15℃时 NaC1-C0(NH₂)₂-H₂O₂-H₂O 四元体系相平衡

张朝, 郭康宁, 曹吉林

(河北工业大学化工学院, 天津 300130)

摘 要:为了改进过氧化尿素合成的生产工艺,采用等温法测定了 15℃时 NaCl-CO(NH₂)₂-H₂O₂-H₂O 四元体系及其 三元子体系 CO(NH₂)₂-H₂O₂-H₂O 和 NaCl-CO(NH₂)₂-H₂O 的相平衡数据,依据所绘相图分析,结合热重和 XRD 表征, 得出实验条件下 NaCl 和尿素能形成新的加合物 CO(NH₂)₂-NaCl,其热稳定性比纯尿素高.根据相图计算,15℃时 CO(NH₂)₂-H₂O₂-H₂O 体系合成过氧化尿素的适宜条件范围较宽,在母液不利用的情况下 H₂O₂ 的收率为 58.08%;而 在 NaCl-CO(NH₂)₂-H₂O 体系中,NaCl 对过氧化尿素形成没有盐析效应.

关键词: 过氧化尿素; 氯化钠; 过氧化氢; 相平衡; 加合物

中图分类号: TQ123.7 文献标识码: A

1 前 言

过氧化尿素是尿素和过氧化氢形成的加合物,是近 年来开发的一种重要的精细化工产品.过氧化尿素具有 杀菌广谱、杀菌力强、使用浓度低、消毒时间短、消毒 后无残余毒性等特点^[1-3].作为一种固体氧化剂和氧源 提供试剂,过氧化尿素可广泛用于漂白、纺织、废物处 理、日用化工、医药、农业、养殖业等领域^[4].

目前,过氧化尿素的生产普遍采用双氧水与尿素反应合成的湿法工艺^[5-8],该工艺理论上 H₂O₂和尿素 1:1 (摩尔比)就可结合生成固体过氧化尿素,但因 2 种物质 受溶解度和 H₂O₂ 不稳定极易分解的影响,限制了过氧 化尿素生产工艺的制定.尿素和 H₂O₂ 加合形成过氧化 尿素后,剩余母液中所含部分 H₂O₂ 和尿素的循环利用 始终是该工艺的一个关键问题.虽然采用传统的减压蒸 发浓缩可实现该母液的循环^[9],但不可避免地产生原料 浪费,特别是 H₂O₂ 的损失.

本工作提出用 NaCl 盐析法降低母液中 H₂O₂和尿素 的工艺设想,其理论基础是 NaCl-CO(NH₂)₂-H₂O₂-H₂O 相图,对此四元体系至今还未见研究报道.为减少 H₂O₂ 分解损失,过氧化尿素合成温度不宜过高,本工作在 15 °C下,对 NaCl-CO(NH₂)₂-H₂O₂-H₂O 四元体系及所含三 元子体系 NaCl-CO(NH₂)₂-H₂O 和 CO(NH₂)₂-H₂O₂-H₂O 进行了相平衡数据测定和相图分析.其中,三元体系 NaCl-CO(NH₂)₂-H₂O 相平衡至今尚未见研究报道;三 元体系 CO(NH₂)₂-H₂O₂-H₂O 的报道^[10]只限于 0, 10 和 50°C.

2 实验

2.1 化学试剂

收稿日期: 2008-10-07,修回日期: 2008-11-17

文章编号: 1009-606X(2009)01-0074-05

实验所用尿素、NaCl及H₂O₂均为分析纯试剂,水为去离子水.

2.2 实验装置及实验方法

溶解度测定实验装置见图 1,测定相平衡的玻璃管 5(容积 30 mL)浸在温度控制精度为±0.1℃的恒温水浴 中,玻璃管口用搅拌棒上带有的橡皮盖封闭,以避免相 平衡实验过程中管内水分挥发.

图 1 测定过氧化尿素溶解度实验装置

Fig.1 Experimental apparatus for measurement of sodium urea peroxide solubility

实验时先将水浴温度控制在设定值,然后将 H₂O₂、 尿素和H₂O(四元体系测定时还需加NaCl)按一定配比加 入玻璃管 5 中,开动搅拌,达到平衡时停止搅拌,使玻 璃管内的液固相静置分层,然后分别取出清液和湿固相 进行分析.实验表明相平衡时间为 5 h.

2.3 分析测试方法

XRD 采用日本理学 D/MAX2200 型 X 射线衍射仪 (Cu 靶 Ka射线,管电压 40 kV,管电流 30 mA)测定, TG 用美国 Perkin-Elmer DTA 1700 型差热分析仪测定, 尿素含量采用甲醛法滴定^[11],NaCl 含量采用莫尔法确 定,H₂O₂含量采用高锰酸钾滴定,水含量用差减法计算, 固相确定采用湿渣法.

基金项目: 国家自然科学基金资助项目(编号: 20676025); 河北省自然科学基金资助项目(编号: B2008000033) 作者简介: 张朝(1983--),男,河北省辛集市人,硕士研究生,研究方向: 化工工艺;曹吉林,通讯联系人,E-mail: caojilin@hebut.edu.cn.

3 结果与讨论

3.1 15℃时 NaCI-CO(NH₂)₂-H₂0 三元体系溶解度数据及 相图

表 1 为 15 ℃时 NaCl-CO(NH₂)₂-H₂O 三元体系溶解 度数据,根据表 1 绘制相图如图 2.

表 1 15 $^{\circ}$ C NaCl-CO (NH₂) 2-H₂O 三元体系溶解度数据 Table 1 The solubilities of NaCl-CO(NH₂)2-H₂O system at 15 $^{\circ}$ C

Composition	or inquite phase	wet residt	Equilibrium		
(%, <i>w</i>)		(%	equinorium		
NaCl	NaCl CO(NH ₂) ₂		CO(NH ₂) ₂	- sonu phase	
1.53	51.62	1.42	68.75	U ¹⁾	
11.06	46.50	7.21	69.32	U	
13.64	42.75	9.11	65.10	U	
14.01	42.98	33.21	57.87	U+UL ²⁾	
14.45	43.27	29.43	45.32	U+UL	
17.43	36.33	26.37	39.49	UL	
18.03	33.74	29.28	38.09	UL	
19.89	25.59	40.05	33.14	L ³⁾ +UL	
20.16	25.55	68.6	13.48	L+UL	
21.73	19.46	68.25	8.06	L	
23.72	11.17	66.52	7.05	L	
25.97	2.33	79.80	1.23	L	
0.00	48.00			U	
35.70	0.00			L	

Note: 1) CO(NH₂)₂; 2) CO(NH₂)₂·NaCl; 3) NaCl.

由图 2 可知, 15 ℃时 CO(NH₂)₂–NaCl–H₂O 三元体 系存在 2 个共饱点、5 个结晶区. 点 *K* 为 CO(NH₂)₂和 CO(NH₂)₂·NaCl 的共饱点, *D* 为 CO(NH₂)₂·NaCl 和 NaCl 的共饱点. 5 个结晶区分别为: CO(NH₂)₂·SaCl 和 NaCl 的共饱点. 5 个结晶区分别为: CO(NH₂)₂·SaCl 和 NaCl CO(NH₂)₂·NaCl 与 CO(NH₂)₂ 的 结 晶 区 *KHG*, CO(NH₂)₂·NaCl 的结晶区 *KGD*, CO(NH₂)₂·NaCl 和 NaCl 的共结晶区 *GDF*, NaCl 的结晶区 *DEF*. 由相图分析确 定 CO(NH₂)₂·NaCl 为目前尚未报道过的加合物,对其进 行表征分析.

3.2 CO(NH₂)₂·NaCI 加合物的热重和 XRD 分析

图 3 为加合物 CO(NH₂)₂·NaCl 的热重分析图谱,由 图可看出,在温度低于 160℃时该加合物没有失重, 600℃后产品不再发生变化,此时的失重率为 57%.由 于此物质含有水分,所以失重过高,由此计算此加合物 的组成比例为 1:1.尿素的分解温度是 132.7℃^[12],加合 物的分解温度高于纯尿素,说明 CO(NH₂)₂和 NaCl 形成 的加合物提高了尿素的稳定性.

图 5 加合初CO(NH₂)₂·NaCl 的热重分析图 Fig.3 TG curve of CO(NH₂)₂·NaCl additive

图4为CO(NH₂)₂·NaCl加合物的XRD 谱图.由MDI Jade 查得尿素的XRD 衍射峰 2*θ*分别为 22.138, 24.568, 29.250: NaCl 的XRD 衍射峰 2*θ*分别为 27.428, 29.039, 31.384, 48.281. 与加合物 XRD 谱图比较可发现, CO(NH₂)₂·NaCl 加合物是不同于尿素和 NaCl 的一种新 结构物质.由 CO(NH₂)₂-NaCl-H₂O 体系相图和 CO(NH₂)₂·NaCl 的热重分析图谱可以看出,此加合物中 CO(NH₂)₂ 和 NaCl 摩尔比为 1:1,两者通过配位作用形 成加合物.实验发现此加合物极易吸潮.

3.3 15 ℃时 CO (NH₂)₂-H₂O₂-H₂O 三元体系溶解度数据及相 图

表 2 为 15℃时平衡液相中 H₂O₂ 含量较低时 CO(NH₂)₂-H₂O₂-H₂O 三元体系部分溶解度数据,根据 表 2 绘制相图如图 5.

表 2 15 ℃时的 CO (NH₂) 2-H2O2-H2O 体系相平衡数据

Table 2	The phase equilibrium data of CO(NH ₂) ₂ -H ₂ O ₂ -H ₂ O
	system at 15 °C

Sy.	stem at 15	C		
Composition of liquid		Wet residue	Equilibrium	
phase (%, ω)		(%, <i>w</i>)		
$CO(NH_2)_2$	CO(NH ₂) ₂ H ₂ O ₂		H_2O_2	sonu phase
46.21	2.54	93.55	0.78	$U^{1)}$
44.76	3.78	96.89	0.34	U
48.56	7.76	97.47	0.87	U+UH
48.48	7.74	72.54	14.21	U+UH
48.51	7.73	76.34	19.39	U+UH
44.95	7.53	60.32	31.17	UH
41.24	8.45	59.47	30.67	UH
38.18	8.87	59.15	31.48	UH
35.32	9.49	59.52	32.27	UH
30.87	10.06	58.04	32.44	UH
28.01	10.98	60.50	33.50	UH
25.24	11.62	56.51	31.25	UH
22.09	13.01	60.52	35.13	UH
19.08	15.73	58.37	34.97	UH
16.59	18.24	59.48	35.01	UH
14.25	21.13	56.82	34.37	UH
12.76	24.07	61.62	35.98	UH
11.99	28.58	61.91	35.14	UH
48.00	0.00			U

图 5 15℃时的 CO(NH₂)₂-H₂O₂-H₂O 体系相图 Fig.5 Phase diagram of CO(NH₂)₂-H₂O₂-H₂O at 15℃

由图 5 可知, 15℃时 CO(NH₂)₂-H₂O₂-H₂O 三元体 系存在 1 个共饱点、3 个结晶区. 点 *E* 为 CO(NH₂)₂和 CO(NH₂)₂·H₂O₂ 的 共 饱 点 . 3 个 结 晶 区 分 别 为 : CO(NH₂)₂·H₂O₂结晶区*ACE*, CO(NH₂)₂·H₂O₂与 CO(NH₂)₂ 的共结晶区 *DEC*, CO(NH₂)₂ 的结晶区 *BDE*.

Note: 1) CO(NH₂)₂·H₂O₂.

表3 15 ℃时 NaC1–CO (NH₂)₂–H₂O₂–H₂O 体系相平衡数据

Table 3 The phase equilibrium data of NaCl–CO(NH ₂) ₂ –H ₂ O ₂ –H ₂ O system at 15 $^{\circ}$ C									
Composition of liquid phase (%, ω)		Composition of liquid phase [g/100 g dry salt] ¹⁾		Wet residue of solution (%, ω)			Equilibrium		
NaCl	H_2O_2	2 CO(NH ₂)	NaCl	H_2O_2	H ₂ O	NaCl	H_2O_2	CO(NH ₂) ₂	solid phase
1.13	7.28	51.19	1.89	12.21	67.79	0.86	17.49	57.90	U+UH
4.93	7.04	49.23	8.05	11.50	63.39	4.70	19.45	55.18	U+UH
8.92	7.05	48.89	13.75	10.87	54.19	5.46	16.51	60.87	U+UH
10.94	7.15	49.25	17.47	10.32	48.49	7.07	18.14	60.14	U+UH+UL
10.63	6.91	49.66	17.21	10.30	48.80	7.72	5.37	64.81	U+UH+UL
10.71	7.08	49.52	15.75	10.41	48.57	10.79	19.63	56.85	U+UH+UL
12.17	6.00	49.00	18.11	8.93	48.88	10.13	5.09	73.21	U+UL
12.15	3.07	47.07	20.00	5.05	60.53	33.51	1.64	43.71	U+UL
14.14	0.39	45.57	21.53	0.59	66.38	29.23	2.91	55.47	U+UL
13.08	7.56	46.25	19.55	11.30	49.49	14.16	15.18	52.38	UL+UH
13.63	7.95	42.67	21.21	12.37	55.65	23.3	10.44	49.48	UL+UH
15.03	8.58	39.73	24.29	13.87	57.89	19.28	12.86	45.77	UL+UH
16.17	9.39	36.94	26.08	15.01	60.01	10.18	18.76	43.66	L+UL+UH
16.21	9.34	36.74	26.01	14.99	60.53	36.65	6.72	38.58	L+UL+UH
16.42	9.02	36.99	25.99	15.03	60.18	47.13	4.02	16.46	L+UL+UH
16.80	6.92	37.54	30.78	12.69	63.24	46.96	4.39	16.25	UL+L
16.14	9.65	30.65	34.67	10.61	77.18	41.62	6.17	35.71	UL+L
18.37	3.79	32.65	38.64	7.97	82.46	42.13	1.68	27.64	UL+L
20.73	5.92	23.765	41.52	5.03	98.37	56.33	2.80	20.00	UL+L
20.48	0.29	27.71	43.37	1.87	106.28	48.02	0.20	30.23	UL+L
15.25	9.50	36.38	26.48	16.49	63.58	10.13	18.80	43.63	UH+L
16.50	9.75	32.93	28.70	16.96	68.97	12.86	19.14	42.71	UH+L
16.98	9.62	31.07	32.15	18.21	73.39	35.88	13.61	34.92	UH+L
17.30	11.47	28.57	32.17	20.00	74.40	80.11	2.93	15.25	UH+L
17.98	13.07	26.39	31.25	22.76	74.10	17.41	21.27	41.68	UH+L
16.92	15.27	23.17	32.10	26.73	80.62	13.42	22.53	40.33	UH+L
16.57	16.71	19.77	31.22	31.61	88.49	10.37	24.17	37.03	UH+L
19.28	17.02	16.58	31.55	34.37	89.10	47.00	12.19	13.07	UH+L
14.99	20.36	15.40	29.54	40.11	97.05	11.08	25.52	31.75	UH+L
15.54	23.03	13.33	29.95	44.37	92.67	10.66	25.99	32.72	UH+L
11.67	21.63	14.60	24.35	45.17	108.76	7.96	26.84	32.24	UH+L
0.00	48.56	7.76	0.00	10.72	77.56				
14.01	0.00	42.98	24.12	0.00	75.47				
19.89	0.00	25.59	43.77	0.00	119.88				
		~~							

Note: 1) Composition of liquid phase except water.

3.4 15 ℃时 NaC1-C0(NH₂)₂-H₂0₂-H₂0 四元体系溶解度数 据及相图

表 3 为 15 ℃时平衡液相中 H₂O₂ 含量较低时 NaCl-CO(NH₂)₂-H₂O₂-H₂O 四元体系部分溶解度数据,根据 表 3 绘制对应的相图如图 6 所示,其中图 6(a)是水图, 图 6(b)是干盐图.

由图 6(b)可知, 15 ℃时 CO(NH₂)₂-NaCl-H₂O₂-H₂O 系存在 2 个共饱点、4 个结晶区. 点 *E* 为 CO(NH₂)₂·H₂O₂ 与 NaCl 和 CO(NH₂)₂·NaCl 的共饱点,点 F 为 CO(NH₂)₂·H₂O₂与CO(NH₂)₂和CO(NH₂)₂·NaCl 的共饱点. 4 个结晶区分别为: CO(NH₂)₂结晶区 *ABFC*, CO(NH₂)₂·NaCl 结晶区 *EFCD*, NaCl 结晶区 *EDNG*, CO(NH₂)₂·H₂O₂ 结晶区 *BFEG*. 图 6(b)表明 CO(NH₂)₂, NaCl, H₂O₂三者没有形成加合物, NaCl 的加入对 H₂O₂ 的盐析效应不明显.

图 6 15℃时 NaCl-CO(NH₂)₂-H₂O₂-H₂O 体系相图 Fig.6 Phase diagrams of NaCl-CO(NH₂)₂-H₂O₂-H₂O system at 15℃

3.5 合成过氧化尿素的相图分析

以 30%的双氧水和尿素为原料,利用 15℃时 CO(NH₂)₂-H₂O₂-H₂O 三元体系相图进行过氧化尿素合 成的分析,进料点一定在直线 *DF*上(见图 5),连接溶解 度曲线上的点和 *C*点必与 *DF*相交,根据杠杆规则,曲 线点到交点的长度与交点到 *C*点的长度比越大,过氧化 尿素的收率越高.经过逐点计算,可知点 *Q*,*P*,*N*的过氧 化尿素收率基本相同.因此,15℃时生产过氧化尿素的 最佳进料配比为 CO(NH₂)₂:H₂O₂=1:0.51.取*M*点进料, 进料量为 1 kg(其中尿素为 0.3687 kg, 30%过氧化氢为 0.625 kg)时,按照杠杆规则,得到的固相与液相的质量 比为 0.431,实际可合成过氧化尿素 0.3012 kg,以 H₂O₂ 为关键反应物,可得出 H₂O₂的收率为 58.08%,此即为 15℃时生产过氧化尿素的最佳收率,可用于指导过氧化 尿素的工业生产.

按 15℃时三元体系最佳条件配比反应,反应后的 母液理论上总质量为0.6988 kg,含CO(NH₂)₂为25.24%, H₂O₂为11.62%,在NaCl-CO(NH₂)₂-H₂O₂-H₂O四元体 系干盐图和水图上分别为点 *M* 和 *M*. 三元体系中的固 相点在四元体系中为*S*[如图 6(b)].

向母液中加入 NaCl,随着 NaCl 加入量增大,体系

点沿着 MN 由 M 向 N 移动. 如图 6(b)所示,当体系点移动到 H 时,水图上相应水值点 H 高于饱和水值 H",此时溶液未达饱和状态.同理,当体系点移动到 W 时,水图[图 6(a)]上相应水值点 W 高于饱和水值 W",此时溶液仍未达饱和状态. 经逐点考察溶液都未达到饱和状态,所以 NaCl 的加入并不能起到盐析的作用.

4 结论

(1) 实验测定了 15℃时 NaCl-CO(NH₂)₂-H₂O, CO(NH₂)₂-H₂O₂-H₂O两个三元体系和 NaCl-CO(NH₂)₂-H₂O₂-H₂O 四元体系的溶解度数据,并依据绘制的相图 分析了结晶区和共饱点,结果表明, NaCl 和 CO(NH₂)₂ 可形成摩尔比为 1:1 的加合物 CO(NH₂)₂·NaCl,该加合 物的热稳定性比纯尿素高.

(2) 依据相图分析可知, 尿素与 30%(ω)的 H₂O₂ 合成过氧化尿素 15℃时适宜配比范围较宽, 在合成母液 不利用的情况下, H₂O₂ 最佳收率为 58.08%, 此即为 15 ℃时生产过氧化尿素的最佳收率, 可用于指导工业中过 氧化尿素的生产.

(3) 在 NaCl-CO(NH₂)₂-H₂O₂-H₂O 四元体系中 NaCl 对过氧化尿素的制备没有盐析效应.

参考文献:

- [1] 沈来. 过碳酸酰胺产品特性及其应用 [J]. 化工中间体, 2001, (9): 13-16.
- [2] 吴天天,苏婷婷,姜恒. 合成过氧化尿素之稳定剂研究 [J]. 石油 化工高等学校学报, 2002, 15(1): 25-27.
- [3] 方正东, 邹光中, 肖凡. 过碳酸铵的合成及其稳定性研究 [J]. 化 工生产与技术, 2004, 11(3): 10-13.
- [4] 王安奇, 唐少红. 稳定、高活性氧含量的过氧化尿素的制备、应 用及发展前景 [J]. 辽宁化工, 2001, 30(9): 414-416.
- [5] 吴天天,苏婷婷,姜恒. 合成过氧化尿素之稳定剂研究 [J]. 石油 化工高等学校学报, 2002, 15(1): 25-27.
- [6] 孙晓然, 唐桂芬. 过氧化氢脲制备新工艺 [J]. 河北理工学院学报, 2001, 23(1): 59-61.

- [7] 宋怀俊, 唐亮, 陈红丽, 等. 过氧化尿素工艺条件优化 [J]. 贵州 化工, 2006, 31(1): 13-15.
- [8] 张翀, 沈小平, 王强. 过氧化尿腺合成方法的研究 [J]. 湖北化工, 2000, (4): 13-14.
- [9] 曹吉林,李梦青,谭朝阳,等. 固体消毒剂过氧化尿素湿法合成 [J]. 过程工程学报, 2005, 5(5): 517-520.
- [10] 赵红坤,曾之平,曹漫祥,等.尿素-过氧化氢-水三元相图研究[J].化学世界,1999,(4):211-214.
- [11] 王美兰,贺萍,许卉,等.甲醛法测定尿素总氮含量的若干问题[J].大学化学,2002,17(6):35-37.
- [12] 曹吉林, 刘秀伍, 薛丽静, 等. 25 ℃和 35 ℃时 NH₄Cl-CO(NH₂)₂-H₂O 三元体系相平衡研究 [J]. 高校化学工程学报, 2007, 21(5): 864-868.

Phase Equilibrium of Quaternary NaCl-CO(NH₂)₂-H₂O₂-H₂O System at 15 °C

ZHANG Chao, GUO Kang-ning, CAO Ji-lin

(School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China)

Abstract: In order to improve the synthesis production process of urea peroxide, the phase equilibrium data of quaternary NaCl-CO(NH₂)₂-H₂O₂-H₂O system and its subsidiary system of CO(NH₂)₂-H₂O₂-H₂O and NaCl-CO(NH₂)₂-H₂O were measured at 15 °C by means of isotherm. The results of phase diagram analysis, thermogravimetry and X-ray diffraction indicated that sodium chloride and urea additive could form in this system, and the additive thermal stability was better than CO(NH₂)₂. The phase diagram calculation of ternary CO(NH₂)₂-H₂O₂-H₂O system at 15 °C showed that the suitable conditions of urea peroxide synthesized from ternary CO(NH₂)₂-H₂O₂-H₂O had a broad range, and sodium chloride had no influence on the formation of urea peroxide in the quaternary system. The yield of hydrogen peroxide was 58.08% if remaining solution was not used. NaCl did not have salting effect on the formation of urea peroxide in the system.

Key words: urea peroxide; sodium chloride; hydrogen peroxide; phase equilibrium; additive