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Abstract

In this note we generalize Davydov’s!! weak invariance principle for stationary processes to
a weighted partial sums of long memory infinite moving average processes. This note also contains
some bounds on the second moments of increments of some weighted partial sum processes of a
general long memory time series, not necessarily moving average type. These bounds are useful in
proving the tightness in uniform metric of these processes. As a consequence of continuous mapping
theorem, the probability bounds on certain functions of random variables can be established.
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§1. Introduction

Let X1, X9, -+ be independent identically distributed (i.i.d.) random variables with
a distribution F' which has mean 0 and variance 1, and S,, = X7 + Xo +---+ X,,. Also let

Sk, if t=keN;
S(t) ==
linear on [k, k + 1], if te(k,k+1), keN.

Then Donsker Theorem states that n /25 (nt) —10,1] B(t), for all t € [0,1], i.e., the
associated measure on C[0, 1] converge weakly to Brownian motion. Since the asymptotic
distribution of S(nt) is insensitive to the changes of the distribution F' of these variables
X, we call it an invariance principle. This result is a powerful tool for proving the limit
distribution of certain functions of random variables and plays a prominent role also in the
vast literature on non-parametric tests involved with approximating stochastic processes.
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Davydovm describes an invariance principle for stationary processes which include
long memory linear processes. In order to state it formally, let X; follow an infinite order

moving average process:

Xii= Y ajerj,  aj~cxlj| "I (j — £o0). (1.1)

JEL
Here €5, j € Z := {0,41,£2,-- -} are i.i.d. standard random variables, and cy,c_, 0 <

0 < 1 are some constants with ¢ + c% # 0. (Here and below, ~ indicates the ratio tends

to 1.) Note that (1.1) implies, see, e.g., Beran[?,

r(j) = Cov (X1, X1pj) ~etj ™%, j— o0,

EYQT ~ c%T*H, T — oo,
A= (A2 + ci)/ (u + u?)~1+9/2qy,
0
3= (2/(2-6)(1—8))c. (1.2)

Accordingly, for 0 < 6 < 1, the error process X; of (1.1) has nonsummable serial correla-
tions or long memory.

For 0 < § < 1, let By(s) be a fractional Brownian motion in s belonging to the real
line R, i.e., a continuous Gaussian process with mean zero and the covariance function
Cov (By(t), Bo(s)) = (1/2)(Jt|>~? + |s|>~¢ — |t — 5|>79), t,5 € R. Davydov!!l shows that the
long memory linear process X; of (1.1) satisfies the following invariance principle with co
as in (1.2),

1 [T
T2 t; Xt =0,1] c2By(s). (1.3)
Here, and in the sequel, =, stands for the weak convergence in the Skorohod space
Dla,b], —0o < a < b < 00, with respect to the uniform metric.

In this note we generalize Davydov’s weak invariance principle for stationary processes
to a weighted partial sums of long memory infinite moving average processes which is
described in Section 2. As a consequence of continuous mapping theorem, the probability
bounds for maximal inequalities can be established. These results are useful in change

point analysis. The detail proof of the main result is deferred to Section 3.

§2. Main Results

The following result extends the invariance principle (1.3) to some weighted partial

sums of long memory moving average processes. The special case » = 0 corresponds to
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Davydov’s weak invariance principle. Invariance principle also is very useful to obtain the

bounds on the maximal inequality in change point analysis.

Theorem 2.1 Assume X; follow an infinite order moving average process as in
(1.1). Then

1 [Ts] Co 9
SrT1-0/2 ;::1 Xt == 0,1 5730(5), 0<r<l- 3
1 [T's] Cs 0
T T1—0/2 t; Xt = [1,00] 539(5)7 1- 5 <r< 1, (2.1)

where constant ¢y is defined as in (1.2).

Remark 2.1  Note that ¢} > 0. This follows from
00 1
/ (u+ u?)~ 029y > (1/2) / (u — u?)~H+0/2qq,
0 0

In terms of beta-function,
B(0,(1-0)/2) > (1/2)B((1—0)/2,(1-0)/2).

In terms of gamma-function,

L)1 —o0)/2)
T+ (1—10)/2)

I?((1-0)/2)
2T (1 — )

Vv

or

oT(O)T(1 — 6) > T((1 — 6)/2)T((1 + 6)/2).

The Lh.s. is 27/ sin(76), and the r.h.s. is 7/ cos(78/2) (Korn and Kornl?l, (21.4-8)). This
gives
2 cos(mf/2) > sin(wh),
as sin(7d) = 2sin(mw0/2) cos(wd/2).
Remark 2.2  The process (1.1) is called causal if a; =0 for all j <0. A particular
case of causal linear processes (1.1) are ARFIMA, or autoregressive fractionally integrated

2], For more information on their

6

moving averages; see e.g. Brockwell and Davis! or Beran!
applications in economics and other sciences, see Robinsonl® and Bailliel). For various
theoretical results pertaining to the empirical processes of long memory moving averages,

(0] among others. Although causal long

see Ho and Hsing!, Koul and Surgailis/® 9, Li
memory processes are most important, our results apply to double-sided moving averages
(1.1) as well; Moreover, consideration of the more general class as in (1.1) allows to simplify

the proofs below even when one is interested in the causal case only.
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The proof of Theorem 2.1 is based on Lemmas 2.1 and 2.2 below, which provide the
tightness of the underlying processes. Their proofs are deferred to Section 3.
Let X;,t € Z be a zero mean second order process such that for some C > 0 and
0<f<1,
Ir(t,s)| = |E(X;Xs)| <CA+|t—s)7?  tsel. (2.2)
Let

1 [Ts]
YT(S) = W ZX], 0<3<OO, TZO, YT(O) =0= YT(OO)
7j=1

be the weighted partial sum process.

Lemma 2.1 Let 0 <r < 1—6/2. Then there exist constants C, § > 0 and a finite
continuous measure y on [0, 1] such that for all rational s < ¢, s,t € {p/T" : p=0,1,--- T},

E(Y7(t) — Yr(s))? < O(u(s, 1)+ (2.3)

Lemma 2.2 Let 1—-60/2 < r < 1. Then there exist constants C', § > 0 and a finite
continuous measure v on [1,00] such that for all s < ¢, s,t € {p/T :p=T,T+1,--- 00},

E(Vr(t) — Yi(s))2 < Clu(s, 1)+, (2.4)
Remark 2.3 The above Lemmas 2.1 and 2.2 might be of an independent interest,

as they refer to more general (not necessarily linear or even stationary) processes.

Proof of Theorem 2.1  We shall prove the second part of (2.1) only, as the proof
of the first part is analogous. Fix an rin 1 — /2 < r < 1. Put

[tT)/T, if 1<t < o0;
t* =
0, if ¢t = oo,

and let
YA = Ve(t),  Ze(t) = Yilt) — Yi(D).

It suffices to show
Y7 (t) = [1,00) C2t™ " By(1), (2.5)
sup |Zr (1) = 0,(1). (2.6)
t>1
Since the convergence of the finite-dimensional distributions follows from Davydov(!,

in order to show (2.5), we only need to check the tightness of the sequence {Y7}(t)}7r>1
in D[1,00] only. According to the well-known criterion (Billingsley!'!), Theorem 15.6),
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it suffices to show that there exist a bounded continuous measure v on [1,00] and some

constants C', > 0 such that for all 1 <t; <t <ty <00
EIYZ(t) — Y7 (t1)| Y7 (t2) — YE()| < C(v(tr, t2)) . (2.7)

Clearly, it suffices to show (2.7) for to —¢t; > 1/T as 0 < to — t; < 1/T implies either
t* =17, or t* =15 and (Y (t) — Y;i(t1)) (Y} (t2) — Y/ (t)) = 0 by definition of Y/ (¢).

According to Lemma 2.2,

E|Y7(t) — Yz (0)[[Yr (t2) — Y7 (2)]

IN

(E[Yr(t) = Yr() )2 (ElYr(t3) — Yr(t])F)'/?
Cv(t], )"

IN

with v = p, and p,(s,t) = /t u” du, for some v > 1 (For more details, see (3.7) in
the proof of Lemmas in Sectiori ). Note (87, 85) < 27y (t1,t2) for any to — ¢t > T,
t1,t2,T > 1, which follows easily from definition of the measure 1. This proves (2.7) and
(2.5) too. The relation (2.6) follows from Zp(t) = ((t*/t)" — 1)Y7(t*) where |(t*/t)" — 1] <
Clt* —t|/t < C/T — 0 uniformly in t > 1, while sup |Y7(t*)| = Op(1) according to (2.5).
Hence, Theorem 2.1 is proved. O =

Remark 2.4  Above weighted invariance principle is very useful in change point
analysis, especially in obtaining the probability bounds for certain functions of random
variables or maximal inequality.

Horvéath and Kokoszkal'2 consider the estimation of the time of change in the mean

of Gaussian observations. They (Lemma 4.3) need a probability bound for the term

k
sup kil‘ > X
k>n t=1

(Long memory Gaussian processes have a wide application in practice, for a reference, see,

, where X is a long memory Gaussian process with parameter H (= 1—6/2)

e.g., Li and Xiaoll3: 14]). Apply our Theorem 2.1, we can obtain the same rate for long

memory moving average process which is following;:

Proposition 2.1  Assume X; follow an infinite order moving average process as

n (1.1). Then
11 &
sup | 3 Xi| = O,(n""2).
k>n t=1
Proof Note, foran1—-6/2<r <1,
[ns]
2.

t=1

L& 1
e POR R T o

[ns]
k>n T s>1 M ’

> Xi
t=1

1
<sup ——~ Xt‘.

s>1 sTpl—0/2

The proof of the above proposition now follows from (2.1) of Theorem 2.1, the continuous

mapping theorem and the fact that lim s™"By(s) =0, a.s.. O
S§—00
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§3. Proofs of Lemmas

Proof of Lemma 2.1 It suffices to show the lemma for r arbitrary close to 1—6/2;

in particular, for r + 6 > 1. Write

Ye(t) = Yr(s) = ¥ Ave(7).

sT<p<tT T
where
avi(g) = ve(g)-ve(*5)
) — ""\r \'r
1 p)*?‘ p p_l —rp—1
- (3 £ () Ex)
T179/2 { (T j; J T jZl J
_ 1 pP\~T p_l —ry\ P—1 P\ ~T
- (7)) -(7) ) Zx+(7) %)
1 p=l

- W{ATILT j; Xj+ Tp,TXp}a

with
o =®/T)", Anpr=nr—mar=@/T)" - ((p-1)/T)"
Therefore
T2 YE(Yr(t) — Yr(s))? < 251 + 2%,
where
p—1 2 2
S=E Y Anr Y Xf. S=E Y naX).

Ts<p<Tt 7j=1 Ts<p<Tt

Now,
21 = Y11 + 2X19, Yo = Yo1 + 2X99,

where

o (P21 2
Sui= Y (Anr) E(lej),
j:

Ts<p<Tt
p—1 qg—1
Y19 = > AprTATquE( > X Xj),
Ts<q<p<Tt 7=1 j=1
- 2 2
221 = Z Tp7TEXp,
Ts<p<Tt
Ygg = > Tp,1Tq, TE(XpXyg).

Ts<q<p<Tt
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We claim that for all s, ¢ as in the formulation of the lemma, and for k,l =1, 2,

2t —s)20 s> 1/2,

Y <07 (3.1)
22—, s <t/2.
Let’s consider Yoo first. Let
t ot
Jaa(s,t) ::/ / w7 u — v|?do. (3.2)
S S
From (2.2), we have
[Yza| < > TprTerr(p @)l
Ts<q<p<Tt
<C Y WD X @DTe-9
Ts<p<Tt Ts<q<p
t u
< C’TQ_@/ u_r/ v (u— ) dudu =: CT?* 0Ty (s, t). (3.3)
S S
Suppose s < t/2. Using r 4+ 6 > 1,
t 1
Jaa(s,t) < C/ ur/ v u — v|?dudu
0 0
t
< C / ut=0du = C? 0, (3.4)
0

In the case s > t/2,

¢t
Jaa(s,t) < s_zr/ / lu — v|~?dudv

t—s prt—s
ot / / lu —v|Pdudv = Ct=2(t — 5)*7°.
0 0

IN

This proves (3.1) for term Xas.
Consider ¥9;. Clearly,

t
Yau<C > T§7T < CT/ u?"du.
Ts<p<Tt s

Let s<t/2, then Yoy <OTH =2 =CT?> 02~ 2=9(Tt)~1+0 where (Tt)" 70 <1 as t>1/T.
Next, let s > ¢/2, then Yoy < CT(t — s)t™2" < CT?*0(t — 5)27 92" as T(t — s) > 1. This
proves (3.1) for ;.

As to the term X9, we may write X190 = ¥}, 4+ XY,, where

p—1lg—1
/12 = > Aty ATy > > (i),
Ts<q<p<Tt i=q j=1
" e ..
Yl = > Aty ATy > > (i)

Ts<q<p<Tt i=1 j=1
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We have |A7, 1| < CT Y (p/T)~""! and therefore

Sl < o Y /D)7 N/ T Y Y (i)

Ts<q<p<Tt q<i<p1<j<q

t u Tu pTv
< C/ u_r_l/ U_T_l/ / (z —y) ~?dedydvdu
_ T2 9/ —r— 1/ —r— 1 v2_9—(u—v)2_9)dvdu
= CT* 0J5(s,1). (3.5)

For s < t/2,

J{Q(sa t)

IN

n u
0 0

t 1
= / ul_QT_e/ v = (1= 0)2 ) dudu
0 0
- C /t u1—2r—0du — Ct2—27‘—9
0

where we used |1 — (1 —v)?7% < Cwv for v € [0, 1], as well as 7 < 1.
For s > t/2,

t ot
Ji5(s,t) < / /(uv)_r_luz_adudv
° t—s t—s
Ct_z’"/ / uwdudv = Ct2"(t — 5)>7?
0 0

IN

This proves (3.1) for ¥,
q—1

Turning to X/, note > r(i,j) < C Z (1+ i —j])7% < Cq*?, and we obtain,
1,j=1 4,j=1
similarly as above,
t u
1215 < Cng/ url/ 1" b dudu =: CT? 077, (s, 1). (3.6)
S S

Let s < t/2, then

128t / 7"1/ 1T9dvdu<c/ 127‘9du_0t227"9

Next, let s > t/2, then

3 t
Jla(s,t) < 3_%/ dU/ v dv < Ot (t — 5)*70,

thereby proving (3.1) for X7, .



N ZRTE BT T IR SR — ANl 527

Finally, let’s consider term 31;. From covariance (2.2),

Sn<C Y Tp/T) P < OT (s, t),

Ts<p<Tt
Tt
where Jyi(s,t) := >, (p/T)~ 20772
p=Ts+1

Let s < t/2. Then
Tt t
Jui(s,t) < S (p/T)t2—9771 < C/ w20y = C220
p=1 0
where we used the fact that 1 —2r — 6 > —1. On the other hand, if s > ¢/2, then
Tt t t
Ju(s,t) <77V S (p/T)" 171 < Tl/ w2 %du S/ ul =20y,
p=Ts+1 s s
where we used uT' > 1/2 in the integrand (which follows from ¢7° > 1 and s > t/2). As
t
/ w2 "%u < Ct72"(t — 5)27Y for s > t/2, this ends the proof of the claim (3.1).
S

Put .
pry (8, ) i= / u” "du, 0<s<t<oo. (3.7)
S

Then for v < 1, pu defines a finite continuous measure on [0, 1]. Note the following easy
property of this measure: for any v < 1, there exist constants 0 < C; < Cy < oo such that
forall0 <s<t<1,

Cit77(t — s) < py(s,t) < Cot™ 7 (t — s), if s>1t/2, (3.8)
Ot ™7 < puy(s,t) < Cot' ™7, if s <t/2. (3.9)

The statement of the lemma follows from (3.1) and the lower bounds in (3.8) and (3.9).
Indeed, let v := 2r/(2 — #), then v < 1 by the condition of the lemma, while t2=2"—¢ =
(#17)270 4727 (t — 5)27% = (t77(t — 5))?>~Y. This proves Lemma 2.1 with = p1, and 6§ =
1-60>0. O

Proof of Lemma 2.2  The proof is similar to that of Lemma 2.1 above and we
omit some details. It suffices to consider the case when both s and t are finite. Indeed,

(2.4) in the case 1 < s <t = oo follows by continuity: 1/1m v(s,t) = (s, 00),
t=p/T—o00

t:pl/i:rpnﬂoo E(Yr(t) — Yr(s))* = E(Yr(c0) — Yr(s))* = E(Yr(s))*;

the last convergence is an easy consequence of

li E(Yr(t)2<C i 2= (@=0) 20 —
t:p/l’}naoo (T( )) B t:p/l’}naoo [ ]
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2
To prove (2.4), write T>79E(Y7(t) — Yr(s))2 < C 3. |Zul, where ¥y are defined
k=1
exactly as in the proof of Lemma 2.1. We claim that there exist a constant C' < oo such

that for all s, t as in the statement of Lemma 2.2, and any k,l = 1,2

s (t —s)*7Y, s>t/2,
Y < 0T (=) / (3.10)
§22r=0, s <t/2.

To conclude from (3.10) the statement of the lemma, consider p, defined by (3.7), with
v > 1. Then p, defines a finite continuous measure on [1, 00) which has the property that

there exist constants 0 < C7 < Cy < oo such that for all 1 < s <t < o0

Ci1s77(t —5) < py(s,t) < Cos™7(t — 5), 5>1/2,

C18'77 < py(s,t) < Cas' ™, s <t/2.
Let v :=2r/(2 —0), then v > 1 by the condition of the lemma, and
52—27‘—9 _ (81_7)2_9, 8—2r(t _ 8)2_6 _ (S_V(t _ 8))2_6.

Hence Lemma 2.2 follows with v =y, and § =1 —60 > 0.
It remains to check the claim (3.10). Again, consider first |Yoo| < CT27 9 Jos(s,1),
where Jys is as in (3.2). Let s < t/2, then

(o) [ee]
Jaa(s,t) < / u_’”du/ v_T\u—v\_edv
s - 1
< C/ w0y = 0220,
S

Next, let s > t/2. Then

t ot
Jaa(s,t) < 82T/ / lu — v|dudv
Stfss t—s
= 82T/ / lu —v|?dudv = Cs™% (t — 5)*77.
0 0

This proves (3.10) for Xoo.
t
Next, consider Yo < CT/ u"?"du. Let s < t/2, then
S

(o)
Yo < C’T/ uwdu=CTs' ™%
S

— CT2—982—27‘—9(T8)—(1—9) < CT2_6$2_2T_6,



N ZRTE BT T IR SR — ANl 529

asT,s>1. Next, let s>/2, then Yoy <CT(t—s5)s 2" <CT?*9(t—5)>0s 2" as T(t—s) > 1.
This proves (3.10) for Xo;.

Now, consider ¥1o = X, + %Y, where |2,| < CT?0J],(s,t), |y < CT? 077, (s,t)
and J{5(s,t), Ji5(s,t) are the same as in the proof of Lemma 2.1. Let s < ¢/2. Then

Jis(s,t) < / U_T_ldv/ w W — (u—0)2 ) du

v

/ vl—2r—9dv/ Z—r—l(ZQ—O _ (Z _ 1)2—0)(12

s 1
%)
< C/ ,Ul—QT'—Gd,U — 052—27“—9’
s

IN

where we used 2279 — (2—1)279 <C2'~? and the inequality 7 +6 > 1 implying the bounded-
ness of the integral w.r.t. z. Next, let s > /2, then

t ot
Jis(s,t) < S_QT_Q//UQ_gdudv
S S

t—s pt—s
< s_2r_2t2/ / uw?dude < Cs™2"(t — 5)2_9.
0 0

This proves (3.10) for 3},. The same bound for XY, follows by

t t
J{/Q(sjt):/ Ul_T_Gd’U/ w1 du

by considering cases s < t/2 and s > t/2, as above. Indeed, in the first case, we use

o o
Ji5(s,t) < / vl_r_edv/ uw Ty < C'SQ_T_G,
S 1

and in the second case,
t t
J{/2(87t) S CSZT/ vgdv/ du = 087271(75 — 8)270.
s S

This proves (3.10) for X, and %12, too.
t
Finally, consider the case |Y11| < CT279J11 (s, 1), where Ji1(s,8) = T~ | w2 %du.
y7 Y ) Y
Let s < t/2, then ’
oo
Ji1(s,t) < Tl/ w2y = T tgl—2r—0 < Cg2—2r—0

S

as s, T > 1. Let s > t/2, then
t t—s
Jii(s,t) < T_ls_%/ u_edugT_ls_%/ uldu
s 0
— CTfl(t o 8)1793727" < C(t o 8)2798727"

ast —s > 1/T. This proves (3.10) and Lemma 2.2, too. O
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