Article ID：1000－5641（2008）03－0059－08

Comparison theorems of stochastic difference equations

WANG Ting ${ }^{1}$ ，GUO Xiao－lin ${ }^{2}$ ，YANG Sheng－wu ${ }^{3}$
（1．Department of Statistics and Actuarial Science，East China Normal University，Shanghai 200062，China；2．School of Information Technology，Anhui University of Finance and Economics， Bengbu Anhui 233041，China；3．Bengbu Tank Institute，Bengbu Anhui 233013，China）

Abstract

This paper studied a kind of nonlinear stochastic difference equations，whose randomness is driven by a stochastic series．Two comparison theorems were obtained．At last，p－moment stability and p－moment boundedness of solutions to stochastic difference equations were presented as applications of the comparison theorems．

Key words：stochastic difference equation；comparison theorem；p－moment stability； p－moment boundedness
CLC number：O175．7 Document code：A

随机差分方程的比较定理

王 婷 ${ }^{1}$ ，郭小林 ${ }^{2}$ ，杨生武 ${ }^{3}$
（1．华东师范大学 统计与精算学系，上海 200062；2．安徽财经大学
信息工程学院，安徽 蚌埠 233041；3．蚌埠坦克学院，安徽 蚌埠 233013）

摘要：研究一类由随机序列驱动的非线性随机差分方程；给出了该类方程的两个比较定理；并作为比较定理的应用，给出了随机差分方程解的 p－阶矩稳定和 p－阶矩有界的判别条件。
关键词：随机差分方程；比较定理；p－阶矩稳定性；p－阶矩有界性

0 Introduction

Stochastic differential equations play an important role in areas such as option pricing， forecast of the growth of population，etc ${ }^{[1]}$ ．When using stochastic differential equations to solve problems，we generally change them into stochastic difference equations in discrete forms． Actually，there are some results on stochastic difference equations ${ }^{[2-9]}$ ，most of which are on the stability of the equations ${ }^{[2-6]}$ ．This paper first gave two comparison theorems of stochastic difference equations．Then p－moment stability and p－moment boundedness of solutions to stochastic difference equations were presented as applications of the comparison theorems．

[^0]The paper was organized as follows：Notations and definitions were given in Section 1， then two comparison theorems of stochastic difference equations were obtained in Section 2， And some applications were presented in Section 3.

1 Notations and definitions

Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability space with filtration $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ ．A general form of stochastic difference equations follows as

$$
\begin{equation*}
x_{n+1}(\omega)=f\left(n, x_{n}(\omega), \xi_{n}(\omega)\right), \quad x_{n_{0}}(\omega)=x_{0}(\omega), \tag{1.1}
\end{equation*}
$$

where $\xi_{n}: \mathbf{N}^{+} \times \Omega \rightarrow \mathbf{R}^{\ell}$ is an ℓ－dimensional random sequence，$f: \mathbf{N}^{+} \times \mathbf{R}^{m} \times \mathbf{R}^{\ell} \rightarrow \mathbf{R}^{m}$ ， $\mathbf{N}^{+}=\left\{n_{0}, n_{0}+1, n_{0}+2, \cdots\right\}$ ，and f is continuous on the second variable．

It is obvious that there exists a unique random process satisfying systems（1．1）if $f\left(n, \cdot, \xi_{n}(\omega)\right)$ is reasonable for all $n \in \mathbf{N}^{+}$．Furthermore，the random process determined by system（1．1）is a Markov chain if ξ_{n} is an ℓ－dimensional Markov chain independent of $x_{0}(\omega)$ ．

For the sake of simplification，we use the following notations．
Notation 1 Let \boldsymbol{B} be a vector or matrix．Then
（i）By $\boldsymbol{B} \leqslant 0$ we mean each element of \boldsymbol{B} is non－positive．
（ii）By $\boldsymbol{B}<0$ we mean $\boldsymbol{B} \leqslant 0$ and at least one element of \boldsymbol{B} is negative．
（iii）By $\boldsymbol{B} \ll 0$ we mean all elements of \boldsymbol{B} are negative．
Notation 2 Let \boldsymbol{B}_{1} and \boldsymbol{B}_{2} be two vectors or matrixes with same dimensions．Denote by $\boldsymbol{B}_{1} \leqslant \boldsymbol{B}_{2}, \boldsymbol{B}_{1}<\boldsymbol{B}_{2}$ and $\boldsymbol{B}_{1} \ll \boldsymbol{B}_{2}$ if and only if $\boldsymbol{B}_{1}-\boldsymbol{B}_{2} \leqslant 0, \boldsymbol{B}_{1}-\boldsymbol{B}_{2}<0$ and $\boldsymbol{B}_{1}-\mathbf{B}_{\mathbf{2}} \ll \mathbf{0}$ ， respectively．We can note reverse relation similar to above notations．

Now we give three definitions．
Definition 1 A function $g(n, u, v): \mathbf{N}^{+} \times \mathbf{R}^{k} \times \mathbf{R}^{\ell} \rightarrow \mathbf{R}^{k}$ is said to be
（i）quasi－nondecreasing on u if for any $j \in\{1,2, \cdots, k\}, g_{j}(n, u, v)$ is nondecreasing on u_{j} ；
（ii）quasi－increasing on u if for any $j \in\{1,2, \cdots, k\}, g_{j}(n, u, v)$ is increasing on u_{j} ．
Definition 2 Assume that $f(n, 0, \cdot) \equiv 0$ for all $n \in \mathbf{N}$ and $p>0$ ．The zero solution of system（1．1）is
（i）p－moment stable if for any $\varepsilon>0$ ，there exists a $\delta=\delta\left(n_{0}\right)>0$ such that

$$
E\left|x_{n}(\omega)\right|^{p}<\varepsilon \quad \text { for all } n \geqslant n_{0} \text { and } E\left|x_{0}(\omega)\right|^{p}<\delta
$$

（ii）uniformly p－moment stable if the δ in（i）is independent of n_{0} ；
（iii）asymptotically p－moment stable if it is p－moment stable and there exists a $\delta_{0}>0$ and $N=N\left(n_{0}, \varepsilon\right) \in \mathbf{N}$ such that

$$
E\left|x_{n}(\omega)\right|^{p}<\varepsilon \quad \text { for all } n \geqslant n_{0}+N \text { and } E\left|x_{0}(\omega)\right|^{p}<\delta_{0}
$$

（iv）uniformly asymptotically p－moment stable if it is uniformly p－moment stable and the N in（iii）is independent of n_{0} ．

Definition 3 Let $p>0$ ．System（1．1）is called
（i）p－moment boundedness if for any $B_{1}>0$ and $n_{0} \in \mathbf{N}^{+}$，there exists a $B_{2}=$ $B_{2}\left(B_{1}, n_{0}\right)>0$ satisfying that $E\left|x_{n}(\omega)\right|^{p}<B_{2}$ for all $n \geqslant n_{0}$ and $\left|x_{n_{0}}\right|^{p}<B_{1}$ ，where and in the sequel，$\left(n_{0}, x_{n_{0}}\right)$ is the initial value of system（1．1）；
（ii）uniform p－moment boundedness if the B_{2} in（i）is independent of n_{0} ；
（iii）ultimate p－moment boundedness if there exists a $B>0$ satisfying that，for any $B_{3}>0$ and $n_{0} \in \mathbf{N}^{+}$，there exists a $N=N\left(n_{0}, B_{3}\right)>0$ such that $E\left|x_{n}(\omega)\right|^{p}<B$ for all $n \geqslant n_{0}+N$ and $\left|x_{n_{0}}\right|^{p}<B_{3}$ ；
（iv）uniformly ultimate p－moment boundedness if N in（iii）is independent of n_{0} ．

2 Main results

To establish main results，we introduce a comparison equation

$$
\begin{equation*}
y_{n+1}(\omega)=g\left(n, y_{n}(\omega), \xi_{n}(\omega)\right), \quad y_{n_{0}}(\omega)=y_{0}(\omega) \tag{2.1}
\end{equation*}
$$

where $\xi_{n}: \Omega \rightarrow \mathbf{R}^{\ell}$ is an ℓ－dimensional random sequence，$g: \mathbf{N}^{+} \times \mathbf{R}^{k} \times \mathbf{R}^{\ell} \rightarrow \mathbf{R}^{k}, \mathbf{N}^{+}=$ $\left\{n_{0}, n_{0}+1, n_{0}+2, \cdots\right\}$ ，and g is continuous on the second variable．

Theorem 1 Let $\varphi(\cdot): \mathbf{R}^{m} \rightarrow \mathbf{R}^{k}, x_{n}(\omega)$ and $y_{n}(\omega)$ respectively satisfy stochastic difference equations（1．1）and（2．1），we have the results that
（i）if $g(n, \cdot, \cdot)$ is quasi－nondecreasing on the second variable and

$$
\varphi(f(n, u, v)) \leqslant g(n, \varphi(u), v) \quad \text { for all } n \in \mathbf{N}^{+}, u \in \mathbf{R}^{m}, v \in \mathbf{R}^{k}
$$

then $\varphi\left(x_{0}(\omega)\right) \leqslant y_{0}(\omega)$ a．s．implies $\varphi\left(x_{n}(\omega)\right) \leqslant y_{n}(\omega)$ a．s．for all $n \geqslant n_{0}$ ；
（ii）if $g(n, \cdot, \cdot)$ is quasi－nondecreasing on the second variable and

$$
\varphi(f(n, u, v))<g(n, \varphi(u), v) \quad \text { for all } n \in \mathbf{N}^{+}, u \in \mathbf{R}^{m}, v \in \mathbf{R}^{k}
$$

then $\varphi\left(x_{0}(\omega)\right)<y_{0}(\omega)$ a．s．implies $\varphi\left(x_{n}(\omega)\right)<y_{n}(\omega)$ a．s．for all $n \geqslant n_{0}$ ；
（iii）if $g(n, \cdot, \cdot)$ is quasi－increasing on the second variable and

$$
\varphi(f(n, u, v)) \leqslant g(n, \varphi(u), v) \quad \text { for all } n \in \mathbf{N}^{+}, u \in \mathbf{R}^{m}, v \in \mathbf{R}^{k}
$$

then $\varphi\left(x_{0}(\omega)\right) \ll y_{0}(\omega)$ a．s．implies $\varphi\left(x_{n}(\omega)\right) \ll y_{n}(\omega)$ a．s．for all $n \geqslant n_{0}$ ．
Proof Suppose conclusion（i）is not true．Considering $\varphi\left(x_{0}(\omega)\right) \leqslant y_{0}(\omega)$ for all $\omega \in$ $\Omega \backslash N$ ，where N is the union set of all sets of zero－measure in Ω ，there exists at least a $\tilde{n} \in \mathbf{N}^{+}$， a $j \in\{1,2, \cdots, k\}$ and $\Omega_{j} \subset \Omega$ such that
（a）$P\left(\Omega_{j}\right)>0 ; \quad$（b）$\varphi_{j}\left(x_{\tilde{n}+1}(\omega)\right)>y_{\tilde{n}+1}^{j}(\omega), \omega \in \Omega_{j}$ ；
（c）$\varphi\left(x_{n}(\omega)\right) \leqslant y_{n}(\omega) \quad$ for all $n_{0} \leqslant n \leqslant \tilde{n}, \omega \in \Omega_{j}$ ．
From（c），we have

$$
\varphi_{i}\left(x_{\tilde{n}}(\omega)\right) \leqslant y_{\tilde{n}}^{i}(\omega) \quad \text { for all } i=1,2, \cdots, k
$$

Let vectors $w_{i}=\left(w_{i}^{1}, w_{i}^{2}, \cdots, w_{i}^{k}\right)^{\mathrm{T}}$ with each element as

$$
\boldsymbol{w}_{i}^{s}=\left\{\begin{array}{ll}
y_{\tilde{n}}^{s}(\omega), & 1 \leqslant s \leqslant i \\
\varphi_{\tilde{n}}^{s}\left(x_{\tilde{n}}(\omega)\right), & i+1 \leqslant s \leqslant k
\end{array}, i=1, \cdots, k\right.
$$

then

$$
\varphi\left(x_{\tilde{n}}(\omega)\right) \leqslant \boldsymbol{w}_{1} \leqslant \boldsymbol{w}_{2} \leqslant \cdots \leqslant \boldsymbol{w}_{k}=y_{\tilde{n}}(\omega)
$$

By the definition of quasi－nondecreasing and mathematical induction，we have

$$
g\left(\tilde{n}, \varphi\left(x_{\tilde{n}}(\omega)\right), \xi_{\tilde{n}}(\omega)\right) \leqslant g\left(\tilde{n}, w_{1}, \xi_{\tilde{n}}(\omega)\right) \leqslant \cdots \leqslant g\left(\tilde{n}, y_{\tilde{n}}(\omega), \xi_{\tilde{n}}(\omega)\right)
$$

i．e．

$$
\begin{equation*}
g\left(\tilde{n}, \varphi\left(x_{\tilde{n}}(\omega)\right), \xi_{\tilde{n}}(\omega)\right) \leqslant g\left(\tilde{n}, y_{\tilde{n}}(\omega), \xi_{\tilde{n}}(\omega)\right) \tag{2.2}
\end{equation*}
$$

Because of the conditions（i）of Theorem 1 and（2．2），then we have

$$
\begin{aligned}
\varphi_{j}\left(x_{n_{1}}(\omega)\right) & =\varphi_{j}\left(f\left(n_{1}-1, x_{n_{1}-1}(\omega), \xi_{n_{1}-1}(\omega)\right)\right) \\
& \leqslant g_{j}\left(n_{1}-1, \varphi\left(x_{n_{1}-1}(\omega)\right), \xi_{n_{1}-1}(\omega)\right) \\
& \leqslant g_{j}\left(n_{1}-1, y_{n_{1}-1}(\omega), \xi_{n_{1}-1}(\omega)\right) \\
& \leqslant y_{n_{1}}^{j}(\omega) \quad \text { for all } \omega \in \Omega_{j} \backslash N, n_{1}=\tilde{n}+1,
\end{aligned}
$$

which is a contradiction with（b），so conclusion（i）is true．
If conclusion（iii）is not true，considering $\varphi\left(x_{0}(\omega)\right) \ll y_{0}(\omega)$ for all $\omega \in \Omega \backslash N$ ，where N is the union set of all sets of zero－measure in Ω ，there at least exists a $\tilde{n} \in \mathbf{N}^{+}$，a $j \in\{1,2, \cdots, k\}$ and $\Omega_{j} \subset \Omega$ such that
（a）$P\left(\Omega_{j}\right)>0$ ；
（b）$\varphi_{j}\left(x_{\tilde{n}+1}(\omega)\right) \geqslant y_{\tilde{n}+1}^{j}(\omega), \omega \in \Omega_{j}$ ；
（c）$\varphi\left(x_{n}(\omega)\right) \ll y_{n}(\omega) \quad$ for all $n_{0} \leqslant n \leqslant \tilde{n}, \omega \in \Omega_{j}$ ．

From（c），we have

$$
\varphi_{i}\left(x_{\tilde{n}}(\omega)\right)<y_{\tilde{n}}^{i}(\omega) \quad \text { for all } i=1,2, \cdots, k .
$$

Let vectors $w_{i}=\left(w_{i}^{1}, w_{i}^{2}, \cdots, w_{i}^{k}\right)^{\mathrm{T}}$ with each element as

$$
\boldsymbol{w}_{i}^{s}=\left\{\begin{array}{ll}
y_{\tilde{n}}^{s}(\omega), & 1 \leqslant s \leqslant i \\
\varphi_{\tilde{n}}^{s}\left(x_{\tilde{n}}(\omega)\right), & i+1 \leqslant s \leqslant k
\end{array}, i=1, \cdots, k,\right.
$$

then

$$
\varphi\left(x_{\tilde{n}}(\omega)\right)<\boldsymbol{w}_{1}<\boldsymbol{w}_{2}<\cdots<\boldsymbol{w}_{k}=y_{\tilde{n}}(\omega) .
$$

By the definition of quasi－increasing and mathematical induction，we have

$$
g\left(\tilde{n}, \varphi\left(x_{\tilde{n}}(\omega), \xi_{\tilde{n}}(\omega)\right) \ll g\left(\tilde{n}, w_{1}, \xi_{\tilde{n}}(\omega)\right) \ll \cdots \ll g\left(\tilde{n}, y_{\tilde{n}}(\omega), \xi_{\tilde{n}}(\omega)\right)\right.
$$

i．e．

$$
\begin{equation*}
g\left(\tilde{n}, \varphi\left(x_{\tilde{n}}(\omega), \xi_{\tilde{n}}(\omega)\right) \ll g\left(\tilde{n}, y_{\tilde{n}}(\omega), \xi_{\tilde{n}}(\omega)\right)\right. \tag{2.3}
\end{equation*}
$$

Because of the conditions（i）of Theorem 1 and（2．3），then we have

$$
\begin{aligned}
\varphi_{j}\left(x_{n_{1}}(\omega)\right) & =\varphi_{j}\left(f\left(n_{1}-1, x_{n_{1}-1}(\omega), \xi_{n_{1}-1}(\omega)\right)\right) \\
& \leqslant g_{j}\left(n_{1}-1, \varphi\left(x_{n_{1}-1}(\omega)\right), \xi_{n_{1}-1}(\omega)\right) \\
& <g_{j}\left(n_{1}-1, y_{n_{1}-1}(\omega), \xi_{n_{1}-1}(\omega)\right) \\
& \leqslant y_{n_{1}}^{j}(\omega), \quad \text { for all } \omega \in \Omega_{j} \backslash N, \quad n_{1}=\tilde{n}+1,
\end{aligned}
$$

which is a contradiction with（b），so conclusion（iii）is true．
The proof of conclusion（ii）is easy to obtain in a way similar to those of（i）and（iii），so we omit it．The proof is completed．

Theorem 2 Assume that $x_{n}(\omega)$ and $y_{n}(\omega)$ are random processes respectively determined by stochastic difference equations（1．1）and（2．1），$f, g: \mathbf{N}^{+} \times \mathbf{R}^{m} \times \mathbf{R}^{\ell} \rightarrow \mathbf{R}^{m}$ ，then we have
（i）if $f(n, u, v)$（or $g(n, u, v)$ ）is quasi－nondecreasing on u and

$$
f(n, u, v) \leqslant g(n, u, v) \quad \text { for all } n \in \mathbf{N}^{+}, u \in \mathbf{R}^{m}, v \in \mathbf{R}^{\ell}
$$

then $x_{0}(\omega) \leqslant y_{0}(\omega)$ a．s．implies $x_{n}(\omega) \leqslant y_{n}(\omega)$ a．s．for all $n \geqslant n_{0}$ ；
（ii）if $f(n, u, v)$（or $g(n, u, v)$ ）is quasi－nondecreasing on u and

$$
f(n, u, v)<g(n, u, v) \quad \text { for all } n \in \mathbf{N}^{+}, u \in \mathbf{R}^{m}, v \in \mathbf{R}^{\ell}
$$

then $x_{0}(\omega)<y_{0}(\omega)$ a．s．implies $x_{n}(\omega)<y_{n}(\omega)$ a．s．for all $n \geqslant n_{0}$ ；
（iii）if $f(n, u, v)$（or $g(n, u, v)$ ）is quasi－increasing on u and

$$
f(n, u, v) \ll g(n, u, v) \quad \text { for all } n \in \mathbf{N}^{+}, u \in \mathbf{R}^{m}, v \in \mathbf{R}^{\ell}
$$

then $x_{0}(\omega) \ll y_{0}(\omega)$ a．s．implies $x_{n}(\omega) \ll y_{n}(\omega)$ a．s．for all $n \geqslant n_{0}$ ．
The proof is similar to that of Theorem 1，so we omit it．

3 Applications

In this section，we gave some examples to show application of obtained results in research－ ing stability and boundedness of stochastic difference equations．

Consider stochastic difference equations

$$
\begin{equation*}
y_{n+1}(\omega)=g\left(n, y_{n}(\omega), \xi_{n}(\omega)\right), \tag{3.1}
\end{equation*}
$$

where $g(n, u, v): \mathbf{N}^{+} \times[0,+\infty) \times \mathbf{R}^{\ell} \rightarrow \mathbf{R}$ and ξ_{n} be a random sequence from Ω to \mathbf{R}^{ℓ} ．
Theorem 3 Let $p>0$ and $g(n, u, v)$ be nondecreasing on $u, g(n, 0, \cdot) \equiv 0$ for all $n \in \mathbf{N}$ ， and satisfy

$$
\left|f\left(n, u, \xi_{n}(\omega)\right)\right| \leqslant g\left(n,|u|, \xi_{n}(\omega)\right) \text { a.s. }
$$

where $\left\{\xi_{n}\right\}_{n=0,1,2, \ldots}$ is a stochastic sequence and $|\cdot|$ is some norm in \mathbf{R}^{m} ，then
（i）（uniform）p－moment stability of system（3．1）implies（uniform）p－moment stability of system（1．1）．
（ii）（uniformly）asymptotic p－moment stability of system（3．1）implies（uniformly）asymp－ totic p－moment stability of system（1．1）．

Proof（i）Let $\varphi(\cdot)=|\cdot|$ and $y_{0}(\omega)=\left|x_{0}(\omega)\right|$ ，by Theorem 1，we have

$$
\begin{equation*}
\left|x_{n}(\omega)\right| \leqslant y_{n}(\omega) \quad \text { for all } n \geqslant n_{0} \tag{3.2}
\end{equation*}
$$

Because system（3．1）is p－moment stable，for any $\varepsilon>0$ ，there exists a $\delta=\delta\left(n_{0}\right)>0$ such that

$$
E\left|y_{n}(\omega)\right|^{p}<\varepsilon \quad \text { for all } n \geqslant n_{0} \text { and } E\left|y_{0}(\omega)\right|^{p}<\delta
$$

From（3．2），we know

$$
\left|x_{n}(\omega)\right|^{p} \leqslant\left|y_{n}(\omega)\right|^{p} \quad \text { for all } n \geqslant n_{0},
$$

and $E\left|x_{0}(\omega)\right|^{p}=E\left|y_{0}(\omega)\right|^{p}$ ．Thus $E\left|x_{n}(\omega)\right|^{p} \leqslant E\left|y_{n}(\omega)\right|^{p} \quad$ for all $n \geqslant n_{0}$ ，and that is

$$
E\left|x_{n}(\omega)\right|^{p}<\varepsilon \quad \text { for all } n \geqslant n_{0} \text { and } E\left|x_{0}(\omega)\right|^{p}<\delta
$$

Thus，system（1．1）is p－moment stable．
If the system（3．1）is uniformly p－moment stable，then δ is independent of n_{0} ，so the system（1．1）is uniformly p－moment stable，too．
（ii）If system（3．1）is asymptotically p－moment stable，from（i），we know system（1．1）is p－moment stable．

Furthermore，because system（3．1）is asymptotically p－moment stable，there exists a $\delta_{0}>0$ satisfying that for any $\varepsilon>0$ there exists an $N \in \mathbf{N}$ such that

$$
E\left|y_{n}(\omega)\right|^{p}<\varepsilon \quad \text { for all } n \geqslant N \text { and } E\left|y_{0}(\omega)\right|^{p}<\delta_{0}
$$

From（3．2），we know $\left|x_{n}(\omega)\right|^{p} \leqslant\left|y_{n}(\omega)\right|^{p} \quad$ for all $n \geqslant n_{0}$ ．Thus $E\left|x_{n}(\omega)\right|^{p} \leqslant$ $E\left|y_{n}(\omega)\right|^{p} \quad$ for all $n \geqslant n_{0}, \quad$ and $E\left|x_{0}(\omega)\right|^{p}=E\left|y_{0}(\omega)\right|^{p}$ ．That is

$$
E\left|x_{n}(\omega)\right|^{p}<\varepsilon \quad \text { for all } n \geqslant N \text { and } E\left|x_{0}(\omega)\right|^{p}<\delta_{0}
$$

Thus，system（1．1）is asymptotically p－moment stable．
If the system（3．1）is uniformly asymptotically p－moment stable，then N is independent of n_{0} ，so the system（1．1）is uniformly asymptotically p－moment stable，too．The proof is completed．

Theorem 4 Let $p>0$ and $g(n, u, v)$ be nondecreasing on u and satisfy

$$
\left|f\left(n, u, z_{n}(\omega)\right)\right| \leqslant g\left(n,|u|, z_{n}(\omega)\right) \text { a.s. }
$$

where $\left\{z_{n}\right\}_{n=0,1,2, \ldots}$ is a stochastic sequence and $|\cdot|$ is some norm in R^{m} ，then
（i）（uniform）p－moment boundedness of system（3．1）implies（uniform）p－moment bound－ edness of system（1．1）；
（ii）（uniformly）ultimate p－moment boundedness of system（3．1）implies（uniformly）ul－ timate p－moment boundedness of system（1．1）．

Proof Let $\varphi(\cdot)=|\cdot|$ and $y_{0}(\omega)=\left|x_{0}(\omega)\right|$ ，by Theorem 1，we have

$$
\begin{equation*}
\left|x_{n}(\omega)\right| \leqslant y_{n}(\omega) \quad \text { for all } n \geqslant n_{0} \tag{3.3}
\end{equation*}
$$

（i）Because system（3．1）is p－moment bounded，we have that for any $B_{1}>0$ and $n_{0} \in N^{+}$， there exists a $B_{2}=B_{2}\left(B_{1}, n_{0}\right)>0$ satisfying that

$$
E\left|y_{n}(\omega)\right|^{p}<B_{2} \quad \text { for all } n \geqslant n_{0} .
$$

From（3．3），we know

$$
E\left|x_{n}(\omega)\right|^{p} \leqslant B_{2} \quad \text { for all } n \geqslant n_{0} .
$$

Thus，system（1．1）is p－moment bounded．
If the system（3．1）is uniformly p－moment bounded，then B_{2} is independent of n_{0} ，so the system（1．1）is uniformly p－moment bounded，too．
（ii）Because system（3．1）is ultimately p－moment bounded，there exists a $B>0$ satisfying that，for any $B_{3}>0$ and $n_{0} \in \mathbf{R}^{+}$，there exists a $N=N\left(n_{0}, B_{3}\right)>0$ such that

$$
E\left|y_{n}(\omega)\right|^{p}<B \quad \text { for all } n \geqslant n_{0}+N
$$

when $\left|x_{n_{0}}\right|^{p}<B_{3}$ ．From（3．2），we know

$$
E\left|x_{n}(\omega)\right|^{p} \leqslant B \quad \text { for all } n \geqslant n_{0}+N
$$

Thus，system（1．1）is ultimate p－moment bounded．
If the system（3．1）is uniformly ultimately p－moment bounded，then N is independent of n_{0} ，so the system（1．1）is uniformly ultimately p－moment bounded，too．

In the following，we presented an example to show the application of Theorem 1.
Example 1 Consider the following stochastic difference equations

$$
\left\{\begin{align*}
x_{n+1}^{(1)} & =f\left(n, x_{n}, \xi_{n}\right)=\frac{n x_{n}^{(1)}}{2 n+1+\xi_{n}^{2}}+\frac{n x_{n}^{(2)}}{2 n+2+\xi_{n}^{2}}, \tag{3.4}\\
x_{n+1}^{(2)} & =f\left(n, x_{n}, \xi_{n}\right)=\frac{n x_{n}^{(2)}}{2 n+2+\xi_{n}^{2}}+\frac{n x_{n}^{(3)}}{2 n+3+\xi_{n}^{2}}, \\
& \vdots \\
x_{n+1}^{(m-1)} & =f\left(n, x_{n}, \xi_{n}\right)=\frac{n x_{n}^{(m-1)}}{2 n+m-1+\xi_{n}^{2}}+\frac{n x_{n}^{(m)}}{2 n+m+\xi_{n}^{2}}, \\
x_{n+1}^{(m)} & =f\left(n, x_{n}, \xi_{n}\right)=\frac{n x_{n}^{(m)}}{2 n+m+\xi_{n}^{2}}+\frac{n x_{n}^{(1)}}{2 n+1+\xi_{n}^{2}},
\end{align*}\right.
$$

and

$$
\begin{equation*}
y_{n+1}=g\left(n, y_{n}, \xi_{n}\right)=\left[\frac{2 n}{2 n+\xi_{n}^{2}}\right]^{2} \cdot y_{n} \tag{3.5}
\end{equation*}
$$

where $\xi_{n}: \Omega \rightarrow \mathbf{R}$ is a random sequence．
Put $\varphi(u)=\left[u^{(1)}\right]^{2}+\left[u^{(2)}\right]^{2}+\cdots+\left[u^{(m)}\right]^{2}$ in Theorem 1，we obtain that

$$
\begin{align*}
& \varphi(f(n, u, v)) \\
&= {\left[\frac{n u^{(1)}}{2 n+1+v^{2}}+\frac{n u^{(2)}}{2 n+2+v^{2}}\right]^{2}+\left[\frac{n u^{(2)}}{2 n+2+v^{2}}+\frac{n u^{(3)}}{2 n+3+v^{2}}\right]^{2}+\cdots } \\
&+\left[\frac{n u^{(m-1)}}{2 n+m-1+v^{2}}+\frac{n u^{(m)}}{2 n+m+v^{2}}\right]^{2}+\left[\frac{n u^{(m)}}{2 n+m+v^{2}}+\frac{n u^{(1)}}{2 n+1+v^{2}}\right]^{2} \tag{3.6}\\
& \leqslant {\left[\frac{2 n}{2 n+v^{2}}\right]^{2} \cdot \sum_{s=1}^{m}\left[u^{(s)}\right]^{2} } \\
&= g(n, \varphi(u), v) .
\end{align*}
$$

Further，from（3．5）we know that

$$
y_{n+1}=\prod_{s=1}^{n+1}\left[\frac{2 s}{2 s+\xi_{s}^{2}}\right]^{2} \cdot y_{0}
$$

then

$$
\begin{equation*}
E\left[y_{n+1}^{2}\right]=E\left(\prod_{s=1}^{n+1}\left[\frac{2 s}{2 s+\xi_{s}^{2}}\right]^{2} \cdot y_{0}\right)^{2} \leqslant E\left[y_{0}^{2}\right] \tag{3.7}
\end{equation*}
$$

It follows from（3．7）that system（3．5）is uniformly stable in mean square．Thus，System（3．4） is uniformly stable in mean square by（3．6），Theorem 1 and Definition 2.

［ References ］

［1］ØKSENDAL B．Stochastic Differential Equations［M］．4th ed．New York：Springer－Verlag， 1995.
［2］KOLMANOVSKI V B，SHAIKHET L E．General method of Lyapunov functional construction for stability investigations of stochastic difference equations［J］．Dynamical Systems and Applications，1995（4）：397－439．
［3］SHAIKHET L E．Necessary and sufficient conditions of asymptotic mean square stability for stochastic difference equations［J］．Appl Math Lett，1997，10（3）：111－115．
［4］SHAIKHET L E．Some problems of stability for stochastic difference equations［A］／／ $15^{t h}$ World Congress on Scientific Computation，Modelling，and Applied Mathematics．Berlin：Computational Mathematics，1997（1）： 1257－1262．
［5］SHAIKHET G，SHAIKHET L E．Stability of stochastic difference equations with varying delay［G］／／BAJICV． Advances in Systems，Signals，Control and Computers．Durban，South Africa：LAAMSAD and SA branch of the Academy of Nonlinear Sciences，1998：101－104．
［6］PATERNOSTER B，SHAIKHET L E．About stability of nonlinear stochastic difference equations［J］．Applied Mathematics Letters，2000，13（5）：27－32．
［7］KUCHKINA N，SHAIKHET L E．Optimal control of Volterra type stochastic difference equations［J］．Computers Math Applic，1998，36（10－12）：251－259．
［8］RODKINA A．On asymptotic behavior of solutions of stochastic difference equations［J］．Nonlinear Analysis， 2001，47：4719－4730．
［9］FERRANTE M，VIDONI P．Finite dimensional filters for nonlinear stochastic difference equations with multi－ plicative noises［J］．Stochastic Processes and Their Applications，1998，77：69－81．
（上接第58页）

［References］

CHANG H J．Über Wittsche Lie－Ringe［J］．Abh Math Sem Univ Hamburg，1941，14：151－184．
2 ］FELDVOSS J，NAKANO D K．Representation theory of the Witt algebra［J］．J Algebra，1998，203：447－469．
［3］SHU B．Generalized restricted Lie algebras and the representations of Zassenhaus algebra［J］．J Algebra，1998， 204：549－572．
［4］SHU B．Representations of Cartan type Lie algebras in characteristic p［J］．J Algebra，2002，256：7－27．
［5］SHU B．The generalized restricted representations of graded Lie algebras of Cartan type［J］．J Algebra，1997， 194：157－177．
［6］SHU B．Quasi p－mappings and representations of modular Lie algebras［C］／／WANG J P．Proc Inter Conf on Representation Theory，July 1998，Shanghai，China，Beijing：CHEP and Springer，2000：375－401．
［7］SHEN G Y．Graded modules of graded Lie algebras of Cartan type（I）［J］．Sci Sin，1986，29：570－581．
［8］SHEN G Y．Graded modules of graded Lie algebras of Cartan type（II）［J］．Sci Sin，1986，29：1009－1019．
［9］SHEN G Y．Graded modules of graded Lie algebras of Cartan type（III）［J］．Chinese Ann Math B，1988（9）： 404－417．
［10］STRADE H，Farnsteiner R．Modular Lie Algebras and Their Representations：Monographs and Textbooks in Pure and Applied Mathematics 116 ［M］．New York：Dekker， 1988.
［11］NAKANO D K．Projective modules over Lie algebras of Cartan type［J］．Mem Amer Math Soc，1992，470：1－83．

[^0]: 收稿日期：2007－04
 第一作者：王婷，女，硕士生．E－mail：wting006＠gmail．com．

