
第 2卷 第 2 期 过 程 工 程 学 报 Vol.2 No.2
2 0 0 2 年 4 月 The Chinese Journal of Process Engineering Apr. 2002

DOBD Algorithm for Training Neural Network: Part I. Method
WU Jian-yu(吴建昱)， HE Xiao-rong(何小荣)

(Department of Chemical Engineering, Tsinghua University, Beijing 100084，China)

Abstract: Overfitting is one of the important problems that restrain the application of neural network.
The traditional OBD (Optimal Brain Damage) algorithm can avoid overfitting effectively. But it needs to
train the network repeatedly with low calculational efficiency. In this paper, the Marquardt algorithm is
incorporated into the OBD algorithm and a new method for pruning network－the Dynamic Optimal
Brain Damage (DOBD) is introduced. This algorithm simplifies a network and obtains good
generalization through dynamically deleting weight parameters with low sensitivity that is defined as the
change of error function value with respect to the change of weights. Also a simplified method is
presented through which sensitivities can be calculated during training with a little computation. A rule to
determine the lower limit of sensitivity for deleting the unnecessary weights and other control methods
during pruning and training are introduced. The training course is analyzed theoretically and the reason
why DOBD algorithm can obtain a much faster training speed than the OBD algorithm and avoid
overfitting effectively is given.
Key words: neural network; DOBD algorithm; Marquardt; overfitting; pruning; training; method
CLC No.：N945.12 Document Code：A Article ID：1009–606X(2002)02–0171–06

1 INTRODUCTION
Great progresses have been made on the research of Artificial Neural Network (ANN) in last

decades. It has been proved theoretically that a Back–Propagation(BP) network has the capability to
match any continuous function and there are some successful examples to apply ANN to chemical
engineering[1]. However, there are still some problems such as overfitting that restrain the industrial
application of ANN.

When an ANN is trained by samples, an important issue is how well it generalizes to samples
outside the training sets. If the system does quite well during training but fails miserably when being
checked with similar but slightly different inputs, we call this kind of phenomena as overfitting[2].
Generally speaking, several factors can easily cause overfitting. Firstly, samples of small number or with
asymmetrical distribution may not exactly present enough mapping information. The mapping relation
that is got through training with samples may easily deviate from the real one. Secondly, because of
defects in measurement there is always noise in the samples especially in industrial data.
Noise-contaminated samples carry less and inaccurate mapping information. Though the network can fit
training samples with great precision, it may fail to other samples. Thirdly, a network with over-
complicated framework usually has more free weights. This kind of network is likely to make the
essentially simple mapping relation complicated because training samples are always discrete and finite
in number.

It is another special issue to reduce the noise of samples. Using network with possibly few free
weights can get better generalization without considering noise thus overfitting can be restrained

Received date: 2001-09-10, Accepted date: 2001-11-30
Biography: WU Jian-yu(1979–), male, native of Yangzhong city, Jiangsu province, MS, majoring in process system engineering.

172 过 程 工 程 学 报 2卷

effectively [3]. Since the network has fewer free weights, it has little possibility to complicate mapping
relation.

Many methods to simplify network are presented in literatures and one kind used widely is pruning
algorithms[2,4]. All these algorithms begin training with much more complex network, then determine and
delete some weights or net units with less importance according to some rules. This research falls
roughly into two categories. The first category involves adding an additional term that represents the
complexity of network to the term of traditional error function of BP algorithm[2,5]. This additional term
is Een in Eq.(1): C µµ += (1),enenerer EE
where Een is the normal error function of BP algorithm. Eer and Een converge gradually towards the
minima respectively during the process of iteration. Although this kind of methods can overcome
overfitting to a certain degree, it costs much more time for convergence because no superfluous weights
are deleted and additional calculation of network complexity is carried out. Moreover, how to construct
Een and choose µer and µer are rather difficult.

The other aspect of research involves deleting some unimportant weights based on their
sensitivities[6,7]. The OBD algorithm presented by Cun et al.[8] is a typical example. It presents a method
to calculate sensitivity approximately with second-derivative information of error function and thus
simplify network structure by deleting weights with low sensitivities. It shows good effect on avoiding
overfitting. However, the network should complete a whole training process before the decision of
deletion, which causes low efficiency of the algorithm.

We present a new algorithm called Dynamical Optimal Brain Damage (DOBD) on the basis of OBD
algorithm. The Marquardt algorithm is combined into the new algorithm and a new method to simplify
the network while training is also presented. Thus, the new algorithm has a high calculating efficiency
and avoids overfitting efficiently.

2 OBD ALGORITHM
In the principle of the OBD algorithm[8], Cun et al assume that deleting some redundant weights

from an over-complex network can improve generalization of network effectively and thus avoid
overfitting. An important rule is that those weights to be deleted should have the least effects on training
error, that is, the lowest sensitivities. So a reasonable strategy is to delete some small-sensitivity
parameters while training the network. After deletion, the network should be trained again and this
procedure can be iterated.

It would be prohibitively laborious to evaluate the sensitivity directly from its definition.
Fortunately, it is possible to construct a local model of the error function and analytically predict the
effect of perturbing the weight vector. It approximates the error function, E, by a Taylor series. A
perturbation δU of the weight vector will change the error function by

22

2
1

2
1 UOuuhuhugE

ji
jiij

i
iii

i
ii δδδδδδ +++= ∑∑∑

≠

, (2)

where ui is the components of weight vector U, gi the components of the gradient of E with respect to U,
and hij the elements of the Hessian matrix H of E with respect to U:

2期 WU Jian-yu, et al.: DOBD Algorithm for Training Neural Network: Part I. Method 173

i
i u

Eg
∂
∂

= ,
ji

ij uu
Eh
∂∂

∂
=

2
.

However, it is also hard to calculate sensitivity directly according to Eq.(2) and some approximations are
necessary. Firstly, it is assumed that δU caused by deleting several weights is the sum of the respective
contributions by deleting a weight individually. So the third term of the right hand side of Eq.(2) is
discarded. Secondly, parameter deleting will be performed after training has converged. The parameter
vector is then at a (local) minimum of E and the first term of the right hand side of Eq.(2) can be
neglected. Thirdly, the error function is nearly quadratic so that the last term in the equation can be
neglected. Equation (2) then reduces to

Every term of the right hand side of Eq.(3

function. The OBD procedure is carried out as
(1) Choose a reasonable network architec
(2) Train the network until a reasonable so
(3) Compute the second derivatives hkk fo
(4) Compute the sensitivity for each weig
(5) Sort the parameters by sensitivity and
(6) Iterate to step (2).
The OBD algorithm shows good effect o

its application: every time before pruning som
process, which causes low efficiency of calcula

3 DOBD ALGORITHM
The new algorithm, the Dynamic Optim

based on the OBD. The algorithm deletes
process. As a result, the training efficiency can
3.1 Adoption of the Maruqardt Algorithm

For the problem of minimization of E(U):
min E(U)=FT(U)F(U

with U=(u1, u2, ⋅⋅⋅, un)
The iterative equation of the Newton meth

)1(k UU =+

where H(k) is the Hessian matrix of E(U) at p
approximated by

)(kH

where J(k) is the Jacobian matrix, ik
ji u

Uf
J

∂
∂

=
[)(

,

[(kUE∇

 δ .uhE

i
iii∑= 2

2
1 δ (3)

) presents the influence of a weight parameter on the error
 follows:
ture;
lution is obtained;

r each weight;
ht sk=hkkuk

2/2;
delete several weights with the lowest sensitivities;

n avoiding overfitting. However, some disadvantages limit
e weights, the network should complete a whole training
tion.

al Brain Damage (DOBD), constitutes an improvement
low-sensitivity weights dynamically during the training
 be improved greatly.

), (4)

T∈Rn; F(U)=[f1(U), f2(U), ⋅⋅⋅, fm(U)] .
od is

][)(1)()(kkk UEH ∇−
−

, (5)
oint U(k). Since it is hard to calculate H(k) analytically, it is

, (6)
)(T)(2 kk JJ=&

j

k])(
. Since can be shown as][)(kUE∇

][2])()() kTk UFU= , (7)

174 过 程 工 程 学 报 2卷

the iterative equation of the Marquardt method can be described as[9]

)()()1(kkk UUU ∆+=+ , {[, (8)][}])(T)()()(T)(kkkkk UFJUIJJ −=+ ∆λ
where I is an identity matrix, λ is a regulative parameter to be determined dynamically during the process
of training.

It has been established that the Marquardt algorithm can offer a much faster speed of convergence
on the aspect of training BP–ANN than the traditional BP algorithm[10], which is an important reason for
incorporating the Marquardt algorithm into the DOBD. Additionally, its adoption can simplify the
calculation of sensitivity more effectively than other method, as described in the following.
3.2 Calculate Sensitivity Dynamically

The kernel of the new algorithm is the method through which sensitivities can be calculated
dynamically. As described in the OBD algorithm, the variation of the training error is

∑ ∑+=
i i

iiiii uhugE 2

2
1 δδδ & . (9)

There are two reasons for which the first term of the right hand side of Eq.(9) can not be ignored as
in OBD. Firstly, the training process may not have converged into the local minimal point when deleting
weights begins. In fact some weights must be deleted before the training process is over. Secondly, the
oscillation caused by deleting weights while training maybe also makes a significant influence on gi.

According to Eq.(9), the expressions to forecast the change of error function caused by deleting a
certain weight can be concluded: 2

2
1

iiiiii uhugE +=∆ ,

(10)

where ∆Ei is just the sensitivities of weights ui. According to Eqs.(6) and (7), gi is just the components of
vector ∇E and hij is the elements of Hessian matrix. Consequently, all the parameters that need to
calculate sensitivity have been already calculated in the Marquardt iteration process. Additional
calculation is saved, which improves the speed of this new algorithm.

The DOBD procedure can be carried out as follows:
(1) Take some iteration of training by the Marquardt method optimization;
(2) Compute the sensitivity for each weight ∆Ei=giui+1/2 hiiui

2;
(3) Delete some weights with sensitivities lower than limit;
(4) Take some more iterations of training;
(5) Iterate to step (2).

4 CONTROL FACTORS OF DOBD
Although the procedure of DOBD is given above, there are some important control factors that may

make remarkable influence on the result of DOBD.
4.1 Lower Sensitivity Limit for Deleting Weights

A crucial problem of dynamically pruning is that to what degree we should simplify the network. It
is hard to prognosticate the finial effect of pruning as the OBD method that can checkout the effect by
another full training. Lower sensitivity limit (LSL) for deleting weights is used as an alternative way to
control the pruning process. Every time after some iterations, the sensitivities of all weights are
calculated respectively and some of the weights whose sensitivities are below LSL are deleted. After

2期 WU Jian-yu, et al.: DOBD Algorithm for Training Neural Network: Part I. Method 175

enough iterations and prunings, sensitivities of remained weights are almost all above LSL. So the
pruning process tends to end and the final construction of the network is thought to be more optimal.

The particularity of Marquardt algorithm, which is pointed out by Sjoberg et al.[11] in research on
separable non-linear least squares minimization, makes it possible to get a current value of LSL. Since
JTJ+λI [in Eq.(8)] is symmetric it can be separated as

TqqTIJJ n),,diag(1
TT λλλ ++=+ ΛΛ , (11)

where {qk} is the eigenvalues of JTJ. Since JTJ is positive semi-definite, qk≥0. ∆U(k)can be solved from
Eq.(8)

.1,,1diag][)]([
1

T)(T1T)(T)(T
qq

TUFJIJJUFJU
n

kkk








++

−=+−= −

λλ
λ∆ ΛΛ

(12)

An important feature of Eq.(12) is: Given λ>0, for those convergence directions corresponding to

small eigenvalues λ>>qk, the Gauss–Newton method gives a large step size 1/qk, and the Marquardt
method on the other hand gives a small step of size 1/(qk+λ)≈1/λ. For those convergence directions
corresponding to large eigenvalues λ<<qk, the Marquardt method gives a step size 1/(qk+λ)≈1/λ
approximately equal to the Gauss–Newton method. In this way Marquardt divides the parameters of
weights into two sub-classes. Within the first class one has an efficient convergence of nearly
Gauss–Newton and thus a high sensitivity, and within the second class one has a slow convergence of
nearly the steepest descent method and a low sensitivity.

Figure 1 is an example that shows the particular distribution of weights sensitivities. 200 samples
are generated from function y=sinx, where x is the pseudo-random number and x∈[–2π, 2π]. A
three-layer ANN of 50 hidden units is used for training with the Marquardt algorithm. In the low
sensitivity (less than about 0.05) region, the distribution is more concentrated than others. These weights
can be considered as low sensitivity ones. In the high sensitivity (above about 0.1) region, the
distribution is comparatively uniform. It is also found that this kind of distribution is relatively stable
during the first 20~30 iterations and also has no marked variation with respect to different examples. So
it is possible to set LSL at 0.01~0.1.
0 5 10 15 20 25 30 35 40 45 50
0.0

0.1

0.2

0.3

0.4

V
al

ue
 o

f e
rr

or
 fu

nc
tio

n

0.00 0.04 0.08 0.12 0.16 0.20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
is

tri
bu

tio
n

pr
ob

ab
ili

ty

Sensitivity

 Fig.1 Distribution probability of weights based on
 different sensitivities after 20 iterations

4.2 Interval of Pruning
There will be an overshooting of error function e
Iterative times

Fig.2 Oscillation on error function during pruning

training

very time after pruning. Consequently there should

176 过 程 工 程 学 报 2卷

be an optimal number of iterations before the next pruning. Moreover, the original sensitivity distribution
of weights has been destroyed and the new one has not been stabilized just after pruning and another
immediate pruning may cause improper deletion of weights. However, the Marquardt method can
eliminate this oscillation fast. Training ANN with the same samples and the same network of Fig.1, from
the 15th iteration, 10 weights with sensitivities less than 0.1 have been deleted every 5 iterations. The
change on error function is described in Fig.2. Although after pruning there may be a remarkable change
on training error, after one iteration the error can be approximately decreased to the previous level. So
about 3 iterations is enough between two consecutive pruning processes.
4.3 Maximum One-time Pruning Number of Weights

The maximum one-time pruning number (MOPN) is defined as the maximum allowed number of
deleted weighs at a time during the pruning process, although from Fig.2 MOPN is not a keen factor for
DOBD for the great capability of eliminating overshooting. However, if MOPN is too small, it will take a
long time to delete all the redundant weights and on the other hand deleting too many weights once may
make the subsidence of oscillation fail and consequently lead to a much high value of final error. We
suggest that the value of MOPN is about 10~50, depending on the total number of weights in the initial
network structure.

5 CONCLUSIONS
A new algorithm called DOBD that combines the Marquardt algorithm with the traditional OBD has

been presented and the principle of the new algorithm described. It uses the particularity of the
Marquardt method so that both the training and the pruning processes can go along synchronously
without repetition of the whole training process. Several important factors are discussed to make the new
algorithm more efficient and more practical.

REFERENCES:
[1] YAO X L. Research on the Application of ANN on the Optimal Operation of Petroleum Chemical Engineeringv [D]. Beijing:

Tsinghua Univ., 1993, 65–89 (in Chinese).
[2] Reed R. Pruning Algorithms-A Survey [J]. IEEE Transactions on Neural Networks, 1993, 4(5): 740–747.
[3] Kindermann J, Linden A. Practical Complexity Control in Multilayer Perceptrons [J]. Signal Processing, 1999, 74(1): 29–46.
[4] Ponnapalli P V S, Ho K C, Thomson M. Formal Selection and Pruning Algorithm for Feedforward Artificial Neural Network

Optimization [J]. IEEE Transactions on Neural Networks, 1999, 10(4): 964–968.
[5] Chauvin Y. A Back-propagation Algorithm with Optimal Use of Hidden Units [A]. Touretzky D S. Advances in Neural

Information Processing(2) [C]. Denver: Morgan Kaufmann, 1990. 519–526.
[6] Fletcher A P, Cloete L. Variance Analysis of Sensitivity Information for Pruning Multilayer Feedforward Neural Networks [A].

Engelbrecht. Proceedings of the International Joint Conference on Neural Networks [C]. New York: IEEE, 1999. 1829–1833.
[7] Kijsirikul B, Chongkasemwongse K. Decision Tree Pruning Using Backpropagation Neural Networks [A]. Proceedings of the

International Joint Conference on Neural Networks [C]. Washington DC: Phathumwan, 2001. 1876–1880.
[8] Cun Y Le, Denker J S. Optimal Brain Damage [A]. Touretzky D S. Advances in Neural Information Processing(2) [C]. Denver:

Morgan Kaufmann, 1990. 598–605.
[9] CHEN B L. Algorithms and Theories of Optimization [M]. Beijing: Tsinghua University Press, 1989. 383–389 (in Chinese).
[10] Hagan M T, Menhaj M B. Training Feedforward Networks with the Marquardt Algorithm [J]. IEEE Transactions on Neural

Networks, 1994, 5(6): 989–993.
[11] Sjoberg J, Viberg M. Separable Non-linear Least-squares Minimization-possible Improvements for Neural Net Fitting [A].

Proceedings of the 1997 IEEE Signal Processing Society Workshop [C]. New York: IEEE, 1997. 345–354.

	DOBD Algorithm for Training Neural Network: Part I. Method
	2 OBD ALGORITHM
	3 DOBD ALGORITHM
	4 CONTROL FACTORS OF DOBD
	5 CONCLUSIONS
	REFERENCES:

