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Abstract. The theory of scale similarity and breakdown
coefficients is applied here to intermittent rainfall data
consisting of time series and spatial rain fields. The
probability distributions (pdf) of the logarithm of the
breakdown coefficients are the principal descriptor used.
Rain fields are distinguished as being either multiscaling or
multiaffine depending on whether the pdfs of breakdown
coefficients are scale similar or scale dependent,
respectively. Parameter estimation techniques are
developed which are applicable to both multiscaling and
multiaffine fields. The scale parameter (width), o, of the
pdfs of the log-breakdown coefficients is a measure of the
intermittency of a field. For multiaffine fields, this scale
parameter is found to increase with scale in a power-law
fashion consistent with a bounded-cascade picture of
rainfall modeling. The resulting power-law exponent, H, is
indicative of the smoothness of the field. Some details of
breakdown coefficient analysis are addressed and a
theoretical link between this analysis and moment scaling
analysis is also presented. Breakdown coefficient
properties of cascades are also investigated in the context of
parameter estimation for modeling purposes.

1 Introduction

Rainfall is one of many geophysical fields displaying
variability over a wide range of scales. Recent methods in
the analysis of such fields rely on the self-similar or scaling
properties of these fields. The multifractal and multiscaling
framework for characterizing rainfall and other geophysical
fields has been actively developed over the last decade (see
Foufoula-Georgiou and Krajewski (1995) and Lovejoy and
Schertzer (1995) for reviews of applications of multifractals
to rainfall). To a certain extent, much of the theory for
multiscaling originates from the study of turbulence where
one aims to describe the scaling properties of velocity
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fluctuations in a turbulent field. The picture of
hydrodynamical turbulence as a cascade of energy from
large to small scales, resulting in the scaling properties of
the velocity fluctuations, has played an important role in
the theory of turbulence. An approach based on the theory
of self-similar random fields has been developed largely by
Novikov since the late 1960’s and is known as scale
similarity (Novikov, 1990, 1994, Pedrizzetti et al, 1996
and references therein). Scale similarity is focused on
quantities called breakdown coefficients (BDCs) which are
defined as the ratio of values of a random field averaged
over different scales where the smaller is contained within
the larger. In other words, consider a D-dimensional field,
F(F ), which is non-negative and on which one defines a
local density or average also dependenton 7,

F()=5 | F1aPr ¢
I~

where Vy is a cube centered at ¥ . With densities defined at

two scales, / and £, the BDC is defined (Novikov, 1990,

1994) by

ap, = FAF*Y/F(F), 1> L )

where Fand ¥ * may be different but within the same
volume (i.e., ¥, V).

Scale similarity analysis or BDC analysis involves
computing BDCs and characterizing their distributions. In
this work BDC analysis is performed using rainfall data
consisting of rain gauge time series, high resolution
vertically pointing radar (VPR) time series, and high
resolution scanning radar images. Note that if #,(7 ) =0as
occurs for rainfall, the F;(7 ) are also necessarily zero and
thus g, , = 0/0 is indeterminate and so is discarded.
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1.1 Background and motivation

Recent work on the multiscaling characterization of rainfall
(Harris et al, 1996; Menabde et al,, 1997a, 1997b) has
shown that rainfall can generally belong te one of two
broad classes of statistics. One class is where the rain field
is purely self-similar and can be modeled by self-similar
multiplicative cascades. These are commonly referred to as
multiscaling in reference to the scaling of moments
(Appendix A). The other type is not multiscaling on its
own, but by applying a transformation, such as taking
absolute gradients or power-law filtering, it can be made
multiscaling and is often referred to as multiaffine
{Menabde et al., 1997a, 1997b; Vainshtein et al., 1994).

Both multiscaling and multiaffine fields have scaling
Fourier power spectra of the form

P(k) ~ k8, 3

where 5 is the power law exponent usually determined by
the slope of the spectrum on a log-log plot. Here, & is the
frequency for a time series (D = 1) and wavenumber
magnitude (i.e., & =|k|) for a spatial image. For spatial
data, P(%) is found by averaging a D-dimensional Fourier
power spectrum over all angles about & = 0 and is referred
to as the isotropic spectrum of a ID-dimensional field
(Menabde et al., 1997a). [ has some physical significance
as a measure of smoothness (e.g., Davis et al., 1994}
Multiscaling and multiaffine fields can be easily
distinguished by means of their spectral exponent, 8. In
theory multiscaling fields must have £ < D while
multiaffine fields have £ > D (Menabde et al., 1997a,
1997b). In practice, however, a finite amount of data are
used to estimate £ and random uncertainties in the estimate
of 7 may yield a value of g slightly larger than D even
though the field is still multiscaling (Harris et al.,, 1997).
From analyzing large amounts of rainfall data in the form
of high time resolution rain gauge time series, vertically
pointing radar (VPR) time series, and scanning radar
images (PPI’s), it is found that multiscaling fields are the
exception rather than the norm in the scaling range of
~3 sec to several hours {or 100 m to 10 km for spatial data)
(Harris et al, 1996; Georgakakos et al, 1994; Duncan,
1993).  Therefore analysis of multiaffine fields is of
paramount importance. In practice only rainfall processes
accompanied by marginally unstable atmospheric stability
are expected to have < D (Harris et al., presented at the
7th international conference on precipitation, Hawaii, 1998)
As already mentioned, a multiaffine field can be
transformed intoc a multiscaling field by applying a
transformation such as absolute gradients or power-law
filtering {Lavallée et al., 1993) so that moment scaling
analysis may be performed. These transformations,
however, also present problems. Taking absolute gradients
involves a loss of information and thereby increases the
effects of noise on analysis results and procedures based on
the scaling of moments such as estimating the K(g) function
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{e.g., Davis et al., 1994, Harris et al., 1997) describes the
effects of noise on K(g) estimation). Power-law filtering
also produces negative values and therefore absolute values
or the choice of an arbitrary zero-level (DC offset) is used
to make the field non-negative.

The work that follows is a continuation of the work
started in Menabde et al. (1997a) where BDCs are first used
as a method to analyze rainfall. The motivation for
continuing this work lies in a number reasons. First and
foremost, the adverse effect of unwanted noise if one is
taking gradients, as mentioned above, (detailed in Harris et
al. (1997)) prompted an investigation into applying BDC
analysis directly to multiaffine fields (without taking
gradients or power-law filtering). This is the most
significant difference from the approach taken in Menabde
et al. (1997a). Second, it is felt that greater attention can be
given to the problems of parameter estimation for the
purposes of modeling fields with a wider range of
multiplicative cascades (only one cascade generator was
considered in Menabde et al. (1997a)). Before these two
goals are addressed, however, the details of BDC analysis
need to be further investigated, particularly in light of the
findings in Pedrizzetti et al. (1996). Addressing the details
of BDC analysis thus forms a third goal in addition to the
two primary motivations for this work, and also prompted
some interesting theoretical points which are confined to
the appendices. In particular, the theoretical link between
the multiscaling formalism and the BDC formalism is
addressed.

While the emphasis in this paper is on further developing
BDC analysis as a tool, a long term goal of the authors is to
gain an understanding of the link between scaling
properties and meteorological descriptions of rain
processes.  Therefore, where scaling properties and
parameters or rain data are derived, the general
meteorological processes at hand are also mentioned.

1.2 Overview

The nature of the three goals just stated are such that they
must be presented in a reverse order to that listed above.
The paper begins with Sect. 2 where a brief overview of the
theory of BDCs largely as presented in an earlier work by
the authors (Menabde et al., 1997a) is included here for
completeness and in order to clarify the notation and
terminology used here. The theoretical link between BDC
analysis and the multiscaling formalism, noted above, is
mentioned in Sect. 2 and detailed in Appendix A. It should
be mentioned that the theory of Sect. 2 and Appendix A
holds only for multiscaling fields and is not applicable to
multiaffine fields.

Sect. 3 focuses on details concemning the analysis and
interpretation of results from BDC analyses. These are
practical issues relevant to the parameter estimation
methods in Sect. 4. Prompted by the results of Pedrizzetti
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et al. (1996), this section continues the work presented in
Menabde et al. (1997a) by investigating the BDC analysis
method in greater detail. [Illustrations of the method are
provided by analyzing data in the form of high resolution
rain gauge time series, 2D rainfall radar images, and
multiplicative cascade models. From analyses of the latter,
an important result is addressed in Sect. 3.4, and explained
in greater detail in Appendix B, showing that bare
canonical cascades are not scale similar, having important
practical consequences for parameter estimation.

A general parameter estimation technique employing
Monte Carlo techniques is introduced in Sect. 4. Whereas
Menabde et al. (1997a) considered a specific model to
characterize BDC analysis results, this paper considers a
wider range of parameter estimates applicable to any model
one chooses to use. The method is first illustrated using
multiscaling fields and then applied to multiaffine fields by
simply applying the same method for multiscaling fields on
each individual scale.

2 Brief theory of breakdown coefficients

The theory of BDCs is elegant in that the only assumption
is self-similarity from which all the other results follow.
The formalism also deals with continuous fields, however
in practice one usually applies it to discretized data such as
a digitized radar image or time series. The following
contains the definitions used, the precise assumptions of
self-similarity made, and a brief account of the theory that
follows as developed largely by Novikov (1990, 1994 and
references within).

2.1 Definitions

From the definition of a BDC, (2), given any
intermediate length, p, where /<p<Land ViV, Vy,

Q1= At pnl- 4)

The principle and only assumption made here is that a;.y
are random variables which depend only on the scale ratio
I/L which allows one to write the ¢th moments of (2) as

(o)t Jehe) ®

This relation is referred to here and below as the scale
similarity of moments and is often assumed. While theory
suggests that this is a sufficient and necessary condition for
scale similarity, it has been shown that turbulence velocity
data do not exactly satisfy Eq. (5) (Pedrizzetti et al, 1996)
and is examined further below for the case of rainfall.

Since a7 and its moments depend only on the scale ratio,
I/L, the general solution of (5) is

<a;{ L)~(1/L)*f-’(q) . (6)
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In turbulence, one has the additional condition that
#(0) = 0. For rainfall, however, the condition, £0) = 0, is
not exact since the presence of regions or periods of zeroes
{(dry areas or periods) in the data cause £{0} = 0. Relation
{6) brings to light the important point that BDC analysis is
not a method entirely different to the multiscaling picture
but rather a complimentary alternative with theoretical links
to the multiscaling formalism further developed in
Appendix A.

2.2 Infinitely divisible distributions of breakdown
coefficients

The random variables, @;.;, are by definition restricted in
range 0 < ap; < (LDP (e, FIP < F[LD by mass
conservation) and it is thus convenient to define a new
random variable

FiP ">

Xpp =—In{ )=—ln(a[.L(—} ), {7
' F P AL

where 0 < x;.; < and is loosely referred to here as the log-

BDC. The property (4) for muitiscaling fields may now be

written

XL=Xpp ¥ Xpp 8

If the field is subdivided so as to introduce » intermediate
scales of size p, between ! and L so that Vp) = g/
= =p, /L = {{/LYnand V; Vpl < sz c...c ¥y one has

XL = Xp, + xpl;p2 +...+ Xp L E)]

The variables in the sum are independently and identically
distributed variables whose distribution is dependent only
on the scale ratio, (//L)V/», and so dropping the subscripts
one writes for their probability density

plx, (VLYY = plx, pil piv1). (10)

Therefore p(x, (/L)!1/7), which is the pdf of the log-BDCs,
belongs to the class of infinitely divisible distributions as
found in Feller (1966, Chap. V1.3) where (9) and (10)
alternatively define p(x, /L) as equal to the n-fold
convolution of p(x, (/L)1/#) with itself.

3 Breakdown coefficient analysis

The pdf of the logarithm of the BDC, p(x, /L), is the focus
of the analysis in this paper and its properties and method
of computation are reviewed in this section. While the
theory in the previous section is relatively straightforward it
poses some questions as to the details of how BDC analysis
is performed. A number of these issues are raised in detail
in Pedrizzetti et al. (1996) (hereafter referred to as PNP)
and in much greater detail than here. Most of the tests and
verifications performed in PNP were repeated using rainfall
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Fig. 1. Breakdown coefficient densities for a rain gauge time series
showing the visual degree of scale similarity. The time series was
collected at 15 second resolution for 34 hours. Data are collected at
Arthur’s Pass, New Zealand, November 5-7, 1994,

data with similar results and so are not reported here in
great detail. The issue of the relative locations of the
regions used to calculate each BDC is described below as it
has an important bearing on the analysis method. The
effect of relative locations of the regions leads to what is
called the A factor, which is important when empirically
verifying Eq. (5). 4 is also used at the end of this section to
relate 11(g) in (6) to the moment scaling function, K(g), used
elsewhere in the literature (e.g., Davis et al., 1994; Lavallée
et al., 1993; Schertzer and Lovejoy, 1987).

3.1 General concept of scale similarity and breakdown
coelficients

Using a rainfall time series as a sample data set, the
densities p(x, I/L = %) (written p(x, %)) are shown in Fig. |
for a number of scales. In general, scale similarity is
implied when the pdf of the BDCs or log-BDCs is
independent of scale as is the case for Fig. 1. The data used
in Fig. | have a Fourier speciral exponent, £ = 0.94 + 0,04
and so < D = 1 which agrees with the scale similarity
observed. This data set Lias been analyzed elsewhere in the
literature (Harris et al., 1996), representing a stable rainfall
process in a high altitude alpine region, where the stabitity
of the atmosphere is partially a result of the orographic
flow over mountains (Purdy et al, prepared for
Meteorological Applications, 1998).

By contrast, Fig. 2 shows p(x, '4) for different scales
computed from spatial rainfall data which are clearly not
scale similar since the p(x, %) are clearly dependent on
scale. The data used to compute p(x, %) at each scale in
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Fig. 2. p(x) densities for a multiaffine spatial rain field. BDCs for 2D
images from a large C-band radar (100 km range and 1 km resolution)
from which the BDCs at scales 1 km to 6 km were computed. The
histogram features bin widths of 0.1 and was computed from 5 images per
radar over the period of an hour,

Fig. 2 consist of a rain field derived from a New Zealand
Met Service C-band radar having 1 km resolution. The
field has a scaling isotropic power spectrum with
£ =231 £ 0.02 and is thus an example of a multiaffine
field. This rain field is part of a large scale warm frontal
rain band.

The decrease in the width of p(x, //L) with scale is
characteristic of multiaffine rainfall fields and reflects the
self-affine nature of rainfall. In other words the
fluctuations decrease in amplitude with scale and so arr
approaches one as scale decreases indefinitely (sce
Marshak et al., (1994, Fig. 2) for a nice illustration of this
effect in bounded cascades).

3.2 BDC computation: Relative displacements and the A
factor

From existing literature on scale-similarity and BDCs
(Pedrizzetti et al., 1996; Kida, 1991) it is evident that there
are a number of ways to compute BDCs. The main issue
discussed in this section, and to which PNP is largely
devoted, concerns the fact that in (2) one has to address
how the positions of the local densities are chosen, In other
words one is concemned with the relative locations of # and
Fx

As in PNP one may include the explicit dependence on
the relative displacement of the two segments in (2) and (7)
by writing the variables ¢;; and x;z as a;.7(4) and x7.1{A),
respectively, where
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=Y

FE-p

Fig. 3. Schematic of principle quantities used in the computation of
BDCs in a 2D dala set as referred to in the text.

A= : (11)

For example, in a time series, A4 = ' corresponds to
BDCs computed by taking the ratios of the rightmost and
leftmost element of size / fully contained within the region
of size L. Tn 2D and 3D digitized images, the scales L and /
are chosen here to correspond to the length of the diagonals
of pixels of the differing sizes (Fig. 3). With these
definitions of scale, if A > 4 then the regions are not
chosen according to an inclusive rule in which the volumes
are included within each other (ie., ; < V) but rather a
non-inclusive rule such as that referred to in Kida (1991)
where | ¥ -7 *| < (L-]) and thus 4 £ 1. In this paper 4 is
restricted to A < % for reasons made clear below and in
Appendix A.

Scale similarity is observed for any fixed value of 4, yet
the effect of different A is illustrated in Fig. 4 for rainfall
data from weather radar imagery, where it is evident that
the width of p(x, /L, A) increases with increasing 4. This is
true for breakdowns of all scale ratios. This dependence on
A is observed for BDCs from all cascade simulations as
well as measured data and is a consequence of correlations
between data points as stated in PNP.

As indicated in PNP, the observed dependencies and
differences in BDC distributions on A suggests that A
should be kept fixed in the breakdown process. Limited
data sets also require optimal use of the data and for fixed
A, only breakdown ratios of [/L = ' result in all the
available data being used at each scale. Therefore in this
work breakdowns of /L = % , and A = % will be used
exclusively so that the explicit dependence of p(x) on 4 and
l/L is dropped below. Thus the reasons for using 4 = 14 are
that: 1) A4 = % results in optimal use of the data, 2) the
breakdown process is conceptually the reverse of a cascade
process, and 3) A =% is the value for which (6) is the same
as the moment scaling relation used elsewhere in the
literature (see Appendix A).
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plx)

Fig. 4. Dependence of p(x) on 4. The p(x} were computed from an
ensemble of two high resolution radar images 4 minutes apart.
Breakdown was from pixels of size { = 200 m over size L = 800 m
(i.e., #/L = '%). The dala consisted of rain rates (R) computed from the
reflectivity (Z) using Z = 200R1-6 . The various values of 4 correspond to
taking either the four corner pixels, the cight non-corner outer pixels or
the four inner pixels for 4= ', 56 or 1/6, respectively.

3.4 Relation between cascade generators and p{x)

Before parameter estimation is addressed, some
understanding of the relation between p(x) and cascade
generators is necessary as this will determine whether
parameter estimates are relevant to any subsequent cascade
modeling of rainfall.

Multiplicative cascade simulations are used to generate
large statistical samples with known properties which can
then be used to itlustrate the features of BDC analysis. A
wide variety of cascades are in current use and so it is
necessary to briefly clarify the types of cascades used in
this study.

The simulations used here are discrete random cascades
(e.g., Gupta and Waymire, 1993) with a branching number,
b = 2 for time series and b = 4 for 2D spatial data
(i.e., b = 2P}, Models are either microcanonical or
canonical in construction. Microcanonical cascades are
those in which the 2D weights, W, have a mean of exactly
one (i.e., <W> = 1) at each step in the cascade, while for
canonical cascades the expectation of the weights is unity.
The microcanonical models used below are formed by
generating 5 independent numbers, );, and normalizing
them so as to obtain the multiplicative weights,

H/I:j___l (12)

b
%ny
i=1
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Fig. 5. Comparison of p(x} estimated for 100 16384 point canonical log-
stable cascades and the generator used to create the cascades, The
generator used was a stable distribution with = 1.1 and o= 0.07.

The variables, y;, are referred to here as the pre-normalized
weights,

There are many different methods used to generate the
weights (e.g., Gupta and Waymire, 1993). Models with
two parameters allow an extra degree of freedom when
fitting, and therefore here the weights, W (for canonical
cascades), or pre-normalized weights, y (for microcanonical
cascades), are drawn from either a log-stable or log-gamma
distribution. In other words W; = e-{ or y; = e~ where the
generator, [, is either extremely asymmetrically stable
distributed (/" ~ S{o, £ = 1)) or gamma distributed (7"~
g(v, 0)). The stable random variables are generated using
the RSTAB routine found in Samorodnitsky and Tagqu
(1994). Gamma variables are generated using routines
based on the rejection method as outlined in Devroye
(1986, p. 410-415).

Canonical cascade simulations

Canonical cascades are often used to simulate rainfall and
other geophysical fields (e.g., see Schertzer and Lovejoy
(1987) and Gupta and Waymire (1993)) owing to their
simplicity and ease of use. Canonical cascades may be
iterated to a final scale ratio (bare cascades) or iterated
beyond a final scale ratio and then averaged back up to the
final scale ratio (dressed cascades). When analyzing the
scale-similarity of canonical cascades one finds that bare
cascades show poor scale similarity over the smallest
scales.  This can be explained by considering the
construction and breakdown of a canonical cascade (see
Appendix B).
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From Appendix B it is also apparent that p(x) will not be
the same as the density of the generator, /. This means that
a canonical log-stable cascade with parameters o and « for
the generator will not yield a p(x) which is stable with the
same parameters ¢ and a This is not only due to the
dressing factors but also due to the fact that the
denominator (in (B4) for example) is equal to unity only on
the average and not on each step. Thus one expects a
broader log-BDC distribution, p(x), than that of the
generator.  In other words the breakdown process is
microcanonical in the sense that there is conservation on
every step unlike canonical cascades and the breakdown
thus disagrees with the construction of the field as
illustrated in Fig. 5. While the apparent difference for this
specific example seems extreme, the generator density
shown in Fig. 5 was estimated by a canonical cascade
model fit to BDC data from the same time series used in
Fig. 1. In general one observes that the difference between
p(x) and the generator as shown in Fig. 5, decreases with
increasing oand .

Microcanonical cascade simulations

Microcanonical cascades are different from canonical
cascades with regards to BDC analysis because by
construction <W ;> = 1 exactly at each step in the cascade so
that the denominator in (B4) is unity. This means that p(x)
is identically distributed to p(In(W(L/)?) or in other words
p(x) ~ p(In{W)) to within a translational shift Din{L/) and
x ~ In(W). The problem with microcanonical cascades,
however, is that given a specific generator for y;, there is no
simple analytical form for the multiplicative weights, H’;.
Conversely, an estimation of how W; is distributed for a
data set says little about the generator, y; needed to
simulate data with the same characteristics. This is an
important factor considered in Sect. 4.

4 Parameter estimation using a Monte Carlo technique

An estimated log-BDC density, p(x), may be parameterized
by a least-squares fitting procedure. For scale similar data,
infinitely divisible distribution densities may be fitted, and
two popular examples are the gamma distribution and the
stable distribution. The gamma distribution has an
analytical form while the stable distribution does not and so
in the case of the latter a Monte Carlo approach is taken by
generating histograms from a large number of stable
generated numbers and fitting this histogram to p(x) for the
data.

While estimation of infinitely divisible distribution
parameters is a useful method of characterizing the
intermittency of the data, the discussion above in Sect. 3.4
indicates how the parameters may not be useful for cascade
modeling purposes. In order to estimate cascade model
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Fig. 6. Curve fits for estimated p(x) derived from a) a 8192 point time
series at 15 sccond resolution and b} an ensemble of five 64x64 200m
resolution spatial radar rainfall images with cach image two minutes
apart. In each case the p(x) curve is shown (solid linc) together with a
best fit of a gamma distribution {dotted lineg) and stable distribution
{dashed linc). For the time series data 32 = 25 for the gamma fit and
22 = 14.1 for the stable fit giving 32 exceedence probabilities of 17% and
80%, respectively. For the spatial data 32 = 390 for the gamma fit and
% =278 for the stable fit giving 32 exceedence probabilitics near zero.

parameters, a Monte Carlo method must also be used, this
time generating, for example, histograms of renormalized
weights for the microcanonical case. This is discussed in
greater detail below.

For the case of parameter estimation of multiaffine fields,
the fitting procedure used is the same as for multiscaling
fields with the key difference being that a fit is performed
for p(x) at each scale, since p(x) is not scale similar.

4.1 Parameter estimation of multiscaling fields
Infinitely divisible distribution parameter estimates
As shown above, the pdfs of the logarithm of BDCs belong

to the class of infinitely divisible distributions including
stable (of which the Gaussian is a special case) and gamma
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No:
Fit not within tolerance
Change distribution paramcters
for (1) and try again
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{1y| random numbers
with specific

distribution
Compare distribution in (2)
with p(x) from data
Create histogram oy least-squarcs
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(2) ,
f’/\

Yes:
Fit complete
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Fig. 7. Schematic diagram of Monte Carlo fitting procedure. Step (1)
cither generates a) numbers from an appropriate generator, b)
renormalized numbers from an appropriate generator (microcanonical
model) or, ¢} BDCs from a canonical cascade created from an appropriate
model. On faiture of step (3), which represents the minimization routine,
slightly different parameters are chosen for the generator in step (1).

distributions, to name a few. Of this class of distributions
there is no physically based reason to choose any one
distribution over an other. Choice is made simply on the
ability of a theoretical distribution’s fit to the observed p(x).
The fact that x is positively defined with long tails out to
large positive x is also a consideration in choosing
asymmetric distributions.  Also, when fitting model
densities to p(x) it is simply convenient to have a sufficient
number of free parameters. The gamma density has two
free parameters: a scale parameter, o, and a shape
parameter, v. In multiscaling and multifractals, the stable
density, Sy (o, B ), is restricted to the extremely
asymmeitric case with §= 1 so that the moments of the log-
stable distribution are finite (Samorodnitsky and Taqqu,
1994, p. 52 and references within}. In this case, the stable
distribution also has two free parameters with « being the
shape parameter and o is the scale parameter. The
translational shift parameter, ug (i.e., S {ug) = SL0) + ug
where the subscript, S for ‘stable’, is included to avoid
confusion with the exponent ({g, A) in (6)), is fixed to ug =
log(Z/7), in the fitting procedure.

The simplest procedure involves fitting a known
distribution in closed form, such as the gamma distribution,
to the experimental p(x). Examples of fitting gamma
distributions to p(x) for rain gauge time series and spatial
radar data are shown in Fig. 6.

The temporal data is an example of data with embedded
convection having moderately high intermittency. The
spatial data was an example of rain associated with a cold
front and features low intermittency. The intermittency of
the field is reflected by o. A high o value indicates high
intermittency.
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Fig. 8. p(x) model fits for (a) time series and (b) spatial data assuming a
log-stable microcanonical medel. The data used is identical to that used
in Fig. 7. Compared with Fig. 7 the fits are better with 32 values of 1.8
and 140 for the time series and spatial data, respectively. This results in
22 exceedence probabilities of near 1 and 0, respectively.

Also shown in Fig. 6 for comparison are the stable
distribution fits and here the data are fitted using a Monte
Carlo method. Generation of distributions from, say, 106
numbers drawn from a random stable number generator
such as RSTAB (Samorodnitsky and Taqqu, 1994) can be
fitted by minimizing 32 or the least squares difference
between the penerated stable distribution and the empirical
p(x) based on the data.  For this paper this was
accomplished using the routine AMOEBA.C (Press et al.,
1992).

Cascade model parameter estimates

As shown in Sect. 3.3 and Fig. 6, the distribution of the log-
BDCs are not equal to the distribution of the generator used
to create the field. Therefore Monte Carlo methods (shown
schematically in Fig. 7) must be used to estimate the
parameters for the generator that produces the desired log-
BDC distribution. In the case of canonical models, the
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Table 1. Model scale parameter, o, and standard deviation of
distributions of log-BDCs.

Scale Moaodel o Standard Deviation
1 km 0.17 0.32
2km 0.25 042
4 km 0.35 (.59
% km 0.50 0.70
16 km - 0.98

cascade must be constructed and then used to estimate the
log-BDC distribution. Here there is a computational
advantage for estimating microcanonical cascade
parameters.  Since the log-BDC distribution for a
mictocanonical cascade is equal to the distribution of the
log of the weights, distributions are generated by drawing
weights normalized as in (12) and again these distributions
may be fitted to the p(x) curve by minimizing least squares.
The weights are produced in quantities of 20 with the y;'s
being drawn from a convenient distribution. Again either
the log-gamma or log-stable distributions are used to
generate the ¥;’s as they allow for two parameters. Fits and
parameter estimates for a log-stable microcanonical model
are shown in Fig. 8, using the same data as that used in
Fig. 6.

If one is to use this Monte Carlo method to estimate
parameters for a canonical model it is necessary to draw the
fitting distributions by creating appropriately dressed
cascades (see Appendix B) for step (1) in Fig. 7. This is
very time consuming for two simple reasons: First, the
cascades must be dressed which in practice is at least an
exira six or seven steps in the cascade, and second, the act
of first creating a cascade and then breaking it down to find
its BDCs adds yet more time to the procedure.

4.2 Parameter estimation of multiaffine fields

As already mentioned, multiaffine fields are the norm in
rain fields rather than the exception, and so in general p(x)
densities are a function of scale as in Fig. 2. It is
convenient to include the explicit dependence on scale and
write p(x) as px). The methods of p(x) parameterization in
Sect. 4.1 are still applicable but different distribution
parameters are found for each scale.

The recent interest in bounded cascade models (Marshak
et al., 1994; Menabde et al.,, 1997b and references therein)
which feature a scale dependent generator suggests
verifying whether the measured change in pfx) for rain
fields is in accordance with that assumed for bounded
cascade models. There are many different bounded
cascades in the literature, but the one with the most
conceptual link to the type of pfx) behavior shown, for
example by Fig. 2, is the log-stable bounded cascade
{Menabde, submitted to Nonlinear Processes in
Geaphysics, 1997) with multiplicative weights, W,, = ef>,
determined by the generator
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Fig. 9. Standard deviations of BDC distributions and model scale
parameter as a function of scale for a multiaffine data set. The upper plot
{squares) represents the standard deviation for each p(x) in Fig. 2 from
{ =1 km upwards. The lower plot (circles) represent the model scale
parameter, o, estimated by fitting microcanonical stable log-BDCs to
each p(x) in Fig. 2. The slope of the upper line (squares) is 0.42 = 0.03
while the other is 0.48 + 0.01 and is equal to H. The model & at 16 km
could not be estimated reliably due to insufficient data.

Iy =S80 13
oy =op2"H, H>0, n=0,1,2..., (14)

where » is the step of the cascade. In other words the
generator is stable with a scale parameter, o, which is step
dependent. In fact g, is scaling since n ~ logy(1/f). The
parameter, oy, is simply the scale parameter of the
generator at the largest scale in the cascade when n = 0.
The cascade is bounded in the sense that as n — oo, one has
g, —» 0 and <W,> — 1.

The notion of a scaling scale parameter in the generator
was first verified here by simply finding the standard
deviation, ay, for pf{x) at each scale and verifying whether
o, scales. Using the data from Fig. 2 (explained in Sect.
3.1), for scales of /=1 km to 16 km, the standard deviation
was estimated from each px) using

2 2_5x2pz(x)_[2xpl(x)]2_ (15)

O':Z =X >—X>T =
Zpi{x)

P 2 pi(x)

The scaling behavior of o, is shown by a linear relation on
a plot of logz(a,) vs -loga(i/ler) where /i is a reference
scale set to be the largest scale. The result is shown in
Table 1 and the top plot {squares) of Fig. 9 for Li.y= 16 km.
Error bars for the upper plot represent the standard error in
the standard deviation estimated in the wusual way
by (g -2}/ (4Na2 )2 (e.g., Spiegel, 1972, p. 144),
where N is the number of points contributing to each
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distribution, pAx). The seemingly unusual choice for the
abscissa is made in order to remain consistent with the
conceptual model of the bounded cascade in (13} and (14)
so that the standard deviation may be expressed as
o, = 2-mH_ H characterizes the rate at which the standard
deviation of the densities decreases with scale and obtained
simply by the slope, H=0.42 £ 0.03.

The bounded cascade model (13) and (14) is canonical,
yet the effect on scale similarity that dressing imposes
makes it impractical for fitting. Thus the model used here
to reproduce multiaffine fields is a microcanonical model in
which the pre-normalized weights y,, = e/» are as described
by (13} and (14). The scale parameter of the generator
changes with step while the shape parameter, @, is assumed
to remain fixed. « is estimated at the first step of the
breakdown process (i.e., / = 1 km) and kept fixed for the
fitting of the remaining pf{x). In practice & fluctuates a bit
which affects model estimates of ,. A one parameter fit
using AMOEBA.C as in Sect. 4.1 is used to obtain the scale
parameter, o, at each length scale. The results are
tabulated in Table | and shown by the bottom plot (circles)
in Fig. 9. The model scale parameter, o, could not be
estimated reliably at 16 km since at this resolution there is
insufficient data (64 points) to fit a model density. For
scales of 1 km to 8 km the relation was linear and the
estimate for the slope was equal to H =0.48 £ 0.01.

S Summary and conclusion

Breakdown coefficient (BDC) analysis has been developed
in the turbulence literature by Novikov (1990, 1994, and
references therein) and applied to rainfall by the authors
here and initially in Menabde et al. (1997a). The density of
the log-BDCs, p(x), is proven to be an analysis method
sensitive to scale similarity as shown in Pedrezzetti et al.
(1996). This work promotes BDC analysis as a method
complimentary to the multiscaling approach, used
extensively in the geophysical sciences, with well defined
theoretical links. In addition to sensitivity, the method has
the advantage of being conceptually accessible, particularly
in its ability to help visualize differences between
multiaffine and multiscaling fields while using the same
method to study both types of field.

This work is a continuation of the previous paper on
applying BDC analysis methods to rainfall (Menabde et al.,
1997a) by incorporating some of the findings in Pedrizzetti
et al. (1996). In particular, the issue is raised of relative
displacements in the breakdown volumes. This is
represented by the factor, A. Some arguments are presented
for using A ='. First that A= % results in the optimal use
of data. Second, from a theoretical standpoint, A4 = !4 is
empirically found to be the value for which the BDC
moment scaling exponent, t{g, A), is equivalent to K(g)
(Appendix A).
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Technical details aside, the main thrust of this paper is
the development of a general parameter method applicable
to both multiscaling and multiaffine fields. While fitting
various distributions to p(x) characterizes the field, things
are complicated somewhat when one wants to estimate
parameters useful for cascade modeling fields with the
same statistics. Bare canonical cascades are not scale
similar and need to be at least partially dressed to show a
sufficient degree of scale similarity as shown in Appendix
B. Perhaps a more significant result is that even for a scale
similar (i.c., dressed) canonical cascade, one cannot easily
retrieve the cascade generator in the sense that the p(x)
density computed for the cascade bares no simple relation
to the distribution density of the generator. This makes
microcanonical cascades attractive since the log-BDC
variable, x, is equal to the log of the multiplicative weights
used to produce the cascade.

The notion of retrievable weights for microcanonical
cascades has an important consequence for cascade model
parameter estimates. Given a data set with associated
density, p(x), the parameters for a microcanonical cascade
model that is capable of producing more data with similar
p{x) involves creating a histogram of multiplicative weights
which matches the observed p(x) for the original data. The
histogram is created using a Monte Carlo method where a
large number of weights are generated using specific
parameters and the parameters are tweaked to fit the
obsetved p(x). On the other hand canonical cascade model
parameters can only be estimated by a more
computationally intensive Monte Carlo method where
entirc random cascades are constructed and then broken
down to compute BDCs from which synthetic p(x) densities
are fitted to the original p(x).

Multiaffine data are characterized by log-BDC densities,
px), which are scale dependent and broaden with
increasing scale. More interestingly, they broaden in a
scaling fashion. That is, empirical observation show that
the variance of the log-BDCs increase in a power-law
fashion. Parameterizing the p(x) at each scale according to
various microcanonical cascade models also result in
generator scale parameters, that increase in a power law
fashion with scale. This corresponds well with the concept
of bounded cascades proposed by these and other authors
(e.g., Marshak et al., 1994; Menabde et. al., 1997b).

Having addressed, to a certain extent, the technical and
methodelogy issues of BDC analysis, more focus is now
needed on relating parameter estimates to meteorological
processes. As study is currently underway whereby the
emphasis is put on meteorological classifications of rainfall
processes and their associated scaling propetties.
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Appendix A. BDC analysis and moment scaling

The definition of a multiscaling field is one for which
<Rf >~(1/ L)K@, (AD)

where R; represents the field at resolution / and the scale L
is usually taken to be the largest scale of the field. K(g) is
the moment scaling function already referred to above.

Given the similarity between Eq. (6) and Eq. (A1) it is
interesting to show if there is a link between these two
relations.  First, it is important to rewrite relation (6) to
include explicit dependence on 4 as discussed in Sect. 3.2
and as done in PNP so that

<a;’; . (A)>~ (17 Ly~#98) (A2)

Consider the case where L remains fixed by choosing,
say, L to be the maximum scale over which scaling is
observed. In this case the dependence on L and R; is
dropped (or equivalently let L = R; = 1) and {A2) may be
rewritten as

(qu (A)>~1_"(‘7'A) . (A3)

Given the similar forms of (A1} and (A3) it is important to
establish the relation between the often used exponent
function K(gq) and the exponent, (g, A).

For a discrete field of N, points at resolution, /, only two
points in the field have the same A so that the moment,
<R/ >, in which BDCs with different A4’s are all mixed
together may be represented by

(rf )=Ni]k=gz(1e? (81))-

S (A4)
— % j#ga) _j-Kg)y
Npok=t

In practice the K(y) function is often computed by
computing the moments, < th >, at the highest resolution, /,
and then degrading the resolution by averaging neighboring
pixels to a field with half as many points and resolution, 2/,
and computing the moments again and so on. This requires
a field with N; = 27 points with » an integer. In this case A
assumes the values,
2k-1

Apy=——— k=12,... NJ2. BS
k 2V, -1) [ (B3)
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Fig. A2, Scaling moment analysis comparing the exponents K(g) and
wig,4) for g=2. The exponents are given by the slope of each curve and
wete found to be p(2, ¥2) = 0,115, K(2) = 0.113, and 242, §) = 0.074,
respectively. The data set analyzed to obtain these moments consisted of
2x10% 16384 point microcanonical cascades for <Rf{A)> and 200 16384
point cascades for <R¥>,

Fig. Al illustrates a schematic diagram depicting this
procedure and the quantities in relation (A4) and (AS). As
the process of coarsening increases, / increases, Ny
decreases, and there are fewer 4;’s.

For large enough N (i.e., large data sets at small scales)
the sum in (A5) can be represented as a Riemann integral
and applying the method of steepest descents one has,

1/2
<Rf>~ (J; l—ﬂ(q’A)dA~l_”(q’A‘) Nl—K(‘F) , (A6)

where A« is given by the condition for which (g, A) is
maximum. In practice the maximum values of (g, A)
occur when A = 2 and in Fig. A2 one may see that K(g) is
quite close to u(g, A = %) for an example in which an
ensemble of 104 microcanonical cascades was analyzed.
The high number of cascades is necessary to get good
statistics, kee&)ing in mind that one cascade only yields two
points to << R; (A)> for each A at each scale, /.

Appendix B. BDCs of bare canonical cascades

Fellowing the notation of Kahane and Peyriere (1976) used
elsewhere in the literature (Gupta and Waymire, 1994;
Harris et al., 1996), an n-step bare cascade may be written
as

Ro(iys ooy in) = RoWU)W iy, i). .. Wiy, ..., i), (B1)

while a dressed cascade may be written as
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R(igsin)=RyZ j_py (i iy} . (B2)

Zn_n is the random uncorrelated dressing factor given by

ZN—n (i] ,"‘in):
2" NS W sttt W s Do G g )+ B

Loy

For purposes of illustration the example considers BDCs
computed for A = [/L = % but still holds for other scale
ratios and A Consider the BDCs of the bare process (B1)
at the smallest scale. Because neighboring pixels have
common parents in the cascade the parents factor out to
give

Wiy, ndy)

LWy, i)+ Gy i)
where W and W’ are neighbors at the smallest scale. At the
next largest scale one scale of dressing has effectively
occurred so that the BDCs are given by

arr (B4)

_ Wi, ..in)2)
FHUY, sl DZ AWy s 1)Z])

where WZ and W'Z' are neighbors. Because of the
effective increasing degree of dressing at larger scales
BDCs in (34) will be differently distributed than those at
larger scales such as (B5).

In theory the BDCs are only asymptotically scale similar.
One has

a;:L (BS)

Wiy, wnig)Z
L A a— ; G "), N - (B6)
T(W(I! R .| )ZN +W (l] R P )ZN)
where Zy are the dressing factors equal to
Zy=2"N T W Wiy ) iy ) (B7)

-
and Zyy — Z for large N (as N increases Zy, becomes a
very narrow disiributed variable).

In practice what is observed is that as one further
increases the scale, the BDCs become more similarly
distributed and after about 6 steps of dressing the BDC
densities converge {visually) to the same curve for all
subsequent steps of the breakdown. This means that on a
visua! basis canonical cascades which have been iterated at
least 6 steps, or more, beyond the final scale and dressed
back up to the final scale will seem scale similar on all
scales.
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