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DOBD Algorithm for Training Neural Network:
Part I1. Application

WU Jian-yu( ) HE Xiao-rong( )

(Department of Chemical Engineering, Tsinghua University, Beijing 100084, China)
Abstract Inthefirst part of the article, a new agorithm for pruning network—Dynamic Optimal Brain
Damage(DOBD) is introduced. In this part, two cases and an industrial application are worked out to test
the new algorithm. It is verified that the algorithm can obtain good generalization through deleting
weight parameters with low sensitivities dynamically and get better result than the Marquardt agorithm
or the cross-validation method. Although the initial construction of network may be different, the finial
number of free weights pruned by the DOBD algorithm is similar and the number is just close to the
optimal number of free weights. The algorithm is aso helpful to design the optimal structure of network.
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1 INTRODUCTION

In Part | of this article, the Marquardt algorithm!® is combined with OBD? and a new algorithm
called Dynamic Optimal Brain Damage (DOBD) has been presented. High speed for training network is
demonstrated with efficiently avoiding overfitting by
pruning redundant weights at the same time. In this
article, a three-layer network shown in Fig.1 with one
hidden layer and only one output unit is used to test the
new algorithm. The model can be described as:

nSam ) .
mnE= > (y -t')>=F'F,
i=1

Whiia F=(f,fA fnSam)T’ fi = y -t
where y can be calculated with the following equations
Fig.1 Neura network model of one hidden layer

and one output unit that represent the forward transmission process in the

network:
hin! —%n:(wh X )+th hout! .t oin' —n%d(wo hout! )+wob
=R “ ‘" 1+exp(-hin})’ =R !
Yot (ieNSAM, keNHID, jeNIN).
1+exp(—oin')

The elements of Jacobian matrix, which are needed when using the Marquardt method and
calculating sensitivities, can be calculated by
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The new algorithm is tested on severa case studies and modeling the Reid vapor pressure of
stabilizer gasoline, and compared with simple training by the Marquardt algorithm without pruning. The
system is developed under VC++ 6.0 and al the results are got from a computer with an Inter Celeron
400 CPU.

2 CASE STUDIES

To obtain the dynamic feature of testing error during the training process, cross-validation is
adopted that means to compute testing error of samples after each iteration'® “. Using this method we can
get dynamic curve of testing error. Within all the figures shown in this and next sections, ordinate
represents the absolute error mean of samples

calculated by 25
T Testing error of Marquardt
_ 1N g 20 Testing error of DOBD
E= WZ(yi _ti)2 . ; ***** Training error of DOBD
i=1 5 15
o
CASE1 f; 10 )
.. . ]
200 training samples and 70 testing samples are g s N
generated from function y=sinx;+sinX,+ Sinxs+ sinx,, =
inputs X;, Xp, Xs, X4€[—2m, 2r] are pseudo-random 0.0 5 30 45 60 5 90
numbers generated by a C language program. The lteration times
initial network has an input layer of 4 units, a hidden  Fig.2 The training and testing results of DOBD and
layer of 30 units and an output layer of 1 unit Marquardt method for the network with 4 inputs

and 30 hidden nodes for case 1
(4-30-1). The first pruning process begins after the

10" iteration and interval between two successive pruning processes is 2 iterations. MOPN is 20 and LSL
is0.03. Figure 2 illustrates the result. As shown in Fig.2, when using Marquardt without pruning, after 50
iterations testing error begins to ascend and at the 90" iteration the value reaches 0.8, which shows
overfitting has occurred. While using DOBD the value of testing error is 0.26 and the value of training
error is 0.19 at the 90" iteration, which shows high generalization of DOBD.

Table 1 shows different extents to which weights are deleted by DOBD under different initial
topological constructions of network and error comparison between DOBD and the Marquardt method
without pruning. The criterion of complete convergence s J 'F ||<0.001.

Table1l Training and testing result comparison among four different networks for case 1 (90 iterations)

Topologica Initial Number Number of Training Testing error Training error  Testing error
construction weight of weight remaining error without without with DgOBD with SOBD
of network number deleted weight pruning pruning
4-30-1 181 122 59 0.14 0.71 0.21 0.31
4-25-1 151 90 61 0.11 0.66 0.22 0.31
4-20-1 121 55 66 0.15 0.36 0.22 0.27

4-15-1 91 41 50 0.20 0.44 0.22 0.26
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CASE 2
200 training samples and 70 testing samples are generated from function
_ exp(X1|n§—§)X4 n Xg —exp{ X3
Xy + X3 + X, Inx, X4 [1+ exp(X, /40)]
where Xy, X, ..., Xg€[20, 70] are pseudo-random numbers. The topological construction of the network is
8-10-1. The first pruning process begins after the 8" iteration and the interval between two successive
pruning processes is one iteration. MOPN is 20 and LSL is 0.02. There are totally 61 weights deleted
frominitial 101 ones at the end of the training process.
As shown in Fig.3, athough no obvious phenomenon of overfitting appears by Marquardt without
pruning, error of testing samples descends slowly. While using DOBD, it only takes about 35 iterations
to converge near to local minimal point where training error is 15.0 and testing error is 18.4.
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Fig.3 The training and testing results of DOBD and Fig.4 The training and testing results of DOBD and
Marquardt method for the network with 8 inputs Marquardt method for the network with 8 inputs
and 10 hidden nodes for Case 2 and 15 hidden nodes for Case 2

If changing the topological construction of the network to 8-15-1 and keeping other conditions
unchanged, there are totally 106 weights deleted from initial 151 ones at the end of the training process
and theresult isillustrated in Fig.4.

As shown in Fig.4, when using Marquardt without pruning, after 10 iterations testing error begins to
ascend and at the 80" iteration the value reaches 40, indicating obvious overfitting. While using DOBD
the value of testing error is 20 and the value of training error is 17 at the 80" iteration. The difference
between these two errorsis only 3, which confirms the DOBD can avoid overfitting efficiently.

3 INDUSTRIAL APPLICATION

We present a model to estimate the stabilizer gasoline RVP (Reid vapor pressure) for a FCC
(Fluidized catalytic cracking) unit in a refinery!®®. Figure 5 illustrates the flow chart of FCC. Further
refining of crude gasoline produced from catalytic cracking is underwent in a stabilizer which is a
rectifying column with operating pressure at 10~15 kPa. Deethanized gasoline is input from the middle
part of the column. Stabilized gasoline is from the bottom and liquefied gas from the top. Sometimes
non-condensable gas is sent out to stabilize the pressure of the column. Because change in operating
condition can make a significant difference on the vapor pressure of gasoline, on-line analysis and
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forecast are needed to get acceptable gasoline

L . . Non-condensable gas
and optimize the operating condition. L
Moreover, it is favorable to control gasoline
quality in response to the market. However,
. . Deethanized Liquefied gas
mathematic and physical models cannot meet gasoline
the industrial requirement. Neural network is Stabllzer
column
an alterative method according to the industrial :
record data of control parameters of the *
stabilizer column. Ei ght most |mp0rtant \r Stabilized gasoline
control factors are selected as the inputs of the
network and RVP to be forecast is the output. Fig.5 Flow chart of gasoline stabilization in the FCC
Part of the datais shown in Table 2. process
Table2 Part of training samples for RV P model
Feed flow  Feedtemp.  Bottom temp. Temp. of vapor Toptemp.  Top pressure Reflux Reflux RVP
(t/h) (°0) (°0) from reboiler (°C) (°0) (MPa) Flow (th)  temp.(°C) | (kPa)
80.0 140.0 165.0 170.0 54.0 9.00 24.0 33.0 41.0
120.0 133.0 158.0 165.0 49.0 10.00 330 34.0 50.0
96.0 131.0 159.0 163.0 55.0 9.00 25.0 34.0 60.0
90.0 130.0 156.0 161.0 53.0 10.50 24.0 36.0 64.0
89.0 125.7 152.8 158.3 56.2 9.80 37.8 374 68.0
77.0 125.2 153.1 158.2 51.0 9.80 315 365 75.0
68.0 123.8 151.6 157.8 513 10.00 36.2 34.6 82.0

264 training samples and 70 testing samples are

selected from industrial data. The topological 8 Testing error of Marquardt

construction of the network is 8-10-1. The first _ 7/ If;:?fge;fgr";f%%BBDD

pruning process begins after the 6" iteration and the ftv‘

interval between two continual pruning processes is 9>_:

one iteration. MOPN is 10 and LSL is 0.1. There are §

totally 51 weighs deleted from initial 101 ones at the "oy

end of the training process. %0 20 a0 60 8 100
As shown in Fig.6, DOBD works well on Iteration times

industrial data. The testing error for DOBD is Fig.6 The training and testing results of DOBD and
. . Marquardt method for the network
obviousy smaller than that of Marquardt without
pruning. However, because of the noise in industrial data, there is a difference about 1 kPa between the
testing and training error.

Table 3 shows the testing results of the two different methods. For DOBD the result comes from the
data of the 100" iteration. For cross-validation the result comes from the smallest testing error as shown
at the 55" iteration in Fig.6. It is required for industrial production that the steam pressure error should be
in the range of +5 kPa with confidence level above 85%. The result of DOBD has met the requirement.
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Table3 Testing result for FCC modeling

Cross-validation DOBD
Average of absolute error 4.46 414
Sample number with absolute error over 5 kPa 19 10
Data with absolute error over 5 kPa (%) 25.0 13.2

4 RESULT ANALYSIS

It is confirmed by the above three examples that DOBD can avoid overfitting caused only by
over-complex construction of network. In al the examples, the testing error of DOBD is obviously
smaller than that of the Marquardt method without pruning and is also close to the training error.
Moreover, there is also some improvement got from DOBD compared with cross-validation and no
additional testing samples are needed, which is necessary for cross-validation. Thus DOBD is much
more useful in dealing with problems with small number of samples.

The adoption of the Marquardt algorithm has greatly improved convergence speed of DOBD. As
shown by the three examples, generaly after 100 iterations the error curve tends to stabilize, which
means that the convergence process is very close to certain local minimal point. For OBD, however,
network is trained by the traditional steepest descent method and it often takes hundreds of iterations to
complete training. Moreover, reduplicate training also diminishes computing efficiency. It is expected
that applications of DOBD to on-line optimization or control may be possible because of its high training
speed.

DOBD is also useful in looking for the

s 035 o Training optimal network construction. As shown in Case
85 0307 —n—Test 1, it can be drawn from Table 1 that athough
& “g 0-257 there are different initial topological construc-
g % ziz I ./-/. tions, the final number of free weights remained
%% 010 E\]\.\//\ is about the same. It is also the same with Case 2,
& é 2-22 ] \D\Dim/D\D_D_D for the network of 8-10-1, the initial number of

' T e s T o weights is 101, after pruning 61 redundant
Hiden unit number weighs the fina number of weights remained is

Fig.7 Relationship between overfitting and hidden ~~ 40. For the network of 8-15-1, the initial

unit number for Case 2 number of weights is 151, after pruning there is

45 weights remained and for the network of 8-20-1 it is 52. These facts suggest that the optimal network
of Case 2 should have 5 hidden units. To test this supposition, the relation between overfitting and
number of hidden units for Case 2 isillustrated in Fig.7, where abscissa represents the number of hidden
unit and ordinate represents the fraction of samples with relative error above 5%. The criterion of
complete convergence is ||[J 'F |<0.01 and Fig.7 is the average of five groups whose initial weights are
selected randomly. When the number of hidden unit is below 6, it is too simple for the network to
simulate the mapping relation. When the number is above 6 overfitting happens. Thus it can be drawn
that the network with 6 hidden units is optimal, which is close to the result of 5 hidden units forecast
from about 50 remaining weights.
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5 CONCLUSION

Network with one hidden layer and only one output unit have been constructed and trained with the
DOBD algorithm. Two case studies and an industrial application are presented to confirm the efficiency
of avoiding overfitting caused by over-complex network construction and the high convergence speed for
DOBD, which is analyzed in Part | of the article. Moreover, DOBD also has significance on looking for
the optimal network construction by selectively deleting redundant weights.

NOTATION:

NIN Set{1,2, ,nin}
NHID  Set{1,2, ,nHid}
NSAM  Set{1,2, ,nSam}

J Jacobian matrix of the error function with respect to weights

hing Summed input value of the kth hidden unit with respect to samplei
hout,! Output value contributed by the kth hidden unit with respect to samplei
nHid Number of uints of middle hidden layer

nin Number of units of input layer

nSam Number of training samples

oin' Summed input value of output unit with respect to sampleii

t Real output for samplei

why Weight between the kth hidden unit and the jth input

whby Threshold of the kth hidden unit

WOk Weight between the kth hidden unit and the output

wob Threshold of output

X Value of the jth input of sampleii

y ANN calculational output for sample i
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