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Abstract: This paper studied a kind of nonlinear stochastic difference equations, whose
randomness is driven by a stochastic series. Two comparison theorems were obtained. At
last, p-moment stability and p-moment boundedness of solutions to stochastic difference
equations were presented as applications of the comparison theorems.
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0 Introduction

Stochastic differential equations play an important role in areas such as option pricing,
forecast of the growth of population, etcl!l. When using stochastic differential equations to
solve problems, we generally change them into stochastic difference equations in discrete forms.

Actually, there are some results on stochastic difference equations?—?

, most of which are on
the stability of the equations?~6. This paper first gave two comparison theorems of stochastic
difference equations. Then p-moment stability and p-moment boundedness of solutions to

stochastic difference equations were presented as applications of the comparison theorems.
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The paper was organized as follows: Notations and definitions were given in Section 1,
then two comparison theorems of stochastic difference equations were obtained in Section 2,

And some applications were presented in Section 3.

1 Notations and definitions

Let (9, F, P) be a probability space with filtration {F, },>0. A general form of stochastic

difference equations follows as

xn+1(w) = f(nvmn(w)agn(w))a Tng (w) = :L’O(W), (11)

where &, : Nt x Q@ — R! is an ¢-dimensional random sequence, f : Nt x R”™ x R! — R™,
N+ = {ng,ng +1,n9+2,---}, and f is continuous on the second variable.

It is obvious that there exists a unique random process satisfying systems (1.1) if
f(n, & (w)) is reasonable for all n € NT. Furthermore, the random process determined by
system (1.1) is a Markov chain if &, is an /-dimensional Markov chain independent of zo(w) .

For the sake of simplification, we use the following notations.

Notation 1 Let B be a vector or matrix. Then

(i) By B < 0 we mean each element of B is non-positive.

(ii) By B <0 we mean B < 0 and at least one element of B is negative.

(iii) By B < 0 we mean all elements of B are negative.

Notation 2 Let By and By be two vectors or matrixes with same dimensions. Denote
by By < By, By < By and By < By ifand only if By— By < 0, Bj—Bs < 0and B;—B3 <« 0,
respectively. We can note reverse relation similar to above notations.

Now we give three definitions.

Definition 1 A function g(n,u,v) : Nt x RF x R — R* is said to be

(i) quasi-nondecreasing on w if for any j € {1,2,--- ,k}, gj(n,u,v) is nondecreasing on u;;

(ii) quasi-increasing on w if for any j € {1,2,--- ,k}, g;(n,u,v) is increasing on u;.

Definition 2  Assume that f(n,0,-) =0 for all n € N and p > 0. The zero solution of
system (1.1) is

(i) p-moment stable if for any ¢ > 0, there exists a § = d(ny) > 0 such that

Elz,(w)|P <e  forall n > ng and Elxg(w)P < d;

(ii) uniformly p-moment stable if the ¢ in (i) is independent of ng;

(i) asymptotically p-moment stable if it is p-moment stable and there exists a §y > 0 and
N = N(ng,¢e) € N such that

Elz,(w)lP <e  foralln >ne+ N and E|ze(w)|? < do;

(iv) uniformly asymptotically p-moment stable if it is uniformly p-moment stable and the
N in (iii) is independent of ny.
Definition 3  Let p > 0. System (1.1) is called
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(i) p-moment boundedness if for any By > 0 and ng € NT, there exists a By =
By(B1,n9) > 0 satisfying that E|z,(w)[P < Bs for all n > ng and |z,,|? < Bi, where and
in the sequel, (ng, ) is the initial value of system (1.1);

(ii) uniform p-moment boundedness if the Bs in (i) is independent of ng;

(iii) wltimate p-moment boundedness if there exists a B > 0 satisfying that, for any Bs > 0
and ng € N, there exists a N = N(ng, B3) > 0 such that E|z,(w)[P < B for all n > ng + N
and |2y, [P < Bs;

(iv) wuniformly ultimate p-moment boundedness if N in (iii) is independent of ng.

2  Main results

To establish main results, we introduce a comparison equation

Ynt1(w) = g(n, yn (W), En(w)), Yno (W) = Yo(w), (2.1)

where &, : Q — R’ is an /-dimensional random sequence, g : NT x RF x R* — R*, Nt =
{ng,no +1,n9 +2,---}, and g is continuous on the second variable.

Theorem 1 Let ¢(-) : R™ — RF, z,(w) and y,(w) respectively satisfy stochastic
difference equations (1.1) and (2.1), we have the results that

(i) if g(n,-,-) is quasi-nondecreasing on the second variable and
o(f(n,u,v)) < gn,p(u),v)  foralln e N*,u e R™,v e RF,

then @(xo(w)) < yo(w) a.s. implies p(x,(w)) < yn(w) a.s. for all n > ng;

(i) if g(n,-,-) is quasi-nondecreasing on the second variable and
o(f(n,u,v)) < g(n,o(u),v) foralln e N*,ucR™ vecRF

then @(xg(w)) < yo(w) a.s. implies Y(x,(w)) < yn(w) a.s. for all n > ng;

(iii) if g(n,-,-) is quasi-increasing on the second variable and
o(f(n,u,v)) < gln, p(u),v) foralln € NT,u e R™, v € RF,

then ¢(zo(w)) < yo(w) a.s. implies (z,(w)) < yn(w) a.s. for all n > ng.

Proof Suppose conclusion (i) is not true. Considering ¢(zg(w)) < yo(w) for all w €
Q\ N, where N is the union set of all sets of zero-measure in 2, there exists at least a n € N T,
aje{l,2,---,k} and Q; C Q such that

(@) P2) > 0 (0) 03(an11()) > hoy (@), w € Qs

() p(zn(w)) Syplw) forallng<n<n, weQ,.
From (c), we have

vi(za(w)) <yi(w) foralli=1,2,--- k.

Let vectors w; = (w},w?, -+ wk)T with each element as

5 (W), I<s<u )
E® s<E
+

Pi@aw), i+1<s<h
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then

p(rn(w)) Swp < wy < - < wy = Ya(w).

By the definition of quasi-nondecreasing and mathematical induction, we have

9(, p(2a (W), &a(w)) < g(R, w1, 63 (W) < -+ < g(7, ya (W), €a (@),

9(71; p(x (@), &a(w)) < 9(7, Y (W), &a (w))- (2.2)

Because of the conditions (i) of Theorem 1 and (2.2), then we have

@j(an, (W) =¢;(f(n1 = 1,20, -1(w), &, —1(w)))
gi(n1 = L p(xn,—1(w)), &n, —1(w))
g]( 1ayn1—1( )’§n1—1( ))

Yl (w)  forallwe Q\N, ny=n+1,

NN N

which is a contradiction with (b), so conclusion (i) is true.

If conclusion (iii) is not true, considering p(zo(w)) < yo(w) for all w € @\ N, where N is
the union set of all sets of zero-measure in Q, there at least exists a n € NT, a j € {1,2,--- ,k}
and €}; C Q such that

(@) PO > 0 (1) 5 (@) > o4 (w), e s

(c) p(z ())<<yn() for all ng < n < n, we ;.
From (c), we have

pilri(w)) <yi(w) foralli=1,2,--- k.

Let vectors w; = (w},w?,- -+ wF)T with each element as
2 (w), 1<s<1
'wf: yn() .\ S ,Z-:L...Jg’
pi(ra(w)), i+1<s<k

then
o(rh(w)) <wp <ws < -+ - < wg = yp(w).

By the definition of quasi-increasing and mathematical induction, we have

g(n> Sp(xﬁ(w)afﬁ(w)) < g(fl, wlagﬁ(w» <KL g(ﬁvyﬁ(w)7£ﬁ<w)>7

(7, p(ra(w), &a(w)) < g(R, ya(w), §a(w)). (2.3)

Because of the conditions (i) of Theorem 1 and (2.3), then we have

@i(zn, (W) =¢;i(f(n1 — 1L 2p,-1(w),&ny —1(w)))
< gj(n1 — 1L p(zn,—1(w)), &ny—1(w))
< gj(nl - 17yn1*1(w)7§n1*1(w))
<yl (w), forallweQ;\N, ny=n+1,
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which is a contradiction with (b), so conclusion (iii) is true.

The proof of conclusion (ii) is easy to obtain in a way similar to those of (i) and (iii), so
we omit it. The proof is completed.

Theorem 2  Assume that z, (w)and y, (w) are random processes respectively determined
by stochastic difference equations (1.1) and (2.1), f,g : NT x R™ x R’ — R™, then we have

(i) if f(n,u,v) (or g(n,u,v) ) is quasi-nondecreasing on u and
fln,u,v) < g(n,u,v) forallm e NT,u e R™,v e R,

then zo(w) < yo(w) a.s. implies z,(w) < yn(w) a.s. for all n > ng;

(ii) if f(n,u,v) (or g(n,u,v) ) is quasi-nondecreasing on u and
f(n,u,v) < g(n,u,v)  foralln e N*,u e R™ v e R,

then zo(w) < yo(w) a.s. implies z,(w) < yn(w) a.s. for all n > ng;

(iii) if f(n,u,v) (or g(n,u,v) ) is quasi-increasing on u and
f(n,u,v) < g(n,u,v)  foralln € NT,u € R™ v e R,

then zo(w) < yo(w) a.s. implies ,(w) <K yn(w) a.s. for all n > ng.

The proof is similar to that of Theorem 1, so we omit it.

3 Applications

In this section, we gave some examples to show application of obtained results in research-
ing stability and boundedness of stochastic difference equations.

Consider stochastic difference equations

Ynt1(w) = g(nayn(w)agn(w))a (3'1)

where g(n,u,v) : N* x [0, +00) x R* — R and &, be a random sequence from © to R.
Theorem 3 Let p > 0 and g(n,u,v) be nondecreasing on u, g(n,0,-) = 0 for all n € N,
and satisfy

[ (74,60 (w))] < 9(n, [ul, €n(w)) ass.,

where {&, }n=0,12,.. is a stochastic sequence and | - | is some norm in R, then

(i) (uniform) p-moment stability of system (3.1) implies (uniform) p-moment stability of
system (1.1).

(ii) (uniformly) asymptotic p-moment stability of system (3.1) implies (uniformly) asymp-
totic p-moment stability of system (1.1).

Proof (i) Let ¢(-) =|-| and yo(w) = |xo(w)|, by Theorem 1, we have

|z (W) < yn(w)  for all n = ng. (3.2)
Because system (3.1) is p-moment stable, for any € > 0, there exists a § = d(ng) > 0 such that

Elyn(w)|P < e for all n > ng and Elyo(w)|? < 6.
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From (3.2), we know

|Zn(W)|P < |yn(w)|P for all n = ng,

and E|zg(w)|P = Elyo(w)|P. Thus Elz,(w)[P < Ely,(w)[P  for all n > ng, and that is
Elz,(w)lP <e  forall n > ng and Elxg(w)|P < 4.

Thus, system (1.1) is p-moment stable.

If the system (3.1) is uniformly p-moment stable, then ¢ is independent of ng, so the
system (1.1) is uniformly p-moment stable, too.

(ii) If system (3.1) is asymptotically p-moment stable, from (i), we know system (1.1) is
p-moment stable.

Furthermore, because system (3.1) is asymptotically p-moment stable, there exists a dg > 0

satisfying that for any € > 0 there exists an IV € N such that
Elyp(w)lP <e  forallm > N and E|yo(w)|? < do.

From (3.2), we know |z,(w)|P < |yp(w)|P forallm > ng. Thus Elz,(w)|? <
Ely,(w)|P  for alln > ng, and Elzo(w)P = Elyo(w)|P. That is

Elz,(w)|? <e  foralln > N and Elzo(w)[? < do.

Thus, system (1.1) is asymptotically p-moment stable.

If the system (3.1) is uniformly asymptotically p-moment stable, then N is independent
of ng, so the system (1.1) is uniformly asymptotically p-moment stable, too. The proof is
completed.

Theorem 4 Let p > 0 and g(n,u,v) be nondecreasing on u and satisfy

[f(n,u, 20 (W) < g(n, u], 20 (w)) as.,

where {2z, }n=012.... is a stochastic sequence and | - | is some norm in R™, then

(i) (uniform) p-moment boundedness of system (3.1) implies (uniform) p-moment bound-
edness of system (1.1);

(ii) (uniformly) ultimate p-moment boundedness of system (3.1) implies (uniformly) ul-
timate p-moment boundedness of system (1.1).

Proof Let ¢(-) =|-| and yo(w) = |zo(w)|, by Theorem 1, we have
|Tn (W) < yn(w)  for all n > ng. (3.3)

(i) Because system (3.1) is p-moment bounded, we have that for any B; > 0andng € N7,
there exists a By = Bs( Bi,ng) > 0 satisfying that

Elyn(w)|P < By  for all n > ng.

From (3.3), we know
El|lz,(w)|P < By  for all n > nyg.
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Thus, system (1.1) is p-moment bounded.

If the system (3.1) is uniformly p-moment bounded, then Bs is independent of ng, so the
system (1.1) is uniformly p-moment bounded, too.

(ii) Because system (3.1) is ultimately p-moment bounded, there exists a B > 0 satisfying
that, for any Bs > 0 and ng € R*, there exists a N = N(ng, Bsz) > 0 such that

Ely,(w)]? < B foralln >mng+ N,
when |z,,|P < Bs. From (3.2), we know
Elz,(w)[P < B  foralln>ng+ N.

Thus, system (1.1) is ultimate p-moment bounded.

If the system (3.1) is uniformly ultimately p-moment bounded, then N is independent of
ng, so the system (1.1) is uniformly ultimately p-moment bounded, too.

In the following, we presented an example to show the application of Theorem 1.

Example 1 Consider the following stochastic difference equations

(1) nx%l) nx%z)
Tpt1 = f(n7:cna€n):2n+1+€%+2n+2+§%7
2 3
(2) o _ NIy NnTn
(3.4)
(m—1) (m)
(m=1) _ NTn nTn
m 1
(m) _ nTn nwy,
and
2n 2
n = sYnsCn) = |5 5 “Yn, 3.5
Yn+1 = 9(1,Yn, &n) [2n+€%] Y (3.5)
where &, : € — R is a random sequence.
Put p(u) = [uM]? + [u®]2 + - + [u(™)]? in Theorem 1, we obtain that
o(f(n,u,v))
T e N nu® nu® 17
__2n—|—1+1)2+2n—|—2+v2} [2n+2+02+2n+3+v2]
num=1 . (™ 2 (™ . e 12 (3.6)
n+m—14+0v2  2n+m+0v? 2n+m-+0v2  2n+1+ 02
2
2n m
< | =1 . (s)12
_2n+v2} 3 u)
= g(mgo(u),v).

Further, from (3.5) we know that

ntl 2s 2
Yn+1 = H {M} * Yo,

s=1
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then
) n+1 25 2 )
Elyn]l=E H [M] Yo | < Elygl- (3.7)

s=1
It follows from (3.7) that system (3.5) is uniformly stable in mean square. Thus, System (3.4)

is uniformly stable in mean square by (3.6), Theorem 1 and Definition 2.
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