Article ID: 1000-5641(2008)03-0059-08

Comparison theorems of stochastic difference equations

WANG Ting¹, GUO Xiao-lin², YANG Sheng-wu³

 Department of Statistics and Actuarial Science, East China Normal University, Shanghai
 200062, China;
 School of Information Technology, Anhui University of Finance and Economics, Bengbu Anhui 233041, China;
 Bengbu Tank Institute, Bengbu Anhui 233013, China)

Abstract: This paper studied a kind of nonlinear stochastic difference equations, whose randomness is driven by a stochastic series. Two comparison theorems were obtained. At last, *p*-moment stability and *p*-moment boundedness of solutions to stochastic difference equations were presented as applications of the comparison theorems.

Key words: stochastic difference equation; comparison theorem; *p*-moment stability; *p*-moment boundedness

CLC number: 0175.7 Document code: A

随机差分方程的比较定理

王 婷¹, 郭小林², 杨生武³

(1. 华东师范大学 统计与精算学系, 上海 200062; 2. 安徽财经大学 信息工程学院, 安徽 蚌埠 233041; 3. 蚌埠坦克学院, 安徽 蚌埠 233013)

摘要:研究一类由随机序列驱动的非线性随机差分方程;给出了该类方程的两个比较定理;并 作为比较定理的应用,给出了随机差分方程解的 *p*-阶矩稳定和 *p*-阶矩有界的判别条件. 关键词:随机差分方程;比较定理;*p*-阶矩稳定性;*p*-阶矩有界性

0 Introduction

Stochastic differential equations play an important role in areas such as option pricing, forecast of the growth of population, $\text{etc}^{[1]}$. When using stochastic differential equations to solve problems, we generally change them into stochastic difference equations in discrete forms. Actually, there are some results on stochastic difference equations^[2-9], most of which are on the stability of the equations^[2-6]. This paper first gave two comparison theorems of stochastic difference equations. Then *p*-moment stability and *p*-moment boundedness of solutions to stochastic difference equations were presented as applications of the comparison theorems.

收稿日期: 2007-04

第一作者: 王婷, 女, 硕士生. E-mail: wting006@gmail.com.

The paper was organized as follows: Notations and definitions were given in Section 1, then two comparison theorems of stochastic difference equations were obtained in Section 2, And some applications were presented in Section 3.

1 Notations and definitions

Let $(\Omega, \mathcal{F}, \mathsf{P})$ be a probability space with filtration $\{\mathcal{F}_n\}_{n \ge 0}$. A general form of stochastic difference equations follows as

$$x_{n+1}(\omega) = f(n, x_n(\omega), \xi_n(\omega)), \qquad x_{n_0}(\omega) = x_0(\omega),$$
 (1.1)

where $\xi_n : \mathbf{N}^+ \times \Omega \to \mathbf{R}^\ell$ is an ℓ -dimensional random sequence, $f : \mathbf{N}^+ \times \mathbf{R}^m \times \mathbf{R}^\ell \to \mathbf{R}^m$, $\mathbf{N}^+ = \{n_0, n_0 + 1, n_0 + 2, \cdots\}$, and f is continuous on the second variable.

It is obvious that there exists a unique random process satisfying systems (1.1) if $f(n, \cdot, \xi_n(\omega))$ is reasonable for all $n \in \mathbf{N}^+$. Furthermore, the random process determined by system (1.1) is a Markov chain if ξ_n is an ℓ -dimensional Markov chain independent of $x_0(\omega)$.

For the sake of simplification, we use the following notations.

Notation 1 Let B be a vector or matrix. Then

(i) By $\boldsymbol{B} \leq 0$ we mean each element of \boldsymbol{B} is *non-positive*.

(ii) By B < 0 we mean $B \leq 0$ and at least one element of B is *negative*.

(iii) By $\boldsymbol{B} \ll 0$ we mean all elements of \boldsymbol{B} are *negative*.

Notation 2 Let B_1 and B_2 be two vectors or matrixes with same dimensions. Denote by $B_1 \leq B_2$, $B_1 < B_2$ and $B_1 \ll B_2$ if and only if $B_1 - B_2 \leq 0$, $B_1 - B_2 < 0$ and $B_1 - B_2 \ll 0$, respectively. We can note reverse relation similar to above notations.

Now we give three definitions.

Definition 1 A function $g(n, u, v) : \mathbf{N}^+ \times \mathbf{R}^k \times \mathbf{R}^\ell \to \mathbf{R}^k$ is said to be

(i) quasi-nondecreasing on u if for any $j \in \{1, 2, \dots, k\}$, $g_j(n, u, v)$ is nondecreasing on u_j ;

(ii) quasi-increasing on u if for any $j \in \{1, 2, \dots, k\}$, $g_j(n, u, v)$ is increasing on u_j .

Definition 2 Assume that $f(n, 0, \cdot) \equiv 0$ for all $n \in \mathbb{N}$ and p > 0. The zero solution of system (1.1) is

(i) *p*-moment stable if for any $\varepsilon > 0$, there exists a $\delta = \delta(n_0) > 0$ such that

$$E|x_n(\omega)|^p < \varepsilon$$
 for all $n \ge n_0$ and $E|x_0(\omega)|^p < \delta$;

(ii) uniformly p-moment stable if the δ in (i) is independent of n_0 ;

(iii) asymptotically p-moment stable if it is p-moment stable and there exists a $\delta_0 > 0$ and $N = N(n_0, \varepsilon) \in \mathbf{N}$ such that

$$E|x_n(\omega)|^p < \varepsilon$$
 for all $n \ge n_0 + N$ and $E|x_0(\omega)|^p < \delta_0$;

(iv) uniformly asymptotically p-moment stable if it is uniformly p-moment stable and the N in (iii) is independent of n_0 .

Definition 3 Let p > 0. System (1.1) is called

(ii) uniform p-moment boundedness if the B_2 in (i) is independent of n_0 ;

(iii) ultimate p-moment boundedness if there exists a B > 0 satisfying that, for any $B_3 > 0$ and $n_0 \in \mathbf{N}^+$, there exists a $N = N(n_0, B_3) > 0$ such that $E|x_n(\omega)|^p < B$ for all $n \ge n_0 + N$ and $|x_{n_0}|^p < B_3$;

(iv) uniformly ultimate p-moment boundedness if N in (iii) is independent of n_0 .

2 Main results

To establish main results, we introduce a comparison equation

$$y_{n+1}(\omega) = g(n, y_n(\omega), \xi_n(\omega)), \qquad y_{n_0}(\omega) = y_0(\omega), \qquad (2.1)$$

where $\xi_n : \Omega \to \mathbf{R}^{\ell}$ is an ℓ -dimensional random sequence, $g : \mathbf{N}^+ \times \mathbf{R}^k \times \mathbf{R}^{\ell} \to \mathbf{R}^k$, $\mathbf{N}^+ = \{n_0, n_0 + 1, n_0 + 2, \cdots\}$, and g is continuous on the second variable.

Theorem 1 Let $\varphi(\cdot) : \mathbf{R}^m \to \mathbf{R}^k$, $x_n(\omega)$ and $y_n(\omega)$ respectively satisfy stochastic difference equations (1.1) and (2.1), we have the results that

(i) if $g(n, \cdot, \cdot)$ is quasi-nondecreasing on the second variable and

$$\varphi(f(n, u, v)) \leqslant g(n, \varphi(u), v)$$
 for all $n \in \mathbf{N}^+, u \in \mathbf{R}^m, v \in \mathbf{R}^k$,

then $\varphi(x_0(\omega)) \leq y_0(\omega)$ a.s. implies $\varphi(x_n(\omega)) \leq y_n(\omega)$ a.s. for all $n \geq n_0$;

(ii) if $g(n, \cdot, \cdot)$ is quasi-nondecreasing on the second variable and

$$\varphi(f(n, u, v)) < g(n, \varphi(u), v)$$
 for all $n \in \mathbf{N}^+, u \in \mathbf{R}^m, v \in \mathbf{R}^k$,

then $\varphi(x_0(\omega)) < y_0(\omega)$ a.s. implies $\varphi(x_n(\omega)) < y_n(\omega)$ a.s. for all $n \ge n_0$;

(iii) if $g(n, \cdot, \cdot)$ is quasi-increasing on the second variable and

$$\varphi(f(n, u, v)) \leqslant g(n, \varphi(u), v)$$
 for all $n \in \mathbf{N}^+, u \in \mathbf{R}^m, v \in \mathbf{R}^k$,

then $\varphi(x_0(\omega)) \ll y_0(\omega)$ a.s. implies $\varphi(x_n(\omega)) \ll y_n(\omega)$ a.s. for all $n \ge n_0$.

Proof Suppose conclusion (i) is not true. Considering $\varphi(x_0(\omega)) \leq y_0(\omega)$ for all $\omega \in \Omega \setminus N$, where N is the union set of all sets of zero-measure in Ω , there exists at least a $\tilde{n} \in \mathbf{N}^+$, a $j \in \{1, 2, \dots, k\}$ and $\Omega_j \subset \Omega$ such that

(a)
$$P(\Omega_j) > 0;$$
 (b) $\varphi_j(x_{\tilde{n}+1}(\omega)) > y_{\tilde{n}+1}^j(\omega), \ \omega \in \Omega_j;$
(c) $\varphi(x_n(\omega)) \leq y_n(\omega)$ for all $n_0 \leq n \leq \tilde{n}, \ \omega \in \Omega_j.$

From (c), we have

$$\varphi_i(x_{\tilde{n}}(\omega)) \leqslant y_{\tilde{n}}^i(\omega) \quad \text{for all } i = 1, 2, \cdots, k.$$

Let vectors $w_i = (w_i^1, w_i^2, \cdots, w_i^k)^{\mathrm{T}}$ with each element as

$$\boldsymbol{w}_{i}^{s} = \begin{cases} y_{\tilde{n}}^{s}(\omega), & 1 \leq s \leq i \\ \varphi_{\tilde{n}}^{s}(x_{\tilde{n}}(\omega)), & i+1 \leq s \leq k \end{cases}, \ i = 1, \cdots, k,$$

$$\varphi(x_{\tilde{n}}(\omega)) \leqslant \boldsymbol{w}_1 \leqslant \boldsymbol{w}_2 \leqslant \cdots \leqslant \boldsymbol{w}_k = y_{\tilde{n}}(\omega).$$

By the definition of quasi-nondecreasing and mathematical induction, we have

$$g(\tilde{n},\varphi(x_{\tilde{n}}(\omega)),\xi_{\tilde{n}}(\omega)) \leqslant g(\tilde{n},w_1,\xi_{\tilde{n}}(\omega)) \leqslant \cdots \leqslant g(\tilde{n},y_{\tilde{n}}(\omega),\xi_{\tilde{n}}(\omega)),$$

i.e.

$$g(\tilde{n},\varphi(x_{\tilde{n}}(\omega)),\xi_{\tilde{n}}(\omega)) \leqslant g(\tilde{n},y_{\tilde{n}}(\omega),\xi_{\tilde{n}}(\omega)).$$
(2.2)

Because of the conditions (i) of Theorem 1 and (2.2), then we have

$$\begin{aligned} \varphi_j(x_{n_1}(\omega)) &= \varphi_j(f(n_1 - 1, x_{n_1 - 1}(\omega), \xi_{n_1 - 1}(\omega))) \\ &\leqslant g_j(n_1 - 1, \varphi(x_{n_1 - 1}(\omega)), \xi_{n_1 - 1}(\omega)) \\ &\leqslant g_j(n_1 - 1, y_{n_1 - 1}(\omega), \xi_{n_1 - 1}(\omega)) \\ &\leqslant y_{n_1}^j(\omega) \quad \text{for all } \omega \in \Omega_j \setminus N, \quad n_1 = \tilde{n} + 1, \end{aligned}$$

which is a contradiction with (b), so conclusion (i) is true.

If conclusion (iii) is not true, considering $\varphi(x_0(\omega)) \ll y_0(\omega)$ for all $\omega \in \Omega \setminus N$, where N is the union set of all sets of zero-measure in Ω , there at least exists a $\tilde{n} \in \mathbb{N}^+$, a $j \in \{1, 2, \dots, k\}$ and $\Omega_j \subset \Omega$ such that

(a) $P(\Omega_j) > 0;$ (b) $\varphi_j(x_{\tilde{n}+1}(\omega)) \ge y_{\tilde{n}+1}^j(\omega), \ \omega \in \Omega_j;$ (c) $\varphi(x_n(\omega)) \ll y_n(\omega)$ for all $n_0 \le n \le \tilde{n}, \ \omega \in \Omega_j.$

From (c), we have

$$\varphi_i(x_{\tilde{n}}(\omega)) < y_{\tilde{n}}^i(\omega) \quad \text{for all } i = 1, 2, \cdots, k.$$

Let vectors $w_i = (w_i^1, w_i^2, \cdots, w_i^k)^T$ with each element as

$$\boldsymbol{w}_{i}^{s} = \begin{cases} y_{\tilde{n}}^{s}(\omega), & 1 \leqslant s \leqslant i \\ \varphi_{\tilde{n}}^{s}(x_{\tilde{n}}(\omega)), & i+1 \leqslant s \leqslant k \end{cases}, \ i = 1, \cdots, k,$$

then

$$\varphi(x_{\tilde{n}}(\omega)) < \boldsymbol{w}_1 < \boldsymbol{w}_2 < \cdots < \boldsymbol{w}_k = y_{\tilde{n}}(\omega)$$

By the definition of quasi-increasing and mathematical induction, we have

$$g(\tilde{n},\varphi(x_{\tilde{n}}(\omega),\xi_{\tilde{n}}(\omega)) \ll g(\tilde{n},w_1,\xi_{\tilde{n}}(\omega)) \ll \cdots \ll g(\tilde{n},y_{\tilde{n}}(\omega),\xi_{\tilde{n}}(\omega)),$$

i.e.

$$g(\tilde{n},\varphi(x_{\tilde{n}}(\omega),\xi_{\tilde{n}}(\omega)) \ll g(\tilde{n},y_{\tilde{n}}(\omega),\xi_{\tilde{n}}(\omega)).$$
(2.3)

Because of the conditions (i) of Theorem 1 and (2.3), then we have

$$\begin{aligned} \varphi_j(x_{n_1}(\omega)) &= \varphi_j(f(n_1 - 1, x_{n_1 - 1}(\omega), \xi_{n_1 - 1}(\omega))) \\ &\leqslant g_j(n_1 - 1, \varphi(x_{n_1 - 1}(\omega)), \xi_{n_1 - 1}(\omega)) \\ &< g_j(n_1 - 1, y_{n_1 - 1}(\omega), \xi_{n_1 - 1}(\omega)) \\ &\leqslant y_{n_1}^j(\omega), \quad \text{for all } \omega \in \Omega_j \setminus N, \quad n_1 = \tilde{n} + 1, \end{aligned}$$

which is a contradiction with (b), so conclusion (iii) is true.

The proof of conclusion (ii) is easy to obtain in a way similar to those of (i) and (iii), so we omit it. The proof is completed.

Theorem 2 Assume that $x_n(\omega)$ and $y_n(\omega)$ are random processes respectively determined by stochastic difference equations (1.1) and (2.1), $f, g: \mathbf{N}^+ \times \mathbf{R}^m \times \mathbf{R}^\ell \to \mathbf{R}^m$, then we have

(i) if f(n, u, v) (or g(n, u, v)) is quasi-nondecreasing on u and

$$f(n, u, v) \leqslant g(n, u, v)$$
 for all $n \in \mathbf{N}^+, u \in \mathbf{R}^m, v \in \mathbf{R}^\ell$,

then $x_0(\omega) \leq y_0(\omega)$ a.s. implies $x_n(\omega) \leq y_n(\omega)$ a.s. for all $n \geq n_0$;

(ii) if f(n, u, v) (or g(n, u, v)) is quasi-nondecreasing on u and

$$f(n, u, v) < g(n, u, v)$$
 for all $n \in \mathbf{N}^+, u \in \mathbf{R}^m, v \in \mathbf{R}^\ell$,

then $x_0(\omega) < y_0(\omega)$ a.s. implies $x_n(\omega) < y_n(\omega)$ a.s. for all $n \ge n_0$;

(iii) if f(n, u, v) (or g(n, u, v)) is quasi-increasing on u and

$$f(n, u, v) \ll g(n, u, v)$$
 for all $n \in \mathbf{N}^+, u \in \mathbf{R}^m, v \in \mathbf{R}^\ell$,

then $x_0(\omega) \ll y_0(\omega)$ a.s. implies $x_n(\omega) \ll y_n(\omega)$ a.s. for all $n \ge n_0$.

The proof is similar to that of Theorem 1, so we omit it.

3 Applications

In this section, we gave some examples to show application of obtained results in researching stability and boundedness of stochastic difference equations.

Consider stochastic difference equations

$$y_{n+1}(\omega) = g(n, y_n(\omega), \xi_n(\omega)), \tag{3.1}$$

where $g(n, u, v) : \mathbf{N}^+ \times [0, +\infty) \times \mathbf{R}^\ell \to \mathbf{R}$ and ξ_n be a random sequence from Ω to \mathbf{R}^ℓ .

Theorem 3 Let p > 0 and g(n, u, v) be nondecreasing on $u, g(n, 0, \cdot) \equiv 0$ for all $n \in \mathbb{N}$, and satisfy

$$|f(n, u, \xi_n(\omega))| \leq g(n, |u|, \xi_n(\omega))$$
 a.s.,

where $\{\xi_n\}_{n=0,1,2,\dots}$ is a stochastic sequence and $|\cdot|$ is some norm in \mathbb{R}^m , then

(i) (uniform) p-moment stability of system (3.1) implies (uniform) p-moment stability of system (1.1).

(ii) (uniformly) asymptotic *p*-moment stability of system (3.1) implies (uniformly) asymptotic *p*-moment stability of system (1.1).

Proof (i) Let $\varphi(\cdot) = |\cdot|$ and $y_0(\omega) = |x_0(\omega)|$, by Theorem 1, we have

$$|x_n(\omega)| \leqslant y_n(\omega) \quad \text{for all } n \ge n_0. \tag{3.2}$$

Because system (3.1) is p-moment stable, for any $\varepsilon > 0$, there exists a $\delta = \delta(n_0) > 0$ such that

 $E|y_n(\omega)|^p < \varepsilon$ for all $n \ge n_0$ and $E|y_0(\omega)|^p < \delta$.

From (3.2), we know

$$|x_n(\omega)|^p \leq |y_n(\omega)|^p$$
 for all $n \geq n_0$,

and $E|x_0(\omega)|^p = E|y_0(\omega)|^p$. Thus $E|x_n(\omega)|^p \leq E|y_n(\omega)|^p$ for all $n \ge n_0$, and that is

$$E|x_n(\omega)|^p < \varepsilon$$
 for all $n \ge n_0$ and $E|x_0(\omega)|^p < \delta$.

Thus, system (1.1) is *p*-moment stable.

If the system (3.1) is uniformly *p*-moment stable, then δ is independent of n_0 , so the system (1.1) is uniformly *p*-moment stable, too.

(ii) If system (3.1) is asymptotically *p*-moment stable, from (i), we know system (1.1) is *p*-moment stable.

Furthermore, because system (3.1) is asymptotically *p*-moment stable, there exists a $\delta_0 > 0$ satisfying that for any $\varepsilon > 0$ there exists an $N \in \mathbf{N}$ such that

$$E|y_n(\omega)|^p < \varepsilon$$
 for all $n \ge N$ and $E|y_0(\omega)|^p < \delta_0$.

From (3.2), we know $|x_n(\omega)|^p \leq |y_n(\omega)|^p$ for all $n \geq n_0$. Thus $E|x_n(\omega)|^p \leq E|y_n(\omega)|^p$ for all $n \geq n_0$, and $E|x_0(\omega)|^p = E|y_0(\omega)|^p$. That is

 $E|x_n(\omega)|^p < \varepsilon$ for all $n \ge N$ and $E|x_0(\omega)|^p < \delta_0$.

Thus, system (1.1) is asymptotically *p*-moment stable.

If the system (3.1) is uniformly asymptotically *p*-moment stable, then N is independent of n_0 , so the system (1.1) is uniformly asymptotically *p*-moment stable, too. The proof is completed.

Theorem 4 Let p > 0 and g(n, u, v) be nondecreasing on u and satisfy

$$|f(n, u, z_n(\omega))| \leq g(n, |u|, z_n(\omega))$$
 a.s.,

where $\{z_n\}_{n=0,1,2,\dots}$ is a stochastic sequence and $|\cdot|$ is some norm in \mathbb{R}^m , then

(i) (uniform) p-moment boundedness of system (3.1) implies (uniform) p-moment boundedness of system (1.1);

(ii) (uniformly) ultimate p-moment boundedness of system (3.1) implies (uniformly) ultimate p-moment boundedness of system (1.1).

Proof Let $\varphi(\cdot) = |\cdot|$ and $y_0(\omega) = |x_0(\omega)|$, by Theorem 1, we have

$$|x_n(\omega)| \leqslant y_n(\omega) \quad \text{for all } n \ge n_0. \tag{3.3}$$

(i) Because system (3.1) is *p*-moment bounded, we have that for any $B_1 > 0$ and $n_0 \in N^+$, there exists a $B_2 = B_2(B_1, n_0) > 0$ satisfying that

$$E|y_n(\omega)|^p < B_2 \quad \text{for all } n \ge n_0.$$

From (3.3), we know

$$E|x_n(\omega)|^p \leqslant B_2$$
 for all $n \ge n_0$.

Thus, system (1.1) is *p*-moment bounded.

If the system (3.1) is uniformly *p*-moment bounded, then B_2 is independent of n_0 , so the system (1.1) is uniformly *p*-moment bounded, too.

(ii) Because system (3.1) is ultimately *p*-moment bounded, there exists a B > 0 satisfying that, for any $B_3 > 0$ and $n_0 \in \mathbf{R}^+$, there exists a $N = N(n_0, B_3) > 0$ such that

$$E|y_n(\omega)|^p < B$$
 for all $n \ge n_0 + N$,

when $|x_{n_0}|^p < B_3$. From (3.2), we know

$$E|x_n(\omega)|^p \leqslant B$$
 for all $n \ge n_0 + N$.

Thus, system (1.1) is ultimate *p*-moment bounded.

If the system (3.1) is uniformly ultimately *p*-moment bounded, then N is independent of n_0 , so the system (1.1) is uniformly ultimately *p*-moment bounded, too.

In the following, we presented an example to show the application of Theorem 1.

 $\label{eq:example 1} \textbf{Example 1} \ \textbf{Consider the following stochastic difference equations}$

$$\begin{aligned}
x_{n+1}^{(1)} &= f(n, x_n, \xi_n) = \frac{n x_n^{(1)}}{2n + 1 + \xi_n^2} + \frac{n x_n^{(2)}}{2n + 2 + \xi_n^2}, \\
x_{n+1}^{(2)} &= f(n, x_n, \xi_n) = \frac{n x_n^{(2)}}{2n + 2 + \xi_n^2} + \frac{n x_n^{(3)}}{2n + 3 + \xi_n^2}, \\
\vdots \\
x_{n+1}^{(m-1)} &= f(n, x_n, \xi_n) = \frac{n x_n^{(m-1)}}{2n + m - 1 + \xi_n^2} + \frac{n x_n^{(m)}}{2n + m + \xi_n^2}, \\
x_{n+1}^{(m)} &= f(n, x_n, \xi_n) = \frac{n x_n^{(m)}}{2n + m + \xi_n^2} + \frac{n x_n^{(1)}}{2n + m + \xi_n^2}, \\
\end{aligned}$$
(3.4)

and

$$y_{n+1} = g(n, y_n, \xi_n) = \left[\frac{2n}{2n + \xi_n^2}\right]^2 \cdot y_n,$$
(3.5)

where $\xi_n : \Omega \to \mathbf{R}$ is a random sequence.

Put $\varphi(u) = [u^{(1)}]^2 + [u^{(2)}]^2 + \dots + [u^{(m)}]^2$ in Theorem 1, we obtain that

$$\begin{split} \varphi(f(n,u,v)) &= \left[\frac{nu^{(1)}}{2n+1+v^2} + \frac{nu^{(2)}}{2n+2+v^2}\right]^2 + \left[\frac{nu^{(2)}}{2n+2+v^2} + \frac{nu^{(3)}}{2n+3+v^2}\right]^2 + \cdots \\ &+ \left[\frac{nu^{(m-1)}}{2n+m-1+v^2} + \frac{nu^{(m)}}{2n+m+v^2}\right]^2 + \left[\frac{nu^{(m)}}{2n+m+v^2} + \frac{nu^{(1)}}{2n+1+v^2}\right]^2 \qquad (3.6) \\ &\leqslant \left[\frac{2n}{2n+v^2}\right]^2 \cdot \sum_{s=1}^m [u^{(s)}]^2 \\ &= g(n,\varphi(u),v). \end{split}$$

Further, from (3.5) we know that

$$y_{n+1} = \prod_{s=1}^{n+1} \left[\frac{2s}{2s + \xi_s^2} \right]^2 \cdot y_0,$$

then

$$E[y_{n+1}^2] = E\left(\prod_{s=1}^{n+1} \left[\frac{2s}{2s+\xi_s^2}\right]^2 \cdot y_0\right)^2 \leqslant E[y_0^2].$$
(3.7)

It follows from (3.7) that system (3.5) is uniformly stable in mean square. Thus, System (3.4) is uniformly stable in mean square by (3.6), Theorem 1 and Definition 2.

[References]

- [1] ØKSENDAL B. Stochastic Differential Equations [M]. 4th ed. New York: Springer-Verlag, 1995.
- [2] KOLMANOVSKI V B, SHAIKHET L E. General method of Lyapunov functional construction for stability investigations of stochastic difference equations [J]. Dynamical Systems and Applications, 1995(4): 397-439.
- [3] SHAIKHET L E. Necessary and sufficient conditions of asymptotic mean square stability for stochastic difference equations [J]. Appl Math Lett, 1997, 10(3): 111-115.
- [4] SHAIKHET L E. Some problems of stability for stochastic difference equations[A]// 15th World Congress on Scientific Computation, Modelling, and Applied Mathematics. Berlin: Computational Mathematics, 1997(1): 1257-1262.
- [5] SHAIKHET G, SHAIKHET L E. Stability of stochastic difference equations with varying delay [G]// BAJICV. Advances in Systems, Signals, Control and Computers. Durban, South Africa: LAAMSAD and SA branch of the Academy of Nonlinear Sciences, 1998: 101-104.
- [6] PATERNOSTER B, SHAIKHET L E. About stability of nonlinear stochastic difference equations [J]. Applied Mathematics Letters, 2000, 13(5): 27-32.
- [7] KUCHKINA N, SHAIKHET L E. Optimal control of Volterra type stochastic difference equations [J]. Computers Math Applic, 1998, 36(10-12): 251-259.
- [8] RODKINA A. On asymptotic behavior of solutions of stochastic difference equations [J]. Nonlinear Analysis, 2001, 47: 4719-4730.
- [9] FERRANTE M, VIDONI P. Finite dimensional filters for nonlinear stochastic difference equations with multiplicative noises [J]. Stochastic Processes and Their Applications, 1998, 77: 69-81.

(上接第58页)

[References]

- [1] CHANG H J. Über Wittsche Lie-Ringe [J]. Abh Math Sem Univ Hamburg, 1941, 14: 151-184.
- FELDVOSS J, NAKANO D K. Representation theory of the Witt algebra [J]. J Algebra, 1998, 203: 447-469.
 SHU B. Generalized restricted Lie algebras and the representations of Zassenhaus algebra [J]. J Algebra, 1998, 204: 549-572.
- [4] SHU B. Representations of Cartan type Lie algebras in characteristic p [J]. J Algebra, 2002, 256: 7-27.
- [5] SHU B. The generalized restricted representations of graded Lie algebras of Cartan type [J]. J Algebra, 1997, 194: 157-177.
- [6] SHU B. Quasi p-mappings and representations of modular Lie algebras [C]// WANG J P. Proc Inter Conf on Representation Theory, July 1998, Shanghai, China, Beijing: CHEP and Springer, 2000: 375-401.
- [7] SHEN G Y. Graded modules of graded Lie algebras of Cartan type (I) [J]. Sci Sin, 1986, 29: 570-581.
- [8] SHEN G Y. Graded modules of graded Lie algebras of Cartan type (II) [J]. Sci Sin, 1986, 29: 1009-1019.
- [9] SHEN G Y. Graded modules of graded Lie algebras of Cartan type (III) [J]. Chinese Ann Math B, 1988(9): 404-417.
- [10] STRADE H, Farnsteiner R. Modular Lie Algebras and Their Representations: Monographs and Textbooks in Pure and Applied Mathematics 116 [M]. New York: Dekker, 1988.
- [11] NAKANO D K. Projective modules over Lie algebras of Cartan type [J]. Mem Amer Math Soc, 1992, 470: 1-83.