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Abstract: This paper studied a kind of nonlinear stochastic difference equations, whose

randomness is driven by a stochastic series. Two comparison theorems were obtained. At

last, p-moment stability and p-moment boundedness of solutions to stochastic difference

equations were presented as applications of the comparison theorems.
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0 Introduction

Stochastic differential equations play an important role in areas such as option pricing,
forecast of the growth of population, etc[1]. When using stochastic differential equations to
solve problems, we generally change them into stochastic difference equations in discrete forms.
Actually, there are some results on stochastic difference equations[2−9], most of which are on
the stability of the equations[2−6]. This paper first gave two comparison theorems of stochastic
difference equations. Then p-moment stability and p-moment boundedness of solutions to
stochastic difference equations were presented as applications of the comparison theorems.
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The paper was organized as follows: Notations and definitions were given in Section 1,
then two comparison theorems of stochastic difference equations were obtained in Section 2,
And some applications were presented in Section 3.

1 Notations and definitions

Let (Ω,F ,P) be a probability space with filtration {Fn}n>0. A general form of stochastic
difference equations follows as

xn+1(ω) = f(n, xn(ω), ξn(ω)), xn0(ω) = x0(ω), (1.1)

where ξn : N+ × Ω → R` is an `-dimensional random sequence, f : N+ × Rm × R` → Rm,
N+ = {n0, n0 + 1, n0 + 2, · · · }, and f is continuous on the second variable.

It is obvious that there exists a unique random process satisfying systems (1.1) if
f(n, ·, ξn(ω)) is reasonable for all n ∈ N+. Furthermore, the random process determined by
system (1.1) is a Markov chain if ξn is an `-dimensional Markov chain independent of x0(ω) .

For the sake of simplification, we use the following notations.

Notation 1 Let B be a vector or matrix. Then

(i) By B 6 0 we mean each element of B is non-positive.

(ii) By B < 0 we mean B 6 0 and at least one element of B is negative.

(iii) By B ¿ 0 we mean all elements of B are negative.

Notation 2 Let B1 and B2 be two vectors or matrixes with same dimensions. Denote
by B1 6 B2, B1 < B2 and B1 ¿ B2 if and only if B1−B2 6 0, B1−B2 < 0 and B1−B2 ¿ 0,
respectively. We can note reverse relation similar to above notations.

Now we give three definitions.

Definition 1 A function g(n, u, v) : N+ × Rk × R` → Rk is said to be

(i) quasi-nondecreasing on u if for any j ∈ {1, 2, · · · , k}, gj(n, u, v) is nondecreasing on uj ;

(ii) quasi-increasing on u if for any j ∈ {1, 2, · · · , k}, gj(n, u, v) is increasing on uj .

Definition 2 Assume that f(n, 0, ·) ≡ 0 for all n ∈ N and p > 0. The zero solution of
system (1.1) is

(i) p-moment stable if for any ε > 0, there exists a δ = δ(n0) > 0 such that

E|xn(ω)|p < ε for all n > n0 and E|x0(ω)|p < δ;

(ii) uniformly p-moment stable if the δ in (i) is independent of n0;

(iii) asymptotically p-moment stable if it is p-moment stable and there exists a δ0 > 0 and
N = N(n0, ε) ∈ N such that

E|xn(ω)|p < ε for all n > n0 + N and E|x0(ω)|p < δ0;

(iv) uniformly asymptotically p-moment stable if it is uniformly p-moment stable and the
N in (iii) is independent of n0.

Definition 3 Let p > 0. System (1.1) is called
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(i) p-moment boundedness if for any B1 > 0 and n0 ∈ N+, there exists a B2 =
B2(B1, n0) > 0 satisfying that E|xn(ω)|p < B2 for all n > n0 and |xn0 |p < B1, where and
in the sequel, (n0, xn0) is the initial value of system (1.1);

(ii) uniform p-moment boundedness if the B2 in (i) is independent of n0;
(iii) ultimate p-moment boundedness if there exists a B > 0 satisfying that, for any B3 > 0

and n0 ∈ N+, there exists a N = N(n0, B3) > 0 such that E|xn(ω)|p < B for all n > n0 + N

and |xn0 |p < B3;
(iv) uniformly ultimate p-moment boundedness if N in (iii) is independent of n0.

2 Main results

To establish main results, we introduce a comparison equation

yn+1(ω) = g(n, yn(ω), ξn(ω)), yn0(ω) = y0(ω), (2.1)

where ξn : Ω → R` is an `-dimensional random sequence, g : N+ × Rk × R` → Rk, N+ =
{n0, n0 + 1, n0 + 2, · · · }, and g is continuous on the second variable.

Theorem 1 Let ϕ(·) : Rm → Rk, xn(ω) and yn(ω) respectively satisfy stochastic
difference equations (1.1) and (2.1), we have the results that

(i) if g(n, ·, ·) is quasi-nondecreasing on the second variable and

ϕ(f(n, u, v)) 6 g(n, ϕ(u), v) for all n ∈ N+, u ∈ Rm, v ∈ Rk,

then ϕ(x0(ω)) 6 y0(ω) a.s. implies ϕ(xn(ω)) 6 yn(ω) a.s. for all n > n0;
(ii) if g(n, ·, ·) is quasi-nondecreasing on the second variable and

ϕ(f(n, u, v)) < g(n, ϕ(u), v) for all n ∈ N+, u ∈ Rm, v ∈ Rk,

then ϕ(x0(ω)) < y0(ω) a.s. implies ϕ(xn(ω)) < yn(ω) a.s. for all n > n0;
(iii) if g(n, ·, ·) is quasi-increasing on the second variable and

ϕ(f(n, u, v)) 6 g(n, ϕ(u), v) for all n ∈ N+, u ∈ Rm, v ∈ Rk,

then ϕ(x0(ω)) ¿ y0(ω) a.s. implies ϕ(xn(ω)) ¿ yn(ω) a.s. for all n > n0.
Proof Suppose conclusion (i) is not true. Considering ϕ(x0(ω)) 6 y0(ω) for all ω ∈

Ω \N , where N is the union set of all sets of zero-measure in Ω, there exists at least a ñ ∈ N+,
a j ∈ {1, 2, · · · , k} and Ωj ⊂ Ω such that

(a) P (Ωj) > 0; (b) ϕj(xñ+1(ω)) > yj
ñ+1(ω), ω ∈ Ωj ;

(c) ϕ(xn(ω)) 6 yn(ω) for all n0 6 n 6 ñ, ω ∈ Ωj .
From (c), we have

ϕi(xñ(ω)) 6 yi
ñ(ω) for all i = 1, 2, · · · , k.

Let vectors wi = (w1
i , w2

i , · · · , wk
i )T with each element as

ws
i =

{
ys

ñ(ω), 1 6 s 6 i

ϕs
ñ(xñ(ω)), i + 1 6 s 6 k

, i = 1, · · · , k,
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then

ϕ(xñ(ω)) 6 w1 6 w2 6 · · · 6 wk = yñ(ω).

By the definition of quasi-nondecreasing and mathematical induction, we have

g(ñ, ϕ(xñ(ω)), ξñ(ω)) 6 g(ñ, w1, ξñ(ω)) 6 · · · 6 g(ñ, yñ(ω), ξñ(ω)),

i.e.

g(ñ, ϕ(xñ(ω)), ξñ(ω)) 6 g(ñ, yñ(ω), ξñ(ω)). (2.2)

Because of the conditions (i) of Theorem 1 and (2.2), then we have

ϕj(xn1(ω)) = ϕj(f(n1 − 1, xn1−1(ω), ξn1−1(ω)))
6 gj(n1 − 1, ϕ(xn1−1(ω)), ξn1−1(ω))
6 gj(n1 − 1, yn1−1(ω), ξn1−1(ω))
6 yj

n1
(ω) for all ω ∈ Ωj \ N, n1 = ñ + 1,

which is a contradiction with (b), so conclusion (i) is true.

If conclusion (iii) is not true, considering ϕ(x0(ω)) ¿ y0(ω) for all ω ∈ Ω \N , where N is
the union set of all sets of zero-measure in Ω, there at least exists a ñ ∈ N+, a j ∈ {1, 2, · · · , k}
and Ωj ⊂ Ω such that

(a) P (Ωj) > 0; (b) ϕj(xñ+1(ω)) > yj
ñ+1(ω), ω ∈ Ωj ;

(c) ϕ(xn(ω)) ¿ yn(ω) for all n0 6 n 6 ñ, ω ∈ Ωj .
From (c), we have

ϕi(xñ(ω)) < yi
ñ(ω) for all i = 1, 2, · · · , k.

Let vectors wi = (w1
i , w2

i , · · · , wk
i )T with each element as

ws
i =

{
ys

ñ(ω), 1 6 s 6 i

ϕs
ñ(xñ(ω)), i + 1 6 s 6 k

, i = 1, · · · , k,

then

ϕ(xñ(ω)) < w1 < w2 < · · · < wk = yñ(ω).

By the definition of quasi-increasing and mathematical induction, we have

g(ñ, ϕ(xñ(ω), ξñ(ω)) ¿ g(ñ, w1, ξñ(ω)) ¿ · · · ¿ g(ñ, yñ(ω), ξñ(ω)),

i.e.

g(ñ, ϕ(xñ(ω), ξñ(ω)) ¿ g(ñ, yñ(ω), ξñ(ω)). (2.3)

Because of the conditions (i) of Theorem 1 and (2.3), then we have

ϕj(xn1(ω)) = ϕj(f(n1 − 1, xn1−1(ω), ξn1−1(ω)))
6 gj(n1 − 1, ϕ(xn1−1(ω)), ξn1−1(ω))
< gj(n1 − 1, yn1−1(ω), ξn1−1(ω))
6 yj

n1
(ω), for all ω ∈ Ωj \ N, n1 = ñ + 1,
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which is a contradiction with (b), so conclusion (iii) is true.
The proof of conclusion (ii) is easy to obtain in a way similar to those of (i) and (iii), so

we omit it. The proof is completed.
Theorem 2 Assume that xn(ω)and yn(ω) are random processes respectively determined

by stochastic difference equations (1.1) and (2.1), f, g : N+ × Rm × R` → Rm, then we have
(i) if f(n, u, v) (or g(n, u, v) ) is quasi-nondecreasing on u and

f(n, u, v) 6 g(n, u, v) for all n ∈ N+, u ∈ Rm, v ∈ R`,

then x0(ω) 6 y0(ω) a.s. implies xn(ω) 6 yn(ω) a.s. for all n > n0;
(ii) if f(n, u, v) (or g(n, u, v) ) is quasi-nondecreasing on u and

f(n, u, v) < g(n, u, v) for all n ∈ N+, u ∈ Rm, v ∈ R`,

then x0(ω) < y0(ω) a.s. implies xn(ω) < yn(ω) a.s. for all n > n0;
(iii) if f(n, u, v) (or g(n, u, v) ) is quasi-increasing on u and

f(n, u, v) ¿ g(n, u, v) for all n ∈ N+, u ∈ Rm, v ∈ R`,

then x0(ω) ¿ y0(ω) a.s. implies xn(ω) ¿ yn(ω) a.s. for all n > n0.
The proof is similar to that of Theorem 1, so we omit it.

3 Applications

In this section, we gave some examples to show application of obtained results in research-
ing stability and boundedness of stochastic difference equations.

Consider stochastic difference equations

yn+1(ω) = g(n, yn(ω), ξn(ω)), (3.1)

where g(n, u, v) : N+ × [0,+∞) × R` → R and ξn be a random sequence from Ω to R`.
Theorem 3 Let p > 0 and g(n, u, v) be nondecreasing on u, g(n, 0, ·) ≡ 0 for all n ∈ N,

and satisfy
|f(n, u, ξn(ω))| 6 g(n, |u|, ξn(ω)) a.s.,

where {ξn}n=0,1,2,··· is a stochastic sequence and | · | is some norm in Rm, then
(i) (uniform) p-moment stability of system (3.1) implies (uniform) p-moment stability of

system (1.1).
(ii) (uniformly) asymptotic p-moment stability of system (3.1) implies (uniformly) asymp-

totic p-moment stability of system (1.1).
Proof (i) Let ϕ(·) = | · | and y0(ω) = |x0(ω)|, by Theorem 1, we have

|xn(ω)| 6 yn(ω) for all n > n0. (3.2)

Because system (3.1) is p-moment stable, for any ε > 0, there exists a δ = δ(n0) > 0 such that

E|yn(ω)|p < ε for all n > n0 and E|y0(ω)|p < δ.
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From (3.2), we know
|xn(ω)|p 6 |yn(ω)|p for all n > n0,

and E|x0(ω)|p = E|y0(ω)|p. Thus E|xn(ω)|p 6 E|yn(ω)|p for all n > n0, and that is

E|xn(ω)|p < ε for all n > n0 and E|x0(ω)|p < δ.

Thus, system (1.1) is p-moment stable.
If the system (3.1) is uniformly p-moment stable, then δ is independent of n0, so the

system (1.1) is uniformly p-moment stable, too.
(ii) If system (3.1) is asymptotically p-moment stable, from (i), we know system (1.1) is

p-moment stable.
Furthermore, because system (3.1) is asymptotically p-moment stable, there exists a δ0 > 0

satisfying that for any ε > 0 there exists an N ∈ N such that

E|yn(ω)|p < ε for all n > N and E|y0(ω)|p < δ0.

From (3.2), we know |xn(ω)|p 6 |yn(ω)|p for all n > n0. Thus E|xn(ω)|p 6
E|yn(ω)|p for all n > n0, and E|x0(ω)|p = E|y0(ω)|p. That is

E|xn(ω)|p < ε for all n > N and E|x0(ω)|p < δ0.

Thus, system (1.1) is asymptotically p-moment stable.
If the system (3.1) is uniformly asymptotically p-moment stable, then N is independent

of n0, so the system (1.1) is uniformly asymptotically p-moment stable, too. The proof is
completed.

Theorem 4 Let p > 0 and g(n, u, v) be nondecreasing on u and satisfy

|f(n, u, zn(ω))| 6 g(n, |u|, zn(ω)) a.s.,

where {zn}n=0,1,2,··· is a stochastic sequence and | · | is some norm in Rm, then
(i) (uniform) p-moment boundedness of system (3.1) implies (uniform) p-moment bound-

edness of system (1.1);
(ii) (uniformly) ultimate p-moment boundedness of system (3.1) implies (uniformly) ul-

timate p-moment boundedness of system (1.1).
Proof Let ϕ(·) = | · | and y0(ω) = |x0(ω)|, by Theorem 1, we have

|xn(ω)| 6 yn(ω) for all n > n0. (3.3)

(i) Because system (3.1) is p-moment bounded, we have that for any B1 > 0 and n0 ∈ N+,
there exists a B2 = B2( B1, n0) > 0 satisfying that

E|yn(ω)|p < B2 for all n > n0.

From (3.3), we know
E|xn(ω)|p 6 B2 for all n > n0.
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Thus, system (1.1) is p-moment bounded.
If the system (3.1) is uniformly p-moment bounded, then B2 is independent of n0, so the

system (1.1) is uniformly p-moment bounded, too.
(ii) Because system (3.1) is ultimately p-moment bounded, there exists a B > 0 satisfying

that, for any B3 > 0 and n0 ∈ R+, there exists a N = N(n0, B3) > 0 such that

E|yn(ω)|p < B for all n > n0 + N,

when |xn0 |p < B3. From (3.2), we know

E|xn(ω)|p 6 B for all n > n0 + N.

Thus, system (1.1) is ultimate p-moment bounded.
If the system (3.1) is uniformly ultimately p-moment bounded, then N is independent of

n0, so the system (1.1) is uniformly ultimately p-moment bounded, too.
In the following, we presented an example to show the application of Theorem 1.
Example 1 Consider the following stochastic difference equations

x
(1)
n+1 = f(n, xn, ξn) =

nx
(1)
n

2n + 1 + ξ2
n

+
nx

(2)
n

2n + 2 + ξ2
n

,

x
(2)
n+1 = f(n, xn, ξn) =

nx
(2)
n

2n + 2 + ξ2
n

+
nx

(3)
n

2n + 3 + ξ2
n

,

...

x
(m−1)
n+1 = f(n, xn, ξn) =

nx
(m−1)
n

2n + m − 1 + ξ2
n

+
nx

(m)
n

2n + m + ξ2
n

,

x
(m)
n+1 = f(n, xn, ξn) =

nx
(m)
n

2n + m + ξ2
n

+
nx

(1)
n

2n + 1 + ξ2
n

,

(3.4)

and

yn+1 = g(n, yn, ξn) =
[

2n

2n + ξ2
n

]2

· yn, (3.5)

where ξn : Ω → R is a random sequence.
Put ϕ(u) = [u(1)]2 + [u(2)]2 + · · · + [u(m)]2 in Theorem 1, we obtain that

ϕ(f(n, u, v))

=
[

nu(1)

2n + 1 + v2
+

nu(2)

2n + 2 + v2

]2

+
[

nu(2)

2n + 2 + v2
+

nu(3)

2n + 3 + v2

]2

+ · · ·

+
[

nu(m−1)

2n + m − 1 + v2
+

nu(m)

2n + m + v2

]2

+
[

nu(m)

2n + m + v2
+

nu(1)

2n + 1 + v2

]2

6
[

2n

2n + v2

]2

·
m∑

s=1
[u(s)]2

= g(n, ϕ(u), v).

(3.6)

Further, from (3.5) we know that

yn+1 =
n+1∏
s=1

[
2s

2s + ξ2
s

]2

· y0,



66 uÀ���ÆÆ�(g,�Æ�) 2008 c

then

E[y2
n+1] = E

(
n+1∏
s=1

[
2s

2s + ξ2
s

]2

· y0

)2

6 E[y2
0 ]. (3.7)

It follows from (3.7) that system (3.5) is uniformly stable in mean square. Thus, System (3.4)
is uniformly stable in mean square by (3.6), Theorem 1 and Definition 2.
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