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Abstract: A novel fault detection and diagnosis method was proposed, using dynamic simulation to monitor chemical process 
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1  INTRODUCTION 
Chemical industry generally employs a great deal 

of combustible, explosive and toxic chemicals under the 
high temperature and pressure or low temperature and 
vacuum operating conditions, so there exist inevitable 
hidden fire, explosion and poisoned hazard within its 
equipment[1]. Consequently the fault diagnosis 
technique has attracted more and more attentions 
recently, and become the key to assist in solving process 
reliability and safety problems.  

Fault diagnosis method can be classified into three 
categories: model-based method, knowledge-based 
method, and process history based method. In practice, 
the structure and fault of chemical process are 
complicated by its large scale, continuity and high speed 
production, so the majority of present diagnosis 
methods are focused on the latter two methods, 
including fault tree, directed graph, knowledge base, 
and neural network[2−4]. These qualitative methods 
emphasize mostly on the analysis of target attributes, 
with such advantages as quickness and simplicity, but 
such disadvantages as limited analytical depth and 
accuracy as well. To overcome these weaknesses, 
model-based method supplies one dynamic mechanism 
model about internal relationships within a system, and 
then extracts abnormal deviations through state 
identification, parameter estimation, parity relations, etc. 
Because it can produce meaningful result and 
demonstrate the deduction procedure,  more and more  

fault diagnosis research is concerned with such a 
quantitative model based method[2].  

Grantham et al.[5], for example, presented a 
prototype first-principles based trouble shooting system. 
It reasons with an understanding of physical and 
chemical phenomena, and allows analysis and 
explanation at a more fundamental level. Watanabe et 
al.[6] proposed a two-level strategy for fault detection 
and diagnosis by examining the detection of instrument 
faults in nonlinear time-varying process using state 
estimation filters. Gertler et al.[7] presented a design 
procedure to generate isolable parity equation based on  
sensitivities, and illustrated the application of the 
technique on a distillation column. Huang et al.[8] 
applied the extended Kalman filter (EKF) to the 
fluidized catalytic cracking unit (FCCU), and proposed 
a dynamic optimization based control redesign scheme 
using the results from fault diagnosis. Recently, Prakash 
et al.[9] integrated fault diagnosis with model predictive 
control (MPC) to eliminate offset between the true 
values and set points of controlled variables in the 
presence of a variety of faults.  

Most approaches mentioned above contain the 
following three features. Firstly, the fact that different 
steps during fault diagnosis are clearly separated: 
detection, isolation and estimation of the magnitude of a 
fault bring some troubles in process model selection and 
calculation. Secondly, the measured data are usually 
incomplete and inaccurate, so it needs to design some 
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specific observers to deduce the values of unmeasured 
variables, thus leading to a weak generalization property 
for the chosen model. Finally, dynamic model adopted 
is limited to residual evaluation use only. 

In addition, a number of applications of dynamic 
simulation have appeared in recent years for analyzing 
dynamic features, directing start-up and shut-down, and 
designing advanced control systems[10,11]. And steady 
state model based real-time optimization, in which 
on-line model correction plays an important role, has 
been used in many industrial processes. Motivated by 
these efforts, in this work, a dynamic simulation based 
fault detection and diagnosis system is proposed, in 
which dynamic simulation continues comparing its 
output with measured value to determine whether to 
execute fault diagnosis, and then fault parameters are 
calculated via model correction when faults take place. 
Differing from those methods mentioned above, such a 
fault accommodation system integrates separate steps 
closely on the same dynamic model, and deduces 
incomplete measurements from this model itself but not 
observers. 

2  FAULT DESCRIPTIONS 
Fault is a general term used to describe a departure 

from an acceptable range of an observed variable that 
degrades process performance[12]. Fault diagnosis is 
normally defined as the problem of real-time 
identification of the root reason of malfunctions from 
current sensor data and some a priori knowledge about 
the process behavior under abnormal situations. The 
source of fault can be classified into three categories: 
gross parameter changes, structural changes and 
malfunctioning sensors and actuators. To find the 
particular fault source in chemical processes, it 
frequently needs to identify the unknown process 
parameters since the degradation of process performance 
mostly takes place as parameters change[6,13]. 
Consequently, this work aims at the faults that 
correspond merely to the model parameters. These 
faults can be further divided into three types according 
to the basic principles of transport phenomenon and 
reaction engineering. 
2.1 Pipeline Fault  

The pipeline fault arises from abnormal variation 
in flow rate, mainly caused by measurement deviation, 
valve stuck, property change of inlet fluid in 
composition, temperature and pressure, and broken pipe. 
The first two reasons can be indicated by the calculated 
flow rate multiplying correction coefficient; the third 
one can be formulated with mass and energy balance, 

the last one can be considered through the complex flow 
rate calculation in branch pipes, and will be mainly 
explained in detail in this section. Occurrence of fluid 
leakage will reduce the flow rate entering equipments, 
but not the flow rate leaving these equipments, as shown 
in Fig.1. It should be noted that leakage on pipeline 
1−2−3 is simplified as a branch pipeline 2−4. 

 

 
Fig.1 Schematic diagram of leaking pipe 

Without leakage (no branch 2−4), the volumetric 
flow rate in pipeline 1−2−3 can be expressed as a 
function of pressure drop according to mechanical 
energy balance principle, ignoring the potential energy 
change between the inlet and outlet. 
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In the case of leakage, the flow rate in pipeline 1−2 
equals the flow rate sum of pipeline 2−3 and 2−4, and 
mechanical energy at point 3 and 4 both equals the one 
at point 2. This implies that the flow rate in pipeline 1−2 
is proportional to the one in pipeline 2−4 if their 
pressure change is negligible. 
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It can be seen from Eq.(5) that CQ decreases 
gradually with decreasing of λ4 and l4, which means that 
fluid leakage occurs. Given fixed pressure drop p1−p3, 
the outlet flow rate F3 will drop correspondingly. Eq.(5) 
also shows that such a causal transformation procedure 
is not convenient to use in practice because of its 
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nonlinearity. Nevertheless, since only the final result of 
this transformation is needed in fault diagnosis, CQ is 
ultimately chosen as the internal parameter to express 
the leaking pipeline situation in this research. 
2.2 Heat Transfer Fault 

The wall-type heat exchange procedure is 
performed in heat exchangers and jacketed reactors, 
formulated as Eqs.(6) and (7) where the overall heat 
transfer coefficient K consists of convection heat 
transfer resistance in both sides of fluid, fouling 
resistance and wall resistance. 

Q=KS∆Tm,                     (6) 

o o o
S,i S,o

i i i i o

1 1 1
α λ α

= + + + +
d d b dR R

K d d d
.          (7) 

In such heat-exchange equipment, RS,i and RS,o in 
the right hand side of Eq.(7) always change due to heat 
transfer wall deposit or operation error, resulting in the 
decrease of K and heat transfer efficiency thereby. So, to 
represent the heat transfer fault, these two variables are 
combined into an inner model coefficient RS as 

o
S S,i S,o

i

= +
dR R R
d

.                  (8) 

2.3 Reaction Fault 
Reaction fault in real chemical processes is 

commonly encountered when the fractional conversion 
for reactants decreases owing to degraded catalyst. In a 
reaction model, catalyst influences the reaction rate via 
the reaction rate constant k in Eq.(9). K furthermore is a 
function of pre-exponential factor k0 and activation 
energy E according to the Arrhenius equation. The 
decrease of k0 means physical degradation of the 
catalyst whereas the decrease of E means chemical 
degradation. The difficulty in estimating k0 and E 
simultaneously due to their nonlinear relationship is 
often alleviated by some specified transformation. If the 
fact that temperature T is generally kept constant in a 
real process is taken into consideration, it is however 
more difficult to obtain these two parameters separately. 
Therefore, only the coefficient k0 is used as model 
parameter to represent reaction fault in this paper. 
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3  FAULT DIAGNOSIS 
3.1 Dynamic Simulation 

Having given the corresponding model parameters 
for chemical process faults, the dynamic model can be 

formulated on the basis of mass and heat balance as 
Eqs.(10) and (11). It should be noted that after 
integrating Eq.(10) for all components, an overall 
material balance can be deduced, reflecting the 
fluctuation of liquid level in equipment. These two 
equations express how reactor liquid level h, component 
x and temperature T change with time, and why such a 
relationship is a function of the fault parameters given 
in Section 2. 
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Dynamic simulation can be conducted based on the 
model built above plus appropriate ordinary differential 
equations (ODEs) numerical algorithm. Frequently used 
ODEs algorithms are Runge−Kutta method and Euler 
method presently. The former has higher integration 
accuracy but a lower speed and requires the derivatives 
to be continuous in addition. Because of operating 
actions that may be performed during each time interval 
in chemical process and the high calculation speed 
requirement for fault diagnosis, the Euler method is 
frequently chosen as the dynamic simulation algorithm 
in practice. 
3.2 Fault Diagnosis Procedure 

Figure 2 depicts the fault diagnosis procedure on 
the basis of the dynamic simulation system introduced 
in the previous section. The fault detection step is 
carried out at first, in which dynamic simulation output 
is compared with the local history data collection to 
decide whether the running state of the real process 
complies with its theoretical prediction. If yes, it 
indicates that the real process is normal and thus only 
inspection is needed in the next cycle; otherwise, it 
indicates that the real process is out of work and trouble 
shooting is needed in the next step. Because the external 
faults result from abnormal changes of internal model 
parameters, fault diagnosis will proceed with on-line 
correction of these parameters. The trajectory of 
obtained parameters is analyzed to retrieve the basic 
causes under current faults. Finally, operation staff will 
make corresponding decisions in light of these 
underlying reasons, while the process is still under the 
supervision of the fault detection and diagnosis system. 
3.3 Fault Detection 

The existence of faults is determined according to  
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Fig.2 Steps involved in fault diagnosis 

the residual between measured value and simulated one. 
To eliminate the determination error caused by the small 
measured value, the coinciding criterion in Fig.2 is 
given as 

ε<−
y

yy
ˆ

ˆ
,                 (12) 

where ε denotes the threshold value of the residual. In 
practice, gradual change in normal parameters and 
abrupt change in fault parameters often coexist, so 
disparate thresholds should be given accordingly. But in 
consideration of the fact that the former will turn into a 
fault state once it exceeds certain value, they are under 
supervision with the same Eq.(12). Besides, a large ε 
can lead to low fault sensitivity and a high fault miss 
ratio upon gradually changing faults, whereas a small ε 
can lead to a high false retrieval ratio due to the 
existence of random disturbances. Based on the above 
consideration, the value of ε is given using the statistic 
deviation of measured data plus certain allowance in 
this paper. 

When faults are correlated to the change of 
unmeasured state variables, it is conventional to design 
some specific observers to estimate these variables 
following system redesign according to the input−output 
relationship[14]. Such a redesign procedure, mostly 
performed with Luenberger or Kalman filter methods, 
needs to specify the relative observer coefficients based 
on the stability, sensibility and robust requirements. 
Because this method requires different observers for 
different faults, it has some disadvantages like complex 
deduction process, low generalization performance and 
ambiguous physical meaning. But in practice, at least 
measured variables will change when faults occur, so 
the faults can be detected through the residuals between 
the measured and predicted value of these variables 
according to Eq.(12). Consequently, fault detection in 
this work is done with the real time simulation results of 
all measured process variables using the dynamic model 

given in Section 3.1. In this way, the dynamic 
simulation based fault detection system showed in Fig.2 
needs no observer any longer, with the calculation 
process simplified and the application scope widened. 
3.4 Model Correction for Fault Diagnosis 

Because the fault diagnosis makes use of a 
mechanism model about state space in chemical process, 
the meaningful state changes will facilitate the isolation 
and estimation of fault once the residual is over this 
threshold value. As time lapses, deviations of the 
situation in plant from its ordinary designed value occur 
due to a couple of reasons like catalyst degradation, load 
change in heat exchanger, and existence of impurity. 
These reasons can be described with the fault 
parameters in Section 2. So, only through continuous 
model correction using real-time data collection can the 
coincidence be guaranteed for the response 
characteristic between model and plant. Such an 
updating process is implemented via parameter 
estimation. As Section 3.3 shows, a generalized process 
model in terms of parameters, as a modified version of 
the model in Section 3.1, is given as follows to facilitate 
parameter estimation.  

d ( ) ( ) ( ) ( ) .
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z az t bu t f t s t p
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           (13) 

Since the Euler method is adopted in the dynamic 
model in Section 3.1, the differential calculation in the 
left hand side of Eq.(13) can be approximated by 
difference to perform fault detection and diagnosis on 
the same model. So Eq.(13) can be rewritten as 

c(t)=s(t)p,                   (14) 

where 
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After estimating the parameter vector p with linear 
least square method, the following formula is obtained. 
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= .             (16) 

4  CASE STUDIES 
The proposed dynamic simulation based fault 

detection and diagnosis method is applied to a water 
tank and a chemical reactor respectively, in order to test 
its feasibility under a case of multiple faults. 
4.1 Water Tank 

This is a problem about input−output material 
balance in a water tank[14], displayed in Fig.3. Water 
enters the tank with a flow rate of Fi, and then leaves it 
with FL. Because the source pressure of FL is affected 
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by tank level h, FL increases gradually as h increases 
until equilibrium in the tank is achieved when FL is 
equal to Fi. 

 
Fig.3 Water tank system 

Because water temperature is constant in this 
process, mass balance can be changed into water 
volume balance, and heat balance is not considered here. 
Thus Eq.(10) is simplified as: 
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ρ
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Equation (19) takes into consideration the effect of 
water level on source pressure for exit flow.  

The leakage in the inlet pipeline, represented by 
the decrease of Ci in Eq.(18) from 1.0 to 0.7 at 15 h, is 
set as the single fault in this tank. In fault diagnosis 
procedure, the variables in Eq.(16) are given as 

iˆ =p C ,                   (20) 
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ρ
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Table 1 provides the process parameters appearing 
in Eqs.(17)~(22). 

Table 1  Parameters for water tank example 
Parameter Value 

Floor area, A (m2) 1.0 
Flow rate coefficient for leaving pipe, Co (m2) 0.08 
Water density, ρ (kg/m3) 1000 
Sampling interval, ∆t (h) 0.5 
Initial flow rate coefficient for entering pipe, Ci (m2) 1.0 
Ambient pressure, p0 (Pa) 1.010×105 

Source pressure for inlet flow, p1 (Pa)  1.011×105

The measurement of h is realized through dynamic 
simulation with Eq.(17) solved by fourth order 
Runge−Kutta algorithm. The simulation time period is 

50 h. The noise of h is added using normal distribution 
where mean and stand deviations equal 0 and 0.02 
respectively. 

Leakage fault can result in decrease of the 
measurement of h, and Fig.4 illustrates the procedure in 
which the proposed fault diagnosis system tracks this 
variation. It can be seen that the retrieved parameter Ci 
reflects the real leaking situation correctly. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 Fault detection and diagnosis procedure 
in water tank system 

Figure 5 shows how the magnitude of ε in Eq.(12) 
affects the curve shape of obtained parameter. With the 
increase of ε, there appear more horizontal lines for Ci. 
This indicates that enhancing detection deviation 
threshold can markedly reduce fault diagnosis frequency. 
However, this increment also generates some response 
delays to the fault despite small fluctuation of Ci.  

 
 
 
 
 
 
 
 
 
 

Fig.5 Variation of fault parameter with fault detection threshold 

4.2 Aromatization Reactor 
Heptane is transformed into toluene and hydrogen 

via a catalyst in the reactor[15] showed in Fig.6. The 
involved reaction is 

( ) ( ) ( )7 16 7 8 2C H A C H B +4H C→ .         (23) 

This is a first order reaction, heated by steam in the 
jacket. Different from the previous example, both mass  
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Fig.6 Aromatization reactor for transformation 
of heptane to toluene  

and energy balances are necessary here. For 
convenience, mass concentration and flow rate in 
Eqs.(10) and (11) change to mole per volume 
concentration and volumetric flow rate respectively. 
Besides, a hypothesis is given that volumetric flow rates 
for input and output flow are kept constant because 
fractional conversion is not large in this reactor. This 
reactor is supposed as a continuous stirring reactor 
(CSTR). Then Eqs.(10) and (11) are simplified as 

A
i,A A A

d
d

= − −
CV FC FC VkC
t

,          (24) 

B
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d
d
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= − + ,            (25) 
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d
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t
= − − ,            (26) 
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d
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There are two types of fault in such a reactor 
system. The first one is a gradual decrease of fouling 
resistance RS in Eq.(8) from 10 h due to the fouling of 
heat exchange surface. RS changes with time through 
the following linear function: 

8 7
S 9.53 10 9.53 10− −= × − ×R t .          (28) 

Because RS is nonlinear with Q and K is linear with 
Q in Eq.(7), RS is determined with K as intermediate 
variables in fault diagnosis. Overriding the wall 
resistance and diameter correction term in Eq.(7), the 
transformation between K and RS is given as 

S
i o

1 1 1R
K α α
= + + .            (29) 

The second fault is the decrease of k0 in Eq.(9) 
from 5.01×108 to 4.01×108 h−1 at 20 h due to the 
deterioration of catalyst performance, when impurity 
enters the feed.  

In fault diagnosis procedure, the variables in 

Eq.(16) are given as 
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Table 2 lists all the constants in Eqs.(24)~(32) for 
this case. Specifically, the reaction heat is expressed as a 
polynomial of temperature T: 

( )

5 2 2
R

6 3 7 4

2.2026 10 62.0244 5.536 10

1.15 10 3.1496 10 J mol .

−

− −
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Table 2  Parameters for reactor example 
Parameter Value 

Sampling interval, ∆t (h) 0.4 
Input/output volumetric flow rate, F (m3/h) 3.0 
Reactor volume, V (m3) 30.0 
Fluid specific heat capacity, Cp [J/(mol⋅K)] 490.7 
Fluid density, ρ (mol/m3) 593.0 
Heat transfer area, S (m2) 10.0 
Temperature of input flow, Ti (K) 600.0 
Concentration of C7H16 for input flow, Ci,A (mol/m3) 1000.0 
Steam temperature, T0 (K) 850.0 
Activation energy, E (J/mol) 1.369×105 
Pre-exponential factor, k0 (h−1) 5.01×108 
Reactant-side convection heat transfer coefficient, 
αi [J/(m2⋅h⋅K)] 6.54×105 

Steam-side convection transfer coefficient, αo [J/(m2⋅h⋅K)] 8.37×106 

The reaction temperature and toluene concentration 
in exit flow are measured in this system through 
dynamic simulation using Eqs.(24)~(27). Because of 
small scale for this problem, the fourth order 
Runge−Kutta method is adopted as solving algorithm. 
The above measurements are tracked by the proposed 
diagnosis system, as shown in Fig.7. For the 
unmeasured variables CA and CC in Eq.(31), they are 
estimated through specific observer traditionally. 
Because their design pattern affects the diagnosis 
precision greatly, the observer-based method can not be 
generalized normally. In this study, these variables are 
the output of the dynamic model adopted during fault 
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diagnosis, so the proposed method does not need 
observer any longer and can be applied more widely. 

Figure 8 highlights the parameter changes obtained 
from this tracking process, and indicates that RS 
increases gradually from 10 h and k0 decreases at 20 h 
respectively. The slight decrease of k0 at about 10 h 
results from the change of RS and the measurement of 
noise. Consequently, a conclusion can be drawn that the 
proposed fault diagnosis method can simultaneously 
identify multi-faults as well. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7 Trajectories of reactor changes tracked by fault diagnosis 

Figure 8 also provides the diagnosis results with 
the conventional observer-based method, which 
estimates the measured values of CA and CC using the 
following equations[15]: 

( )A
A A0

d ,
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= − − +
z F z C
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              (34) 

C
C

d ,
d

= −
z F z
t V

                  (35) 

Aest A B,= −C z C                   (36) 

Cest C B4 .= +C z C                  (37) 

 
 
 
 
 
 
 
 
 
 

Fig.8 Trajectories of identified fault parameters in reactor 

For the proposed method, these two output values 
are obtained through Eqs.(24) and (26). It can be seen 

that the produced fault parameters fluctuate so much 
that the real change is almost concealed. In contrast, the 
parameters achieved with the proposed method change 
gradually and clearly. Such a difference arises from the 
fact that the proposed method, built on rigorous 
dynamic model, makes an indirect use of measured 
values during on-line model correction. So the proposed 
method presents a more distinct diagnosis result in 
trouble shooting than the conventional one. 

From the above two examples, it can be found that 
one of the major advantages of dynamic model based 
approach is that a user can gain an insight into the 
behavior of the results. However, several factors such as 
system complexity, high dimensionality, and process 
nonlinearity often render it very difficult to execute 
on-line. So the future work for this study will 
concentrate on construction of a hybrid fault diagnosis 
system with the main body of dynamic simulation based 
method, combining knowledge and history based 
methods. 

5  CONCLUSIONS 
This study has presented a method for the dynamic 

simulation based fault diagnosis in chemical processes. 
This method adopts rigorous mechanism model to 
simulate the process change with the time when faults 
occur, so it simultaneously realizes model updating and 
fault diagnosis without any need of observers. Case 
studies conducted on water tank and aromatization 
reactor show that this method is not only valid for single 
and multiple faults, but also superior to the existing 
observer-based method. In order to accommodate faults 
in a large scale process, further investigation on 
equipment modeling and parameter estimation 
algorithm is needed. 

NOMENCLATURE: 
a Dynamic model coefficient matrix 
A Equipment floor area (m2) 
b Model coefficient matrix in Eqs.(13), (15) and pipeline thickness in  

Eq.(7) (m) 
c Vector for fault parameter determination 
CAest Estimated concentration of C7H16 using observer (mol/m3) 
CCest Estimated concentration of H2 using observer (mol/m3) 
Ci Concentration of input feed (mol/m3) 
Ci Concentration of component i in Eq.(9) (mol/m3)  
Ci Leakage parameter for feed pipeline in Eq.(18) (m2) 
Ci,A Concentration of A component in input feed (mol/m3) 
Co Leakage parameter for discharge pipeline (m2) 
Cp Specific heat capacity [J/(mol⋅K)] 
CQ Leakage fault parameter (m2) 
d Pipeline diameter (m) 
E Activation energy (J/mol) 
F Volumetric flow rate (m3/s) 
Fi,j The jth feed volumetric flow rate (m3/s) 
FV,j The jth vapor discharge volumetric flow rate (m3/s) 
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FL,j The jth liquid discharge volumetric flow rate (m3/s) 
f Nonlinear function in model 
h Liquid level (m) 
∆HR,j Reaction heat (J/mol) 
k Reaction rate constant (h−1) 
k0 Pre-exponential factor (h−1) 
K Overall heat transfer coefficient [J/(m2⋅h⋅K)] 
l Valid pipeline length (m) 
M Molecular weight (kg/kmol) 
p Pressure in Eq.(1) (Pa) and fault parameter vector in Eq.(13) 
p0 Environment pressure (Pa) 
p1 Inlet pressure (Pa) 
p3 Outlet pressure (Pa) 
∆p Pressure drop (Pa) 
Q Heat transfer rate (J/h) 
rj,i Reaction rate for the ith component in the jth reaction [mol/(m3⋅s)] 
R Gas constant [8.314 J/(mol⋅K)] 
RS Fouling resistance (m2⋅h⋅K/J) 
S Heat transfer area (m2) 
s Linear transformation matrix for p in Eq.(13) 
∆Tm Mean temperature difference (K)  
t Time (h) 
∆t Sampling interval (h) 
T Reaction temperature (K) 
T0 Steam temperature (K) 
Ti Temperature of input feed (K) 
u Velocity (m/h) 
V  Reactor volume (m3) 
xi,j,i Molar fraction of component i in the jth feed 
xi Liquid molar fraction of component i in reactor 
y Measured variable vector 
yi Vapor molar fraction of component i in reactor 
z, u State and control variable vector 
αi Interior convection heat transfer coefficient [J/(m2⋅h⋅K)] 
αo Outer convection heat transfer coefficient [J/(m2⋅h⋅K)] 
λ Friction factor (dimensionless) in Eq.(1) and thermal conductivity  

[J/(m⋅h⋅K)] 
νi Reaction measured coefficient 
ρ Density (kg/m3) 
Subscript 
A, B, C Reactants in Eq.(23): A. heptane, B. toluene, C. hydrogen 
1, 2, 3, 4 Positions in Fig.1: 1. inlet, 2. leakage, 3. outlet, 4. environment 
o Output feed i Component index 
i Input feed j Feed or reaction index 
V Gas L Liquid 

REFERENCES: 
[1] Li Y Y, Wu C G. The Design of Safe Control Systems for 

Petrochemical Process [J]. Automation in Petro-chemical Industry, 
2002, 3(1): 1−4 (in Chinese). 

 

[2] Huang Q M, Qian Y, Lin W L, et al. Advances of Fault Diagnosis for 
Chemical Process [J]. Control and Instruments in Chemical Industry, 
2000, 27(3): 1−5 (in Chinese). 

[3] Yu J P, Luo P L. Off-line Diagnosis of Faults of a Fluidized-bed 
Reactor Based on Macro-kinetic Model and Artificial Neural 
Networks [J]. Engineering Chemistry & Metallurgy, 1999, 20(3): 
290−294 (in Chinese). 

[4] Liang J, Qian J X. Multivariate Statistical Process Monitoring and 
Control: Recent Developments and Applications to Chemical Industry 
[J]. Chin. J. Chem. Eng., 2003, 11(2): 191−203. 

[5] Grantham S D, Ungar L H. A First Principles Approach to Automated 
Troubleshooting of Chemical Plants [J]. Comput. Chem. Eng., 1990, 
14(7): 783−798. 

[6] Watanabe K, Himmelblau D M. Fault Diagnosis in Nonlinear 
Chemical Processes: Part I. Theory [J]. AIChE J., 1983, 29(2): 
243−249. 

[7] Gertler J, Luo Q. Robust Isolable Models for Failure Diagnosis [J]. 
AIChE J., 1989, 31(11): 1856−1868. 

[8] Huang Y J, Reklaitis G V, Venkatasubramanian V. Dynamic 
Optimization Based Fault Accommodation [J]. Comput. Chem. Eng., 
2000, 24: 439−444. 

[9] Prakash J, Narasimhan S, Patwardhan S C. Integrating Model Based 
Fault Diagnosis with Model Predictive Control [J]. Ind. Eng. Chem. 
Res., 2005, 44: 4344−4360. 

[10] Lu E X, Zhang H J. Simulation in Chemical Process and Relative 
Advanced Techniques: II. Dynamic Simulation [J]. Progress in 
Chemical Industry, 2000, 1: 76−78. 

[11]  Hu Y Y, Xu W H, Hou W F, et al. Dynamic Modeling and 
Simulation of a Commercial Naphtha Catalytic Reforming Process [J]. 
Chin. J. Chem. Eng., 2005, 13(1): 74−80. 

[12] Venkatasubramanian V, Rengaswamy R, Yin K, et al. A Review of 
Process Fault Detection and Diagnosis: Part I. Quantitative 
Model-based Methods [J]. Comput. Chem. Eng., 2003, 27: 293−311. 

[13] Bloch G, Ouladsine M, Thomas P. On-line Fault Diagnosis of 
Dynamic Systems via Robust Parameter Estimation [J]. Control Eng. 
Practice, 1995, 3(12): 1709−1717. 

[14] Chiang L H, Russel E L, Braatz R D. Fault Detection and Diagnosis 
in Industrial Systems [M]. Beijing: China Machine Press, 2003. 
174–185 (in Chinese). 

[15] Watanabe K, Himmelblau D M. Fault Diagnosis in Nonlinear 
Chemical Processes: Part II. Application to a Chemical Reactor [J]. 
AIChE J., 1983, 29(2): 250−261.

 


