales I, Barceló J. Change in apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety. *Plant Physiol*, 1999, 119: 435–444
- [10] Yu H-N(俞慧娜), Liu P(刘鹏), Xu G-D(徐根娣). Responses of growth and chlorophyll fluorescence characteristics of soybean to aluminum. *Chin J Oil Crop Sci* (中国油料作物学报), 2007, 29(3): 257-265(in Chinese with English abstract)
- [11] Li C-S(李朝苏), Liu P(刘鹏), Xu G-D(徐根娣), Zhang X-Y(张晓燕), He W-B(何文彬), Zhou D-Y(周迪莹). Ameliorating effects of exogenous organic acids on aluminum toxicity in buck-wheat seedlings. Acta Agron Sin (作物学报), 2006, 32(4):

532-539(in Chinese with English abstract)

- [12] Yu H-N(俞慧娜), Liu P(刘鹏), Xu G-D(徐根娣), Chen W-R(陈 文荣), Zhou J(周菁), Li C-Y(李传勇). Comparative study on root growth and chlorophyll fluorescence characteristics of soybean with aluminum responses. J Shanghai Jiaotong Univ (Agric Sci)(上海交通大学学报·农业科学版), 2007, 25(2): 138–146(in Chinese with English abstract)
- [13] Pan G-S(潘根生), Masaki T, Shigeki K(小西茂毅). Isolation of cell organelles from the lip-root cells of tea and their distribution of aluminum. Acta Agric Univ Zhejiangensis (浙江农业大学学 报), 1991, 17(3): 255–258 (in Chinese with English abstract)
- [14] Ryan P R, Ditomaso J M, Kochian L V. Aluminum toxicity in roots: An investigation of spatial sensitivity and the role of the root cap. *J Exp Bot*, 1993, 44: 437–446
- [15] Wang J-S(王金胜), Ji M-X(冀满祥), Zhao R-Y(赵如意), Cheng Y-X(程玉香). Protective effect of cerium on mitochondria wheat under salinity stress. J Chin Rare Earth Soc (中国稀土学报), 1999, 17(2): 187–190 (in Chinese with English abstract)
- [16] Klymchuk D O, Kordyum E L, Vorobyova T V, Chapman D K, Brown C S. Changes in vacuolation in the root apex cells of soybean seedling in microgravity. *Adv Space Res*, 2003, 31: 2283–2288
- [17] Chen Y X, He Y F, Yang Y, Yu Y L, Zheng S J, Tian G M, Luo Y M, Wong M H. Effect of cadmium on nodulation and N₂-fixation of soybean in the contaminated soils. *Chemosphere*, 2003, 50: 781–787
- [18] Zaalishvili G, Sadumishvili T, Scalla R, Laurent F, Kvesitadze G. Electron microscopic investigation of nitrobenzene distribution and effect on plant root tip cell ultrastructure. *Ecotoxicol Environ Saf*, 2002, 52: 190–197
- [19] Clarkson D T. Interaction between aluminum and phosphorus on root surfaces and cell wall material. *Plant Soil*, 1967, 27: 347–356
- [20] Ma J F, Yamamoto R, Nevins D J, Matsumoto H, Brown P H. Al binding in the epidermis cell wall inhibits cell elongation of *Okra hypocltyl. Plant Cell Physiol*, 1999, 40: 549–556
- [21] Taylor G J, Mcdonald-Stephens J L, Hunter D B. Direct measurement of aluminum uptake and distribution in single cell of *Characorallina. Plant Physiol*, 2000, 123: 987–996
- [22] Marienfeld S, Stelzer R. X-ray microanalyses in Al-treated Avena sativa plants. J Plant Physiol, 1993, 141: 569–573
- [23] Marienfeld S, Lehmannn H, Stelzer R. Ultrastructural investigations and EDX-analyses of Al treated oat (*Avena sativa*) roots. *Plant Soil*, 1995, 171: 167–173
- [24] Delhaize E, Craig S, Beaton C D, Bennet R J, Jagadish V C, Randall P J. Aluminum tolerance in wheat (*Triticum aestivum* L.): I. Uptake and distribution of aluminum in root apices. *Plant Physiol*, 1993, 103: 685–693
- [25] Lazof D B, Goldsmith J G, Rufty T W, Linton R W. Rapid uptake of aluminum into cells of intact soybean root tips: A microanalytical study using secondary ion mass spectrometry. *Plant Physiol*, 1994, 106: 1107–1114

- [26] Jones D L, Kochian L V. Aluminum inhibition of 1,4,5-trisphosphate signal transduction pathway in wheat roots: A role in aluminum toxicity? *Plant Cell*, 1995, 7: 1913–1922
- [27] Larsen P B, Degenhardt J, Tai C Y, Stenzler L M, Howell S H, Kochian L V. Aluminum-resistant Arabodopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release form roots. *Plant Physiol*, 1998, 117: 9–17
- [28] Hu L(胡蕾), Ying X-F(应小芳), Liu P(刘鹏), Xu G-D(徐根娣), Zhu S-L(朱申龙). The effect of agriculture characters of soybean to aluminum. J Zhejiang Agric Sci (浙江农业科学), 2004, (3): 148–150 (in Chinese with English abstract)
- [29] Liu P(刘鹏), Yang Y-S(杨悦锁), Xu G-D(徐根娣), Zhu S-L(朱申 龙). The effect of aluminum stress on morphological and physiological characteristics of soybean root of seedling. *Chin J Oil Crop Sci* (中国油料作物学报), 2004, 26(4): 49–54(in Chinese with English abstract)
- [30] Liao H(廖红), Yan X-L(严小龙). Adaptive change and genotypic variation for root architecture of common bean in response to

phosphorus deficiency. Acta Bot Sin (植物学报), 2000, 42(2): 158-163 (in Chinese with English abstract)

- [31] Yang Q(杨庆), Jin H-B(金华斌). The effect of aluminum stress on N, P and Ca absorption of peanut varieties. *Chin J Oil Crop Sci* (中国油料作物学报), 2000, 22(2): 68–73 (in Chinese with English abstract)
- [32] Zheng S J, Yang J L, He Y F, Yu X H, Zhang L, You J F, Shen R F, Matsumoto H. Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. *Plant Physiol*, 2005, 138: 297–303
- [33] Liao H, Wan H Y, Shaff J, Wang X R, Yan X L, Kochian L V. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. *Plant Physiol*, 2006, 141: 674–684
- [34] Gaume A, Machler F, Frossard E. Aluminum resistance in two cultivars of Zea may L.: Root exudation of organic acids and influence of phosphorous nutrition. *Plant Soil*, 2001, 234: 73–81