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Abstract. In this paper, we present evidence that
intermittency of Eulerian and Lagrangian turbulence of
ocean temperature and plankion fields is multifractal and
forthermore can be analysed with the heilp of universal
multifractals. We analyse time series of temperature and in
vive fluorescence taken from a drifter in the mixed coastal
waters of the eastern English Channel. Two analysis
techniques are used to compute the fundamental universal
multifractal parameters, which describe all the statistics of
the turbulent fluctuations: the analysis of the scale
invariant structure function exponent £ (g) and the Double
Trace Moment technique. At small scales, we do not detect
any significant difference between the universal
multifractal behavior of temperature and fluorescence in an
Eulerian framework. This supports the hypothesis that the
latter is passively advected with the flow as the former. On
the one hand, we show that large scale measurements are
Lagrangian and indeed we obtain for temperature
fluctuations a w * power spectrum corresponding to the
theoretical scaling of a Lagrangian passive scalar,
Furthermore, we show that Lagrangian temperature
fluctuations are multiscaling, and intermittent, On the other
hand, the flatter slope at large scales of the fluorescence
power spectrum points out that the plankton is at these
scales a "biologically active" scalar.

1. Introduction

Scaling laws have been proposed in Eulerian
(Kolmogorov, 1941a; Obukhov, 1941, 1949, Corrsin,
1951) and Lagrangian frameworks (Landau and Lifshitz,
1944; Inoue, 1950, 1951, 1952a, b; Lin, 1960; Monin and
Yaglom, 1975) for velocity and passive scalar turbulence.
In an Eulerian framework this general scaling picture has
been confirmed with oceanic velocity (see e.g. Grant et al_,
1962) and temperature data (Grant et al., 1968; Gargett et
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al., 1984) over a wide range of scales. However, we are
net aware of any reports of scaling spectra of oceanic
turbulent measurements of ecither velocity or passive
scalars taken in Lagrangian frameworks. [n this paper, we
perform both Eulerian and Lagrangian analyses of the
intermittency of temperature fluctuations and fluorescence
data (which is a proxy of phytoplankton biomass; see
below). This comparison between Eulerian and
Lagrangian frameworks appears to be of main interest to
understand the effect of a sampling procedure on the
characterization of a given process, but also to provide
information about living organisms’ perception of their
fluid medium.

In vive fluorescence measurements are used to test the
hypothesis that living particles in turbulent fluid motions
behave as passive scalars (Platt, 1972; Denman and Platt,
1976) whose Fourier spectral statistics are — to within
intermittency cotrrections — known theoretically. This
comparison allows us to study the nature of the couplings
between the structure of phytoplankton populations and the
structure of their physical environment (Legendre and
Demers, 1984; Mackas et al.,, 1985). The statistics of
fluorescence data have been previously analysed using
power spectral analysis (Platt and Denman, 1975).
However, the power spectrum is a second order moment,
and is only sufficient for characterizing the variability if
the latter is quasi-gaussian. On the contrary we find that
the variability is far from gaussian — in accord with
cascade theories — and give it a precise scale-by-scale and
intensity-by-intensity characterization using multifractals.
In contrast to the single exponent which is sufficient to
characterize the scaling properties of fractal sets, the
multifractal formalism  generally describes  scaling
relations with an infinite family of scaling exponents (e.g,
the fractal dimensions associated with different levels of
fluid activity). However, due to the existence of stable,
attractive, multifractal generators, only certain aspects of
the multifractal dynamics will be important,; we expect to



obtain universal multifractals (Schertzer and Lovejoy,
1987, 1989), in which this hierarchy is characterized by
only three fundamental exponents.

Our multifractal characterization of biomass improves
on the multifractal analysis of Pascual et al. (1995) in
several ways. First, the use of umiversal multifractals
makes the data analysis much more robust; only three
fundamental parameters need to be estimated and we can
use an analysis technique specially designed for their study
{the Double Trace Moment technique, see Lavallée (1991)
and Lavallée et al. (1992)). Second, using the notions of
sampling dimensions and multifractal phase transitions,
we can quantify the range of statistical moments which can
be accurately estimated given the limited sample size.
Other improvements with respect to Pascual et al. (1995)
concern the pre-processing of the data which is performed
in their paper, taking the square of the difference of
fluorescence data. While this processing can be somewhat
justified for velocity turbulence — at least if it can be
measured at dissipation scales for plankton biomass —, it
becomes here quite ad hoc. [s is certainly better first to
directly analyse the data using structure functions, as we
do here, and as is usually done in turbulence studies (see
e.g Monin and Yaglom, 1975), Finally, we also estimate
the slopes of the power spectra of our data, which is
essential in making comparisons with other fields and
experiments.

In this paper, we present evidence that temperature and
fluorescence variability can be characterized as universal
multifractals. Since our data were taken from a drifting
platform, they have the interesting properties that they
exhibit both Eulerian and Lagrangian regimes. In section
2 we present the theoretical scaling relations for velocity
and passive scalar turbulent fluctuations in Eulerian and
Lagrangian framework, and in section 3 the data analysis.

2. Scaling relations for turbulent fields in Eulerian and
Lagrangian frames

2.1 Eulerian relations for turbulent velocity and passive
scalar fields

Scaling relations in Eulerian turbulence (Kolmogorov,
1941a; Obukhov, 194}, 1949, Corrsin, 1951) can be
expressed using the energy flux £ and the scalar variance
flux 7 :

3
& = @r) (1)
/
(A8,)" AV,
X =—’[—’ (2)

where AV, =[(x+D)-V{(x) and A, =|0(x+1)—0(x)
are the velocity and temperature shears at scale /, AV, /] is
the inverse of the local eddy turnover time, and "~ "
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means equality of scaling laws, ie. having the same
scaling, exponents (see below). Originally, these scaling
relations where considered in the framework of
homogeneous turbulence, i.e. the fluxes were considered as
homogeneous, exhibiting no scale dependence. As a
consequence, a unique exponent was required for the
velocity and temperature, the famous 1/3 law in physical
space, 5/3 for the energy or variance power spectra :

AV} e 11/3 : EV(k)z k—51’3 (3)

AG; = 1113 : Eg(k)'f‘* k—51‘3 (4)

However, it is well known that this homogeneity
assumption was theoretically and empirically untenable:
fluxes are extremely inhomogeneous and scale dependent
(therefore the subscript / in Eq. 1). But because the fluxes
are conserved by the nonlinear terms of the equations of
motion they are (on average) conserved during the
cascade, i.e. their (ensemble) average should be strictly
scale invariant

(&)= (e) : () ~{r) (5)

where the angle brackets "<>" indicate statistical
(ensemble) averaging, The corresponding
(inhomogeneous) scaling relationship for the velocity field
(Eq. 1) is often called the Kolmogorov refined similarity
law (Kolmogorov 1962, Obukhov 1962) and the
corresponding refining for the temperature fluctuations
(Eq. 2) has been proposed for simulation and analysis of
passive clouds (Schertzer and Lovejoy, 1987, Wilson et al,,
1921 Pecknold et al.,1993).

In cascade models of turbulence, the highly
inhomogenous fluxes are the results of a multiplicative
process in which the variability is built up from large to
small scales: larger structures are multiplicatively
randomly modulated by smaller scales. In this case, this
leads to multifractat fields, with the following multiscaling
statistics (Schertzer and Lovejoy, 1987):

((e))7) = 2K (6)
()= 259 (7)
(lav.T)= 2o (8)
([(A 9, )2Av;]q> e S8 (%)
with the relations, from Eqs. 1-2:

K(@)=q-4,03q) ; K (@) =q-Cy,03q) (10)

where L is a fixed outer scale and A=L// is the
corresponding scale ratio, K. (g) and K, (g) are the
scaling moment functions for the fluxes, ¢.{(g) is the
scaling exponent of the (usual) velocity structure function
and &, ,(g) is the joint structure function scaling
exponent of the product (AG,)’AV, . The strict scale
invariance (Eq. 5) of the averaged fluxes yields K (1)=0
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and K (1)=0. Such multifractal fields are called
“conservative multifractals”. On the contrary, Egs. 3-4
point out already that I and ¢ are not conserved. We
may note that the conservation of the fluxes implies
¢r(3)=1 and ¢} ,(3)=1. which corresponds to the exact
relations for the smali-scale dissipation fields given by
Kolmogorov (1941) and Yaglom (1949).

These relations (Eqs. 6-9), giving the scaling moment
functions K{g) and £(g), characterize all the fluctuations
of the fluxes of energy and scalar variances and the
fluctuations of the wind shears. But they do not directly
give the scaling moment function ¢,(g) of the passive
scalar fluctuations, defined as:

((Agl)q>zl-§n(4) (11)

-1 2

Indeed, the corresponding flux ¢, = &, " ;(ff is a mixed
flux of energy and scalar variance, which is non
conservative.  Obviously the two fluxes &, ,y, are
strongly correlated, so that the assumption of
independence of the fluxes, used in Benzi et al. (1992), is a
very simplistic hypothesis. An alternative is to relate this
mixed flux to the structure function of the velocity and the
temperature, as is done in Schmiti et al, (1996), which
obtained the following expression, assuming statistical

independence of the wvelocity and passive scalar
fluctuations:
(@y=q/3+K (g/)-K _(g/2)

Co@=Cpo(3g/2)-{ 0 (g/2)

This expression was tested by Schmitt et al. (1996) on
atrnospheric turbulence data, with simultaneous records of
wind velocity and temperature fluctuations. Unfortunately,
since our Eulerian data gives only the passive scalar field
without simultaneous velocity fluctuations, Eq. 12 cannot
be tested here.

Nevertheless, we can analyze Eulerian scaling moment
functions for a passive scalar using for £ ,(g) the general
expression  for universal multifractals.  Universal
multifractals are the stable and attractive classes which are
obtained with continuous multiplicative scaling processes
(Schertzer and Lovejoy, 1987, 1989). In this framework
the scaling moment functions £{g) {or K(g)!) have a
precise theoretical shape:

$¢q) = Aq+Bg* , (13)

where A and B are constants and 0< g <2 is the Lévy
index for stable variables (see e.g, Feller, 1971). This
parameter is the most important, because, it describes the
kind of multifractality of the field: for a =0, an
inhomogeneous mono-fractal model is recovered (the £-
model, see Frisch et al. (1978)), and for the other bound,
=2 corresponds to a lognormal multifractal
(Kolmogorov, 1962; Obukhov, 1962; Yaglom, 1966). The
condition of conservation of flux ( K(1)=0) vields an

! For conservative processes, we use the notation X(g).

expression which depends only on two parameters: () is
the codimension of the mean of the process, and verifies
0=C <1 (the larger is C,, the more the field is
inhomogeneous) and the Lévy index « :

C
Kigy=—"-(q° - 14
@=—-(¢"-q) (14)
For the wind velocity field, the condition £ ,(3)=1 and
Egs. 1, 13 give:

_a_ G (1]“_1
HORE a_l{ . J (15)

This equation has been used to characterize the wind
velocity field in atmospheric torbulence (Schmitt et al.,
1993, 1996; Schertzer et al., 1995), giving the values:
a=15+005and C, =015£003.

For a scaling field which has no known condition of
normatisation (as for example a passive scalar), we can
write Eq. 13 on the following way:

£ol@)=aH (g ) (16)
a-1

The new parameter H is there the degree of non-
conservation of the average field (J,()=H)
fl # 0 means that the fluctuations are scale-dependent
{ =~ 038 for temperature in atmospheric turbulence, see
Schmitt et al. (1996)). The second term expresses a
deviation from homogeneity (in which case ¢ ,(g) = gH ),
and represents the intermittency corrections. We use Eq.
16 to test the scaling behaviour of the temperature and
fluorescence data, and determine these three parameters
(H, C, and o).

2.2 Lagrangian relations for turbulent velocity and passive
scalar fields

In a Lagrangian framework, as one follows the motion of
an element of fluid, the scaling relations (Eqs. 1-2) are
now to be expressed as a function of the difference of time
{#) of observations (usually between actual time and
initial time) instead of difference of location in an Eulerian
framework. One obtain by replacing AV, /! by 1/¢ in
Eqgs. 1-2 (Landau and Lifshitz, 1944, Inoue, 1950, 1951,
1952a, b; Lin, 1960; Monin and Yaglom, 1975):

INAS
E,E'S““i (17)

(18)

where AV, =|7(r+£)-V(7) and A@, =|0(t+1)-0(7)
are the wvelocity and temperature fluctuations for an
element of fluid on a time scale t (7 being the initial
time). The assumption of a Lagrangian cascade for these
fluxes (Novikov, 1989, 1990) leads formally to simpler
scaling relations than in an Eulerian framework, since in



Eq. 18 the scalar vaniance flux no longer depends
explicitely? on a cross-product of velocity and temperature
fields:

()}~ s {(any)y= aore (19)
((2))» K (a0 ) = a2 20)
with the relations, given by Eqs. 17-18;

K@ =9-2,(29); K (g)=q-Z,(2q9} (21)

where T is a fixed outer time-scale and A =T/t is the
corresponding time-scale ratio, K,(g) and K, (g) are the
Lagrangian scaling moment functions for the fluxes,
#,(q) is the Lagrangian velocity structure function scaling
exponent and Z,(g) is the Lagrangian passive scalar
structure function scaling exponent. The fluxes are still
assumed to be conservative (i.e. their mean is scale-
invariant): XK(1)=0. This implies Z,.(2)=1 and
Z,(2)=1.

Assuming universality (Eq. 14) for the (Lagrangian)
flux of scalar variance, the (Lagrangian) structure
functions’ scaling exponents Z,(g) of a passive scalar
depend only on the universal exponents {(due to Eq: 21),
whereas we pointed out that in the Eulerian framework the
determination of the corresponding structure functions’
scaling exponents is quite more involved and has not such
a straightforward relationship with the scaling function of
the variance flux. One may note that the transformations
(for some other motivation) from space to space are
somewhat discussed in Marsan et al. (1996).

2.3 Eulerian turbulent "biologically active" scalars

For chemically (Corrsin, 1961) or biologically (Denman
and Platt (1976) and Denman et al. (1977)) active? scalars
in turbulence, one usually assumes that there is a
characteristic time, ie. having a exponential decay (e.g.
first order chemical reactions) or having an exponential
population growth law. Due to this characteristic time,
one expects a scalar variance spectrum with a slope -1 (as
in the case of the Batchelor (1959) convective subrange,
see below) for frequencies smaller than the corresponding
characteristic frequency. The reason for this result is
clear: for frequencies smaller than the characteristic
frequency of the exponential law, the latter imposes its
frequency, i.e. the flux of variance is no more ruled by
turbulence, because it is too slow compared to the chemical
reaction (here chlorophyll a synthesis) or population
growth, Therefore, one must replace in Eq. 18 the inverse

of the local eddy turnover time 1/7f=AJF,// by this
characteristic frequency @, , which gives:

2
Ao & (AFJ) L (22)

2 Indeed the velocity was used to defme implicitely the time.

* However, there are still dynamically passive, i.e. not influencing the
velocity field
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where [ is the fluorescence concentration (which is a
proxy of the phytoplankton concentration) and y ., is the
flux of scalar variance, as before. Then, the scalar
variance being the Fourier transform of its spectrum, ie.

(AFY = E (k)k, k=1 (23)

we obtain, for the Fourier power spectrum of the
biologically active scalar (Denman and Platt, 1976):

Ey ()= (ABYE™ = yoyo, 'k (24)

As mentioned this spectrum is similar to Batchelor
(1959) convective-subrange, although the mechanism is
rather different. In case of convection it corresponds to
high wave numbers (or frequencies), contrary to the case
of the active scalar, where it occurs for lower frequencies.
More precisely, the convective subrange is the range of the
wave numbers where the molecular viscosity is already
effective, whereas the molecular diffusion is not yet
effective. This obviously requires a high Prandtl number
(this number being the dimensionless ratio of the
molecular viscosity and diffusivity). The convection
results from non-local interactions, it is therefore the eddy
turn at the beginning of the viscous subrange which will
rule the convection.

Furthermore, fluorescence as a measure of
phytoplankton abundance is a very special active scalar.
For scales where the biological activities have time to
develop (and is not destroyed by the turbulent motion), the
phytoplankton cannot be considered as isolated: there are
continuous predator-prey interactions, and two fluxes of
creation and destruction of phytoplankton, Therefore, at
large scales (when the biological time scales are of the
same order as turbulent time scales), we still expect a
highly intermittent phytoplankton density, but with
characteristics clearly different from a passive scalar. In a
previous paper (Seuront et al., 1996), we empirically
analysed the biological activity and its multifractal
characteristics in an Eulerian framework and confirmed
this picture. We can here interprete these previous
empirical results (Seuront et al, 1996) and propose,
using Eq. 22, for the structure function scaling exponent
¢ p(g) of a biclogically active scalar the following
expression:

ol@)=—K, @ (25)
where K (g) is the scaling exponent of the flux of
fluorescence scalar variance.  Because this flux is
conservative ( K_(1)=0), the biologically active scalar is
not conservative: ¢ ()= -K, (1/2)#0. We may notice
that, up until now, there have been no attempts to study
even the average fluctuations of the plankton variability in
a Lagrangian frame, to our knowledge.
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Fig. 1. A portion of temperature (a) and i# vivo fluorescence (b) time series
recorded m the Southem Bight of the North Sea. Sharp fluctuations cecurmg
on all time scales are clearly visible, indicating the intermittent behaviour of
the datasel.

3. Empirical study of turbulent temperature and
fluorescence

3.1 The data, their spectra and Eulerian/Lagrangian
transition

The data were obtained as part as an experiment conducted
adrift in tidally mixed coastal waters in the eastern English
Channel, at the end of March 1995 during a period of
spring tide. Temperature and in vivo fluorescence were
simultaneously recorded during two hours at a 15m
depth with a CTD recorder (Sea Bird 25) and a
fluorometer (Sea Tech), respectively. The sampling
frequency « being 2 Hz, our analysis are based on a time
series of 11082 measurements, presented as a typical case
of the variability of the different datasets sampled in this
period. Samples of the data are shown in Fig. 1. One may
note that the variability observed in the data used in our
computation is always greater than the resolution of the
measurements in both cases, and then is independent of
any instrumental uncertainties.

We computed the Fourier power spectra of temperature
and in vivo fluorescence fluctuations. The fluorescence
power spectrum is shown in Fig. 2. It follows a power-law

5.5
4,5
_ ]
L=
= 3.5
-11]
-]
= /
1.5 1 -L66
1,5 T T T
-4 -3 -2 -1 0

Log f (Hz)

Fig. 2. The power spectrum of the turbulent fluorescence, shown in a log-log
plet. The data are scaling from 0.04 to 1 Hz with a slope close to
Kolmogorov power law trend of a passive scalar E(f)xf # with
B =166. For lower frequencies, there is no evidence of a lmear trend nor
characteristic periods.

behaviour from 0.04 to 1 Hz according to:
E@y«ca™” (26)

where the slope # is close to the Obukhov-Corrsin
Eulerian value 5/3 given by Eq. 4 (using the usual Taylor
hypothesis to transform frequencies into a distance). In
the multifractal frame, the intermittencies are taken into
account noting that;

B=1+4,(2) 27

with ¢ ,{2) given by Eq. 16, but empirically the correction
to 5/3 is small for this second order of moment. For
frequencies less than 0.04 Hz, fluorescence fluctuations do
not exhibit evidence of power law behaviour nor
characteristic periods. This is likely due to the shortness
of the data set; it has been shown (Seuront et al., 1996)
from a longer time series (but taken in an anchor station),
that fluorescence data are scaling over smaller frequencies.
This may also be due to the transition from Euierian to
Lagrangian sampling — see below.

The temperature power spectrum presents a mixed
behaviour with two scaling tendencies for frequencies from
0.038 to 1 Hz ( #=~1065), and for frequencies lower than
0.038 Hz (f=~2) (Fig. 3a). These tendencies being
difficult to distinguish, we transformed the spectral density
by a multiplicative factor o>, and the resulting, spectrum
exhibits a power law behaviour with an exponent 0.35
(** =095 p < 0.001) which clearly breaks for frequency
of about 0.038-0.040 Hz, lower frequencies being
assimilated to a “noisy background™ (horizontal tendency,
see Fig. 3b).

In order to interprete this change in behaviour of the
power spectrum, let us recall that the measurements are
taken from a beat adrift in the Channel. For the high
frequency range of the measurements we can consider the
boat as not moving, so the measurements correspond to a
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Fig. 3. The power spectruun of the turbulent temperature (a), shown in a log-
log plot, exhibits a scaling behaviour for frequencies from 3.8 107 to 1 Hz
with 4 spectral slope F =165 and for frequencies greater than 3.8 107 Hz
with a slope £ =1.96 . The power spectrum, transformed by a factor w® (#)
confirms the scale breaking of the data, exhiabiting a linear trend of .35 from
3810701 Hz
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fix-point procedure, ie. Fulerian sampling. This is
confirmed by the twe small-scale spectra, each of them
close to a -5/3 slope. The scale break exhibited by the
temperature field for frequencies of about 0.038 Hz is
associated with a characteristic time scale of 13 seconds.
Using, the instantaneous tidal circulation of about 1 m.s™
observed during the field experiment, we estimate that the
associated length scale is ~ 13 meters, which is close to
the size (12.5m) of the ship used during the sampling
experiment (N/O Sepia [1, CNRS-INSU). This means that
for frequencies smaller than 0.038 Hz, the inertia of the
boat becomes negligible and the measurements are
effectively taken following the flows, i.e. in a Lagrangian
framework. This transition is also confirmed by the
spectral analysis of the temperature data which exhibit a
spectral slope close to -2 as given by Eqs. 20-21 and 27.
We may note here that contrary to the Eulerian frame
where there are intermittency corrections to the spectral
slope, in the Lagrangian frame we do not expect any
intermittent correction for this second order moment
(because here, the second order moment has the same
scaling as a conserved flux: S=1+27,(2)=2-K (1}=2.
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Log < AT, 7

Logt

Fig. 4. The tenperature structure fundions vs. <|A0, |q > vs. ! ma log-
log plot for ¢ = 1, 1.5, 2 wmd 2.5 (from top to bollom), were
< ‘A9,|q =< (AG,)? > (17 1)*? | Linear trends are clearly visible for all
aorder of moments, from 0.5 to 13s, for Bulerian scales (less than 13 seconds)
and Lagrangian time scales (greater than 13 seconds). The straight lines
mdicate the best regression over each range of scales for each value of g.
This gives in particular: H# =Z(1)=034£00 and £(2)=0651002 for
Bulerian temperature and H ={1)=05112001 and (2} =096+003 for
Lagrangian temperature.

It is then possible to show that a time series recorded a
priori in a oceanic Lagrangian framework can exhibit both
Eulerian and Lagrangian components whose relative
importance is determined by the size of the boat. We now
determine the scale invariant properties of the
intermittency of temperature and fluorescence fields, using

-direct multifractal analysis techniques.

3.2 Multifractal study of Eulerian intermittencies

We computed the structure functions ((A(),)“) for the
temperature field. Two power law regimes are visible in
log-tog plot (Fig. 4), consistent with the scale transition
observed on the Fourier power spectrum. We obtain an
Eulerian scaling over a range of scale from 0.5 s to 13 s
(also observed for fluorescence field). We also estimated
the structure functions for the fluorescence field.

In Fig. 5 we plotted the structure functions’ scaling
exponents {(g) obtained as the slopes of the straight lines
for the range of scales 0.5 to 13 s. Here as below, the error
bars come from the different portions of the dataset
analysed separately: for example, with the scaling of
Eulerian temperature and fluorescence up to 13 s and a
database of 11032 points, we can estimate the exponents
for 425 non-overlapping intervals. The scaling of the first
exponents are very similar for temperature and
fluorescence, respectively with A = ¢ (1)= 034+ 002and
IT=¢(1)=036+002, respectively. This 1is slightly
smaller than the values obtained in Seuront et al. (1996)
(H=0424002 for temperature and 041+002 for
fluorescence), but nevertheless close to 1/3. the value
corresponding to the Obukhov-Corrsin non-intermittent
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Fig. 5. Dimpirical values of £(g) obtained here for fluoresceence (dashed
lne) @nd LEuleriam {(continuous line) temperature, compared to the
homogeneous lmeur curve £(g) =q/3 comresponding to Obukhov-Corrsin
non-intermitient turbulence {discomtmuous lme). The nonlmearnty of the
empirical curves indicates ultifractality.

passive-scalar turbulence. The scaling of the second order
moments confirm the estimates from the power spectra
{(f=1+2(2)), with £(2)=0661002 for fluorescence
and £(2)=065+002 for temperature. More generally,
for other orders of moments the non-linearity of the curves
(g} in Fig. 5 shows that these two fields can be
considered as multifractals; the two curves corresponding
to Eulerian sampling for temperature and fluorescence (i.e.
phytoplankton biomass) are very close to each other.
Within experimental error, they cannot be qualitatively
considered as being different (we quantify is below). As
shown in Seuront et al. (1996), this is a generalization of
the result obtained by Denman and Platt (1976) who tested
the assumption that the fluorescence was a passive scalar
using only power spectra (a second order moment). Figure
5 shows that for all moments (and thus all intensities),
fluorescence and temperature intermittencies have nearly
the same probabilities. These multifractal statistics are
compatible with the intermittent structure of the original
tume series (Fig. 1) which clearly exhibit numerous
structures of different strengths and scales.

We now attempt to quantitatively characterize these
intermittencies. Using Eq. {16) we have directly:

H=Z£(1

£ 8
C=H-{@)

This gives H=~034+002,  ~0037+0004 for

temperature, and /A = 0361002, C, = 003510004 for
fluorescence. The value of « can be estimated using the
best nonlinear fit of Eq. 16 (for 0<g <65 and using a
simple least-square method) of the empirical curve: we
obtain for both temperature and fluorescence
a=~181+005. These values are quite close to those
reported in Seuront et al. (1996). H ~ 042, C, = 0.04 and
a =17 for temperature, and H =041, C, =004 and

2,00 —
la -
C(q) 1,50 1 _/"
- ,"-‘.
1,00 - -
.. !”’
0,50 -
o’oo T L hl B T T T
0 2 4 6 $ 10
q
2,00 7
b -

L(g) 1 1

Fig. 6. The Eulerian scaling expoment structure function {{g) empirical
curves (dashed line), compared to the homogeneous linear curve
$(g) =q /3 corresponding to Obukhov-Corrsin non-intermitient turbulence
(discontinuous line), and to the universal multifractal functions obtam with
ff, C and o in Eq. 16 (cantinuous line). The multifractal fit is excellent
until moment order g=6.0102 for temperature (a) and ¢=62%02 for
fluorescence (b).

a = 18 for fluorescence. The value of & we obtain shows
that these fields are not lognormal multifractals (o =2),
but also that the lognormal approximation for £{(g) should
not be too far from empirical estimates, The values of
C, =004 may seem to be quite small, but one must
remember that this concerns the scalar field; if one
considers the (non-conserved) flux (see Eq. 2):
3

p=¢"" 2, = (Af) (29)
then the value of (| must be transformed to
(, =3C, =027 This values is larger than our latest
estimate for the energy flux in the atmosphere (Schertzer
et al., 1995; Schmitt et al., 1996): C, = 015, this shows
that the scalar turbulence is more intermittent than the
velocity turbulence.

Furthermore, within experimental error the values we
obtain for temperature and fluorescence cannot be clearly




distingnished. We compared the empirical estimates with
the theoretical curves in Fig. 6 (using Eq. 16 and the
values above). the correspondence is excellent until
moment order g, ~60+02 and g, ~62x02, after
which the empirical curves are linear (Fig. 6). This linear
behaviour of the empirical scaling exponent structure
function ¢(g) is well-known for sufficiently high order
moments (Schertzer and Lovejoy, 1989) and is due to
sampling limitations (i.e. second order multifractal phase
transition; see Schertzer and Lovejoy (i992)) or is
associated with a divergence of statistical moments (i.e.
first order multifractal phase transition; see Schertzer and
Lovejoy (1992)) if substantiated by large enough sample
size. Here with one realization of about 11,000 datapoints,
the change in behaviour is likely to be due to sampling
limitations. In this case, the critical moment g, (for a
scaling exponent structure function given by Eq. 16} is
given by (Schertzer and Lovejoy, 1992):

] la
=1 30
q. (q} (30)
And in this case, the empirical {g) follows:
gg)=1-r.49 ; gz2q, (31)

where y  is a maximum singularity associated to q_.
Here with the values estimated above, we obtain: g~ 62
for temperature, and g_ = 65 for fluorescence, which are
very close to the values previously proposed from the
empirical curves. This critical moment is only linked to
the sampling limitations, when more samples are taken
into account in the statistics, it increases. In any case,
most statistical parametrization basically dealing with
maximum moment of order 3 (skewness), a critical
moment greater than & then characterizes very rate events.

3.3 Multifractal study of Lagrangian intermittencies

As with Eulerian data above, we computed the structure
functions for Lagrangian temperature which were shown
to exhibit a scaling behaviour over scales greater than 13s.
The corresponding behaviour of the fluorescence data is
quite different, and it is not clear if there is some scaling
or not (see Fig. 3); therefore, we do not proceed to the
analysis of large-scales fluorescence field, leaving it to a
future study. There is also an indetermination about the
interpretation to give to this change of behaviour: is it due
to Eulerian/Lagrangian transition, as for the temperature,
or due to the biological activity, as obtained — for another
dataset — in Seuront et al, (1996),

The scaling exponent for the first and second moments
of the Lagrangian temperature are Z,(1)~= 051£002 and
Z,(2)~ 096+ 003. The corresponding estimates for
other moments gives the curve Z,(g), whose (slight)
nonlinear behaviour (see especially the low order
moments) is the sighature of multifractal Lagrangian
intermittency.
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The slopes of the straight lines then give the estimates of «: o =18 and
C, is estimated by the mtercept: C, =0.05.

Let us recall here the simple expression for Z,(q),
given by Egs. 18, 20-21:

_a_ G (g)“__q_ 32
2o @D=7 a—l( 2 2} G2

which directly gives the universal parameter C| as
C,=1-2Z'(2). Here we obtain C, ~005+001. A
simple way to estimate « is to take it as the best nonlinear
fit of the data using Eq. 32. This gives a =183+0.05, the
same value as what we obtain in the Eulerian case. We
also verified these values by comparison with those
obtained from the Double Trace Moment anatysis (DTM)
(Lavallée, 1991; Lavallés et al., 1992), which was applied
on the data after a fractional differentiation of the
temperature data of the order 1/2 (e a o
multiplication in Fourier space, to remove the /7~ scaling
of the first moment), and taking the square of the result,
yielding an estimate of y, (see Eq. 18), whose pattern can
be seen in Fig 7.

The basic idea of the DTM technique is to generalize the
application of statistical methods to the quantity

12
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Fig. 9. The Lagrangian sculing exponent structure fimetion £{g) empirical
curves (dashed lme) compared to the homogeneous Lagrangian turbulence
tincar cwrves {(g)=g/2 (discontinuous line) and to the universal
multifractal functions obtained with ¢ and C, i Hq. 32 (continuous line}.
The wuniversal mmuliifractal fit is excellent until moment order
¢ = 104 205 for temperature, correspanding te multifractal phase transition
associated with sarplmg limilations.

(¥+)". This is done by taking the »" power of y, at
the scale ratio A, (the ratio of the outer or largest scale of
interest to the smallest scale of homogeneity), and then
studying its scaling behaviour at decreasing values of the
scale ratio A < A :

_ (ZA)’? "
FANNE) <(ZA'),7> ((XAU) > (33)

The moments of this new field then have a multiple
scaling behaviour, characterized by the new moment
scaling function K, (g, 7) = K{gn)—gK(s77) ( is a constant).
For conservative universal multifractals, this gives, with
the help of Eq. 14

K (g.m=n"K(q) : (34)

Then, by keeping g fixed (but different from the special
values 0 or 1), the slope of X,(g,7) as a function of 77 on
a log-log graph gives the values of the index « , which
with the help of the intersection with the line (n7=1)
yields C, (Fig. 8). This again gives o =18 and
('} = 005, which confirms the values estimated above.

We then compare the universal multifractal fit obtained
with o and C, in Eq. 32, with the empirical estimates.
The wuniversal multifractal and empirical fits were
excellent until moment of about 104+ 05, after which the
empirical curves exhibit a linear behaviour (Fig. 9) which
can reasonably be associated with sampling limitation
because of the small number of data considered (because
we had to average the original time series up to the scale of
13s, in order to be in the Lagrangian scales). This critical
moment is given here by the following expression,
obtained using Eq. 32, (it replaces Eq. 30, which was

a Eulerian data Lagrangian data
(f>0.038 Hz} (= 0.038 Hz)
H, Ciwd o« from Eq. 16 C, and o from Eq. 32

|3 H o) o B H Cy o

Temperature | 1.65 034 0.037 1.7 | 196 031 0065 18

Fluorescence | 1.66 036 0.035 1.8 - - - -

b Eulerian data Hulerian data
passive scalar biologically adtive scalar
for > 0.01 Hz for f+ 0.01 Hz

B H C, o B H (] o

Temperature | 1.74 042 004 1.7 - - - -

Fluorescence | 1.75 0.41 004 18 122 012 002 0.8

Table 1. The valucs of the universal multifractal parameters oblamed here,
accordng to Lq. 16 for Eulerian values and Hg. 32 for Lagrangian (a).
compared to the values we previously obtamed mn Seuront et al. (1996) {b).
The values of the slopes of the Fourier power spectra are also indicated.

obtained using Eq. 16):

1z
g, = 2((}] (3%
1

We obtain g, = 105, which is very close to the empirical
value given above.

4, Conclusion

It appears clearly from the present study that an a priori
Lagrangian sampling may exhibit Eulerian and
Lagrangian components separated by a length scale
intimately linked to the size of the ship used to collect the
field data. Indeed our results show that Eulerian and
Lagrangian passive scalar turbulence exhibit multifractal
statistics compatible with universal multifractals, in
qualitative accord with the visual appearance of the time
series. The values of the parameters are summarized in
Tables la-b, which contain also the values reported in
Seuront et al. (1996),

These analyses also provide an empirical confirmation
of the » 7 theory of the turbulent Lagrangian turbulent
behaviour of a passive scalars. We obtained here a first
evidence of Lagrangian multifractality, and we estimated
the universal multifractal parameters (see also Table la-b),
according to Eq. 32, which is a Lagrangian analogy of the
refined similarity hypothesis for Eulerian turbulence.
However, our Lagrangian study needed an averaging of the



dataset, which means that these results must be confirmed
with much larger datazets, in order t¢ be confident about
the numerical values of the parameters.

On the other hand, i vive flucrescence (a
phytoplankton biomass proxy) appears to be a passive
scalar on small scales (less than I3 seconds) associated
with an Eulerian framework. Moreover, the commonality
of the basic multifractal parameters of temperature and
fluorescence reflects profound nonlinear coupings between
the gpace-time structure of phytoplankton populations and
the structure of their physical environment. As already
noted in Seuront et al. (1996), this generalizes the results
obtained in Denman and Platt (1976), with only a Fourier
power spectrum analysis. In order to better understand the
nature of the coupling between these fields, one direction
for the future researches is to study their multifractal
correlations; another is to analyze these fields in a
vectorial multifractal framework.

Lastly, on larger scales (greater than 13 seconds)
associated with a Lagrangian framework, the lack of
scaling behaviour related to the small number of
datapoints in the series does not allow us to explore the
Lagrangian fluorescence variability, and to test Eq. 25
this will be done in future studies, using larger datasets.
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