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Finite-time stabilization for a class of first-order

nonlinear systems with unknown control direction
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Abstract: In this paper, the finite time stabilization via state-feedback and adaptive technique was investigated for a class of first-
order nonlinear systems with unknown control direction. Using the Nussbaum gain method, an adaptive state-feedback controller is
successfully constructed, which guarantees the global stability of the closed-loop system, and the global finite time stability of the
original system state (This was rigorously proven with the help of the celebrated 1" Hospital’s Rule). A simulation example was
provided to illustrate the effectiveness of the proposed approach.

Key Words: nonlinear systems; unknown control direction; adaptive control; Nussbaum gain; finite time stability; global

stability

— K- RER LT
AEBREEEE

x| ALK
(IR K2R 5 TA2ERE, IR TP 250061)

WE: pARSE A B E R, R T —E -4 2 R KM 2 5A TREE E 402 . K T Nussbaum 3§ &
Tk, RAMET BERRERGEH S, HRTHRRAAN L AR TN, FELRAKGIKES AR R E
8 (BB ASE R R AEB) T 5 % 69 B AN T8y . A5 B B GE T 3% 05 ik 69 A AU

KEEIFAEA M A% R 3R R B € B 24 ; Nussbaum 38 35 A TR A 8 #4582 B FA T

FE 525 :0231;TP273 MHERFRE A

0 Introduction

The control problems of the systems with unknown control directions have received much attention in the past three

90 When the signs of control coefficients are unknown, the control problem becomes much more difficult, be-

decades
cause in this case, we cannot decide the direction along which the control operates. This control problem had remained
open till the early 1980 s, the breakthrough solution was originally given for a class of first-order linear systems by intro-
ducing the Nussbaum function?’ . Using Nusshaum gain methods, adaptive control was given for first-order nonlinear sys-
tems in [1]. As the first step toward higher order systems, backstepping with Nussbaum function was then developed for
second-order systems in [5]. Later, backstepping with Nussbaum function was successfully developed for arbitrary any

finite order of nonlinear systems in the triangular structure, with constant unknown control coefficients in [6] and with
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78 respectively .

time varying unknown control coefficients

Fair recently, the finite-time stabilization has been roundly studied for nonlinear systems. Different from the asymptoti-
cal stabilization with infinite settling time, finite-time stabilization gives the convergence with finite settling time. More-
over, finite-time stabilization is of much interest partially because of its faster convergence, higher tracking precision and

1) The non-smooth ( continuous) analysis has been the prevailing methodology to finite-time

robustness to uncertainties
stabilization for a lot of classes of nonlinear systems ™™ . More specifically, [11] and [12] provided a rigorous founda-
tion for the theory of finite-time stability. Works [ 14 ] and [ 15] proposed the explicit design scheme for finite-time stable
controller for two classes of nonlinear systems. Work [13] first considered the case of output-feedback, and the further
results see the recent paper'® . As the last development on this topic, [17] presented the adaptive finite-time control
methodology for a class of uncertain nonlinear systems.

In this paper, the global adaptive finite-time stabilization is investigated for a class of first-order nonlinear systems with
unknown control direction. Despite the aforementioned progress, this control problem is quite complicated and has rema-
ined open and unsolved up to now. The major difficulty of the problem is the absence of effective methods to analyze the
finite-time stability when the control direction is unknown although it is not hard to design a continuous state-feedback

(6, 9, 17] , a Nussbaum function is incorporated into the estimation for both value

controller. Inspired by the recent works
and direction of the unknown control coefficient, and then an adaptive state-feedback controller is successfully construct-
ed. It is rigorously proven, with the help of the celebrated " Hospital’s Rule, that the state of the original nonlinear sys-
tem under the designed controller is globally finite-time stable while the other closed-loop signal is bounded on [0, % ).
The effectiveness of the designed controller is illustrated by a simulation example, regardless of the actual sign and value

of the unknown control coefficient.

2 Preliminary knowledge

Throughout this paper, IN denotes the set of all natural numbers; R denotes the set of all real numbers, R *the set of
all nonnegative real numbers, and R " the real n-dimensional space, n€ IN; a constant is said to be unknown, if both
its value and sign are unknown.

Definition 1 A function, N: [0, % )R, is called a Nussbaum function if it satisfies

limsup( %.[;N(U)dv) =4 o,

s>

. (1)
Slirginf( %J;N(U)dv) = - o, 1

For example, v \%e“zcos(vw/Z), vERY v F>In(v+1Dcos(vIn(v +1)), vER*, and v = v?cos(mv/2),

v € R *are all Nussbaum functions according to the above definition [1, 4].

The following two lemmas demonstrate some basic properties of Nussbaum functions.

Lemmal IfN: [0,%)— R isa Nussbaum function and g € R a nonzero constant, then gN(+) is also a
Nussbaum function .

Proof If g > 0, then from Definition 1, it is easy to see that gN(+) is also a Nusshaum function.

On the other hand, if g < 0, then we have

limsup(%J gN(v)dU) =g liminf( %J N(v)dv) =4+
s> 0 s> o 0
and

liminf( %J gN(v)dv) =g limsup( %J N(U)dv) =— ®,
s> 0 s> ® 0
which show that gN(+) is a Nusshaum function as well.

Lemma 1 is restricted to the case of g € R \ {0} being a constant. More generally, the following lemma is

devoted to the case of g being a function.
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Lemma 2 Let g: [0, ® ) — R be nonzero and always positive (or negative). If N: [0, ® ) — R is a Nussbaum
Sfunction, then gN: [0, %) — R is also a Nussbaum function if for anye > 0, g(v) > 0, Y v = 0 satisfies

limsup(%ﬁvsg(u)du) =4 oo, (2)

s>

org(v) <0, Yv =0,
liminf( %Jsueg(u)du) -, (3)
0

Proof This can be shown by a contradiction argument. Suppose that when g( v) >0, Yv =0, (2) does not
hold, that is,

limsup( %J Usg(U)du) < + ®©, (4)
§s® 0
for some € > 0. Then, one can construct the following piecewise right-continuous Nussbaum function (0<e<1):
0, v e [0, 3),
N(v) = (v, v € [3", 3""), when n is positive odd number,
-, v € [3", 3""), when n is positive even number,

for which, we have

- %J;Ueg(U)dU < ij;g(U)N(U)du < ijgusg(u)du.

N N

From this and (4), it follows that

- ® < }irgsup].;g(v)]\/(u)du <+,
which obviously contradicts the known fact that gN: [0,%) — R is a Nussbaum function and especially
Slirgsup(%J;g(U)N(U)dU) =+ ®©.

Analogously, the assertion for the case of g(v) < 0, Y v = 0 can be proven.
From Definition 1 and Lemmas 1 and 2, it can be seen that a Nussbaum function is not restricted to be even (or

odd) and smooth (or continuous). However, in the latter development of the paper, we will choose v > N(v) =

2
e’ cos(mv/2) as an even smooth Nussbaum function mainly for the convenient when feedback design.

The following lemma is much fundamental and plays an important role the stability analysis of nonlinear control
systems with unknown control direction, which has been explicitly proven in [6].

Lemma 3" Let 1, be some finite time in R “or + %, Vi [0, 1,) = R *and {: [0, 1) = R continuously
differentiable functions, and N(+) an even smooth Nussbaum function defined as ¢ \— ¢ cos(xt/2). If the
following inequality holds:

V(1) < e+ [ (aN(E()) + DAL, W1 € 0, 1), (5)

where g € R is a nonzero constant and ¢ € R represents some suitable constant , thent ¢(t), t = V(t) and
13 \—»J N(Z(v))dg(v) are all bounded on [0, tf) .
0

Let’s next turn to presenting some preliminary results on finite-time stability. The following definition on the
concept of finite-time stability was rigorously introduced in the seminal paper"’ and today has been well recognized
and widely adopted in the relevant literature.

Definition 2''"")  Consider the continuous n-dimensional system #(t) = f(x(t)) on domain D C R "with
f(0) =0 and x(0) = «x,. Its zero solution is finite-time stable if there exist an open neighborhood %% C D of the
origin and a function T: B\ {0} — (0,%), called the settling-time function, such that the following two

statements hold :
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(1) (Finite-time convergence) For every x, € B\ {0}, x(t) is defined on [0, T(x,)), x(t) € B\ {0},
forany t € [0, T(x,)), and limHTuO)x(t) =0.

(II') (Lyapunov stability) For any open set 7/, of the origin in .73, there exists an open set 745 such that 0 €
Wy C .7 and for every x, € 7.\ 101, x(t) € % for any t € [0, T(x,)).

The zero solution of the considered system is said to be globally finite-time stable if it is finite-time stable and D =
LB=R"

The following lemma already available in the literature gives the sufficient conditions of global finite-time stability
in the Lyapunov manner.

Lemma 4> For a continuous n-dimensional system % (t) = f(x(t)) with f(0) = 0 and x(0) = x,, suppose
there exists a C' positive definite and proper function V: R" — R, and real numbers k > 0 and a« € (0, 1) such

that V + kV* is negative semidefinite. Then, the zero solution of the system is globally finite-time stable, and

Vl—a(xo)
E(l - a)”

moreover the settling time T <

2 Finite-time stabilization of first-order nonlinear systems

Consider the problem of the global finite-time stabilization for control-affine first-order nonlinear systems in the
following form:

i = gu + x$(«x), (6)
where x is the scalar system state with the initial data x(0) = x,, g is a nonzero constant with the unknown sign
and the unknown value, and $: R — R is continuous and restricted to satisfy the following assumption:

Al. There exists an open neighborhood ./J of the origin, such that $(x) < O for every x € J.

Obviously, the system (6) is with unknown control direction due to the unknown sign of g. For such simple
nonlinear control systems, there has been available methods (see e.g. [6-7]) to asymptotically stabilize the system
states, but which cannot realize the finite-time convergence for any system state.

The objective of this paper is to search for the following adaptive continuous state-feedback control law:

¢ = p(g, x),

u=p(¢, %),
for the system (6) such that the closed-loop system state x is globally finite-time stable, that is, there exists a finite
settling time T = 0 such that

!me(t) =0, and x(z) =0, > 7,
while the other closed-loop state ¢ € R is bounded on [0, ).

Remark 1 [t is apparent that under Assumption A1, the origin solution of system (6) is locally asymptotically
stable when no control effect since for the positive definite W(x) = %%, its time-derivative W = x*$(x) is negative
definite in /. From the later development, it can be seen that the existence of such neighborhood ./ will play a
cructal role in obtaining the previous objective of the paper .

2.1 Finite-time control design

Because of the presence of unknown control coefficient, g, i.e., both its value and sign are unknown,
finite-time stable control design is very hard, if not impossible. It has been shown that in this case, the method
based on Nussbaum function is an effectual tool without worrying too much about their practical applications. The
newest result available thus far in the finite-time-control literature is probably that in [17], which, however, is
applicable to the class of uncertain systems with determinate control coefficient.

In this subsection, a continuous adaptive controller is designed for system (6) based on the Lyapunov function

together with the universal adaptive technique based on a Nussbaum function. Also, an important theorem and a key
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lemma are presented to establish the stability of the closed-loop system and reveal the most intrinsic properties of

such type of control problems, respectively.
2-v

x
-

2

2p,
be the Lyapunov candidate function for the control design, where v € (0, 1) is a ratio as =P

v

Let V =

with p, being a positive integer and ¢, a positive odd integer. Then, along the trajectories of system (6), it is easy
to get
V= x"(gu+ xp(x)). (7)
As mentioned earlier, choose the Nusshaum function N(-) as k — N(k) = ek2 cos(mk/2) and design an adaptive
continuous state-feedback controller as follows:
Eo=x""(x"" 4+ 21 ¢(x)1), k(0) = ky >0,
{u = N(E)(x"™ + x| $(x) 1),
2p,

pl
where v, € (0, 1) is another ratio as — with P, being a positive integer and q,, a positive odd integer, and

v

(8)

1

satisfies v + 2v; > 2 (v has been defined above), and ¢t > k(t) € R} t € R" is called the adaptive updating
signal. Substituting (8) into (7) concludes that
Vo= gN(R) (2™ + 277 1 ¢(x) 1) + 277'8(x) <
7 (gNCE) + (27 4+ 27 1 () 1) =

-7+ (gN(k) + DE, (9)
in some small interval [0, tf) , where t, > 0. From this, it follows that for any ¢ in the interval [0, tf) s
V(t)sC+J0(g]\/(k(,u)>+l)fc(;1)dp, (10)

where ¢ represents some appropriate constant depending on the initial data x(0) of system(6) .

The following theorem is an important intermediate result to ultimately establish the global finite-time stability of
the resulting closed-loop system.

Theorem 1  Under the assumption A1, the solution (x(t), k(t)) of system (6) with (8) in the loop is well
defined and bounded on [0, ©) for any initial data x(0) and k(0). More specifically , the system state x(t)
converges to 0 as time t goes to + % , while lim, ., k(t) = k. for some k. > 0.

Proof As already mentioned, there exists some interval [0, tf) , 0 < t; < ®, in which the closed-loop system
has solutions due to the continuous dynamics. Moreover, by Lemma 2 in Page 107 of [20] and Theorem 4.3 in Page
59 of [21], and the continuity of the systems dynamics, it can be shown that these solutions are unique in forward

(11, 18] Therefore, the solution of the

time and are continuously dependent on the closed-loop system initial data
closed-loop system is well-defined on the interval [0, tf) . Without loss of generality, suppose that the interval [0,
tf) can be maximized to the maximal interval [0, Tf) for some Ty, where t, < T, < . Then by the
aforementioned Lemma 3, we easily achieve the boundedness of k(¢) and V(t), as well as x(t) on the maximal
interval [0, T/)

We next prove T, = + % by a contradiction argument. Suppose that T; < + % . Then, T, would be the finite
escape time of the closed-loop system. This evidently contradicts to the fact that any solution of the closed-loop
system (6) and (8) is bounded on the maximal interval [0, T/) , and hence also bounded at ¢t = T, due to the
continuity of any solution of the system.

As an immediate result, &, u, % and i are all bounded on [0, %), and in tumn, using the well-known
Barbalat’s Lemma, it can be concluded that lim,., x(¢) = 0. Additionally, according to (8),i.e., k() =0,
Vit =0, k(0) > 0 and the proven fact k(t) < % on [0, ), it is clear that k() monotonically increasingly

converges to its finite limit as time goes to infinity, that is, lim,.. k(t) = k, for a finite positive constant k, . This

completes the proof.
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The following lemma reveals the most intrinsic properties of such type of control problems, that is, by the
Nussbaum function, the unknown sign of the control coefficient g can be successfully estimated, as will be seen
that the sign of the Nussbaum function ¢ > N(k(t)) eventually becomes the opposite sign of g when time goes
sufficiently large, while N(k) is a measurable signal and hence applicable for feedback design.

Lemma 5  For the adaptive updating signal k(t) given by (8) with the nonzero closed-loop system initial data

(i.e., x(0) # 0 and k(0) # 0), its limit exists as t — % (denoted by k.), and satisfies the following relation :

gN(kc) = ge(ki)cos('frkv/Z) < 0. (11)
Proof Ithas been shown in Theorem 1 that the existence of the limit k, > 0 of k(¢) as t = o . We next only

prove the correctness of relation (11). Suppose that (11) does not hold. This implies that

ge<ki>cos(7cka/2) > 0. (12)

We will show this is not true by a contradiction argument. By some evident observation, we can easily see that
whether x(¢) # 0 for all ¢+ = 0 or x(t) reaches zero at a finite time and remains zero forever after. Therefore, the
rest proof is broken up into two separate parts: (1) for any ¢t = 0, x(t) #0, though lim,. ., x(t) = 0 (This has
been proven in above Theorem 1); and ([ ) there exists a finite time ¢, at which x(#,) = 0, and x(z) = 0 for any

t =1

(1) For the case of YV t =0, x(z) # 0, from (12) and the continuity of the variable k() in t, it follows that
for some constant ¢, > 0, there is a finite time te (may be very large) such that gexp(kz(t))cos( 7k(t)/2) =

¢, > 0in [¢, ,%). On the other hand, from the proven fact lim,.,, x(¢) = 0 and the continuity of x(¢) in ¢, it
g

concludes that for a sufficiently small constant ¢, > 0, there exists another finite time ¢, € [, , %) at which
&

| x(t;) | = ¢, and such that

2-v-v

i (e, + ey emin ] | ¢(x) |- ¢} (max | ¢(x) 1) >0,
X X

R ¢ o

which implies that V( t;) > 0 and in turn concludes that | x(¢) | = ¢,, YVt E [t,,%). This obviously contradicts
the proven fact lim, ., x(¢) = 0.

(II) In the case, suppose that ¢, = 0 is the first finite time at which x(t,) = 0. Then V( t,) = 0 and fc(te) =
0, and hence the closed-loop system will settle down at this finite time, or equivalently, x(t) =0, V¢t € [t,,%)
and k(t) = k., YVt € [t,,%). In the following, we restrict our attention to the case of #, > 0 since #, = 0 is the
trivial case and hence it does not satisfy the conditions of this lemma. From (12), k(t,) = k, and the continuity of
k(+), it concludes that gexp( E(t))cos(xk(t)/2) = ¢, on some interval [ 1, — e, t,) for some constants ¢ > 0
and ¢, > 0. Additionally, at the time ¢, — e, there holds | x(#, — €) | = ¢ for some constant ¢; > 0. Similar to
the argument of ( | ), if e is chosen sufficiently small, then the constant c; will be sufficiently small so that

20w

;"1 (ey + ey min ] | (x) 1—cy max | $(x) ) > 0.
X

c€lmep e, —eyr 5]

This will result in V(¢, — ¢) > 0, and in turn | x(¢) = ¢ >0, Vi € [, — €, ). This contradicts the
assumed fact x(¢) = 0, YVt € [1,,%).

The both contradictions for parts ( [ ) and (Il ) under (12) show that the relation (11) is correct. This
completes the proof.
2.2 Finite-time stability analysis

We have the following theorem which summarizes the main results of the paper.

Theorem 2 With the designed adaptive state-feedback control law (8) in the loop, the system (6) under
Assumption A1 is globally stable , and furthermore , the system state x(t) is globally finite-time stable , that is, for any
closed-loop system initial data, there exists a finite time T, such that lim,,,x(t) =0, and x(t) = 0 Joralt = 7.

Proof The global stability of the closed-loop system is evident from the previous discussion (e.g. Theorem 1).
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It suffices to show the finite-time stability of the closed-loop system state x(¢). Obviously, when the initial data
x(0) = 0, the conclusions automatically hold. Therefore, we next restrict our attention to the case x(0) # 0.
Without loss of generality, suppose that sgn(g) =+ 1 and x(0) > 0. Then, from Lemma 5, it follows that
N(k.) =exp( k2 )cos(mk,/2) < 0. The rest proceeds in the following two different cases: ( | ) N(k.) < 0; and
(1) N(k.) = 0.

(1) When N(k,) < 0, then apparently for a sufficiently large time ¢, = 0, there is a constant ¢, > 0, such

=

that N(k(t)) < - ¢, YVt € [tg, @ ). On the other hand, suppose that in the interval [0, tg], x(t) #0

otherwise the conclusions would automatically hold. Then there is another finite time t, € ( t,»%), at which
| x(t,) 17 0, and for sufficiently small constant ¢, > 0 such that | x(¢) |< ¢;, YVt = t, and

C )
&% _ e max | $(x) 1= 0,
2 v€l=¢/. o]

and hence we have

V= (aNCR) + DG 4 27 1 8(0) D) <= S = kY, (13)
2w — _

for any x € [- ¢, ¢,)], where 0 < a = # < land k = %(2 - v)* > 0. Therefore, by Lemma 4,

the finite time stability of the closed-loop system state x(¢) can be established, and the settling time 7 < t, +
Vl_a<td)
(I-a)’

(II') For the case of N(k,) = 0, if there is a finite time 7 = O such that
limN(k(2)) =0, N(k(t)) =0, V>, (14)

=T

which means that in [7,%), k(¢) = k,, i.e., k(¢) = 0 and in turn x(¢) = Oin [z, %), and therefore, the
system state x(¢) is globally finite-time stable with the settling time T < 7.

The next turns to the other case of no finite time 7 = 0 satisfying (13), meanwhile lim, ., N(k(t)) = N(k,) =
0. This means that for any large enough but finite time ¢, there would always hold N(k(#)) < 0 and x(¢) 0.

We will show this is impossible by a contradiction argument, that is, there must be a finite time = > 0, such that

N(k(t))
2" (1)

k(t) =k, and x(t) = O forany t € [z, % ). For the aim, we need first to examine the limit of as the

time ¢ goes to + % . In fact, we have

lig IVCEC))7de . dANCE() (dN(k(t)) Cdk(e) | de | da(e) )
ey da"t (¢)/dt = da"t (t) =20 de(e) dit dx(e)  da (¢)] -

From this and noting that

d]\(gigck) = Zkexp(kz)cos(nk/Z) — 7t/ 2exp( E)sin(nk/2) —
n/ZeXp(kZL,) as t >+ o since cos(wk/2) =0,
df = 1/(da" /dx) = 1/(v, 207",
da”
dkd<tt) =k(e) = 27 (" a1l d(w) 1),
dt , : 1
() = VD = NGOG e 1 80 1) 5 ()
we easily have
. = dNCE(e)) - (N e x  (x) 1) :
=g = T2k i G 0) % e NG 1 $(x) T4 0y x ) -

mexp( k) . K
m .
20, e — gN(k(1)) - 2" $(x)

(15)
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Clearly, it can be seen that the time ¢ is large enough to ensure that gN(k(¢)) < 0 and x(¢) will enter the set./~
defined in assumption Al and remain in it forever after, and thus we have #(x(z)) < 0. Therefore, if
N(k(t)) =o(x") when x is sufficiently small in magnitude, then by (14) and noting 2 — v — 2v, < 0, we have
lim M = lim — dN(k (1)) = mexp( ki) lim A = mexp( ki) lim S =4+ ®

e da" (1) e dx” (1) 2v, Lot — A d(x) 20, ot~ $(0) ’
and in turn by L’Hospital’s Rule [19] (since it can be easily verified that dx" /dt £ O in every right-hand
neighborhood of 0 in x),

x

= NGRD) o dVGRD)
e 21 () e da" (e) T ’
which contradicts the following
lim M - lim w = 0.
= x! <t> 0" X!

If N(k(t)) = O(x") when « is sufficiently small, a contradiction would establish by the similar analysis to the
above development.
It can be turned out that the only feasibility is that when x ¢ O is sufficiently small,
by La(e) 12 <= NCE(2)) < ky | x(e) 1, (16)
v o 29, o
for some constants k; >0, k, >0, v; > v, > 1- 5> 0 satisfying v, = ) with ¢, being positive integer and

v,

2

P, positive odd integer, and 0 < vy < 2 — v — v, . Otherwise, when — N(k(¢)) = k, | x(t) |5 for sufficiently
small x 52 0, by (14) and L’Hospital’s Rule, we have

- N(Ek(e)) .ok x|
—% = lim ———

i = ,
rirg xwl (t) = e xvl + 0
2
lim = VD) mexpChe) (1 e g
> X! (l) 2v, gkz 0"

which is clearly a contradiction. On the other hand, when — N(k(t)) < k, | x(¢) |2 for small enough x > 0, we

similarly yeild

lim —ANCE(D)) _ wew(k) o A () D) _
1> dva(l) B 21)2 1> gN(k(t)>x1-2*"1 + gN(k(l))le | ¢(x> I+ xszIS(x) =
mexp(h:) . e

20, A gN(k(t))a™" — x2¢(x)"
Then, by L’ Hospital’s Rule, and noting that
2-v -0 <20, -0,
2-v—-v < vy,

we have

lim ————+2 NCk (1)) < lim 7kl |12

(> x"2 ( l) = ot e = Ky,
g = NCE(D) = dNCR() _ mexp(kD) | .
o i (t> e dxlé(t) - 20, e — gklxz”z‘“] — x™ ¢<x) B ,

which is impossible and simultaneously results in a contradiction, and in turn shows that (15) holds.
Thus far, we proceed to finite-time stability analysis based on the above proven relationship (15) after large
enough time t,. Notably, we have
Vo= gN(E)(&™7 4+ 277 1 ¢(x) 1)+ 6™7"8(x) <—c o 17707 == kV (1),

2—-v -0+,

>, <landk = ¢(2 - »)*. Then by Lemma

when ¢t = t, for some constant ¢ > 0, and 0 < a =

V(e
4, the closed-loop system state x(¢) is globally finite-time stable and the settling time T < ¢, + (lf(ad)). This
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means that x(¢) = 0, Y ¢t = T, which contradicts the assumed x(¢) # 0, Y ¢ = 0 and there must be a finite time
7 > 0 such that (13) holds. This completes the proof.

Remark 2 From the above proof, one can easily see the sufficient conditions to guarantee (8) be a global
finite-time stable controller for the system state x of (6) under Assumption A1 is the following :

2p. 2p”l
v = q—l €(0,1) and v, = — € (0, 1) such that v + 2v, > 2

v v

1

with p, , p, being positive integers and q, , q, positive odd integers .

3 Simulation

Consider the first-order system:
2 = gu — x(0.1 - x),
where g £ 0 is an unknown control coefficient, namely, its sign and value are unknown.
By virtue of the control design scheme given in the previous section, we can easily obtain the universal controller

as follows.

{k =2 (" +x10.1-x1), k(0 = ky > 0,

u = ekzcos(n'k/Z)(xV5 +210.1=-x1).
With the initial conditions: x(0) = 0.2 and k(0) = 0.1, the simulation results are shown in Figures 1 ~ 4,
which are classified into two groups corresponding to the cases of g = 1 and g = - 1, respectively.
Figures 1 and 3 show the finite-time convergence of the state x, regardless of the direction and the value of g,
while Figures 2 and 4, for two cases with oppositive directions, illustrate the boundedness of the adaptive signal k&

which is introduced to identify the direction of the unknown control coefficient implicitly.
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Fig.3 State x for the case of g = 1 Fig.4 Signal k for the case of g = 1
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4  Conclusion

In this paper, the global finite-time stabilization has been investigated for a class of first-order uncertain
nonlinear systems. By using the adaptive technique integrated with a suitable Nussbaum function, an adaptive
finite-time stabilizing controller is constructed so that the state of the original system is globally finite-time stable
while other closed-loop signal is bounded on [0, % ). Another interesting problem is that for higher order nonlinear
systems with unknown control directions, how does design a controller to realize the global finite-time stability.

This problem greatly differs from that of first-order nonlinear systems and hence is of much interest.
References:

[1] NUSSBAUM R D. Some remarks on a conjecture in parameter adaptive control[ J] . Systems & Control Letters, 1983, 3(5):243-246.
[2] WILLEMS J C, BYRNES C I. Global adaptive stabilization in the absence of information on the sign of the high frequency gain[ R]. Lec-
ture Notes in Control and Information Sciences No. 62, Berlin: Springer-Verlag, 1984: 49-57.
[3] MARTESSON B. Remarks on adaptive stabilization of first order nonlinear systems[ J]. Systems & Control Letters, 1990, 14(1):1-7.
[4] ILCHMANN A. Non-identifier-based high-gain adaptive control[ R]. Lecture Notes in Control and Information Sciences No. 189, Lon-
don: Springer-Verlag, 1993.
[5] KALOUST J, QU Z. Continuous robust control design for nonlinear uncertain systems without a priori knowledge of control direction[ J ] .
IEEE Transaction on Automatic Control, 1995, 40(2):276-281.
[6] YE X, JIANG J. Adaptive nonlinear design without a priori knowledge of control directions[ J]. IEEE Transaction on Automatic Control,
1998, 43(11):1617-1621.
[7] YE X. Asymptotic regulation of time-varying uncertain nonlinear systems with unknown control directions[ J]. Automatica, 1999, 35(5):
929-935.
[8] GE S S, WANG J. Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients[ J]. TEEE
Transaction on Automatic Control, 2003, 48(8):1463-1469.
[9] LIUY G, GESS. Output-feedback adaptive stabilization for nonlinear systems with unknown direction control coefficients| C]// Proceed-
ings of the 2005 American Control Conference. Portland OR, USA: [s.n.], 2005: 4696-4700.
[10] HAIMO V T. Finite-time controllers[ J]. SIAM Journal on Control and Optimization, 1986: 24(4) :760-770.
[11] BHAT S, BERNSTEIN D. Continuous finite-time stabilization of the translational and rotational double integrators[ J]. IEEE Transaction
on Automatic Control, 1998, 43(5) :678-682.
[12] BHAT S, BERNSTEIN D. Finite-time stability of continuous autonomous systems[] 1. SIAM Journal on Control and Optimization, 2000,
38(3):751-766.
[13] HONG Y, HUANG J, XU Y. On an output feedback finite-time stabilization problem[]] . IEEE Transaction on Automatic Control,
2001, 46(2):305-309.
[14] HONG Y. Finite-time stabilization and stabilizability of a class of controllable systems[ﬂ . Systems & Control Letters, 2002, 46(2):
231-236.
[15] HUANG X, LIN W, YANG B. Global finite-time stabilization of a class of uncertain nonlinear systems[] 1. Automatica, 2003, 41(5):
881-888.
[16] QIAN C, LI J. Global finite-time stabilization by output feedback for planar systems without observable linearization[ J]. IEEE Transac-
tion on Automatic Control, 2005, 50(6) :885-890.
[17] HONG Y, JIANG Z -P. Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties[ J]. TEEE Transaction
on Automatic Control, 2006, 51(12):1950-1956.
[18] NERSESOV S G, HADDAD W M, HUI Q. Finite-time stabilization of nonlinear dynamcial systems via control vector Lyapunov functions
[cl Proceedings of the 2007 American Control Conference. New York City, USA: [s.n.],2007: 4810-4816.
[19] BOAS R P. Counterexamples to L’ Hospital’ s rule[ J]. American Mathematical Monthly, 1986, 93(8) :644-645.
[20] FILIPPOV A F. Differential equations with discontinuous right-hand sides| M]. Dordercht: Kluwer Academic Publishers, 1988.
[21 ]JCODDINGTON E A, LEVINSON N. Theory of ordinary differential eqautions[M] . New York: McGraw-Hill, 1955.

(4h# AR



