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Abstract. The singular values associated with optimally
growing perturbations to stationary and time-dependent so-
lutions for the general circulation in an ocean basin provide
a measure of the rate at which solutions with nearby initial
conditions begin to diverge, and hence, a measure of the pre-
dictability of the flow. In this paper, the singular vectors and
singular values of stationary and evolving examples of wind-
driven, double-gyre circulations in different flow regimes are
explored. By changing the Reynolds number in simple quasi-
geostrophic models of the wind-driven circulation, steady,
weakly aperiodic and chaotic states may be examined. The
singular vectors of the steady state reveal some of the physi-
cal mechanisms responsible for optimally growing perturba-
tions. In time-dependent cases, the dominant singular values
show significant variability in time, indicating strong varia-
tions in the predictability of the flow. When the underlying
flow is weakly aperiodic, the dominant singular values co-
vary with integral measures of the large-scale flow, such as
the basin-integrated upper ocean kinetic energy and the trans-
port in the western boundary current extension. Furthermore,
in a reduced gravity quasi-geostrophic model of a weakly
aperiodic, double-gyre flow, the behaviour of the dominant
singular values may be used to predict a change in the large-
scale flow, a feature not shared by an analogous two-layer
model. When the circulation is in a strongly aperiodic state,
the dominant singular values no longer vary coherently with
integral measures of the flow. Instead, they fluctuate in a
very aperiodic fashion on mesoscale time scales. The dom-
inant singular vectors then depend strongly on the arrange-
ment of mesoscale features in the flow and the evolved forms
of the associated singular vectors have relatively short spatial
scales. These results have several implications. In weakly
aperiodic, periodic, and stationary regimes, the mesoscale
energy content is usually relatively low and the predictabil-
ity of the wind-driven circulation is determined by the large-
scale structure of the flow. In the more realistic, strongly
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chaotic regime, in which energetic mesoscale eddies are pro-
duced by the meandering of the separated western boundary
current extension, the predictability of the flow locally tends
to be a stronger function of the local mesoscale eddy struc-
ture than of the larger scale structure of the circulation. This
has a broader implication for the effectiveness of different
approaches to forecasting the ocean with models which se-
quentially assimilate new observations.

1 Introduction

The prediction of ocean currents and ocean circulation on
different spatial and temporal scales has emerged as an im-
portant scientific pursuit over the last decade. Particular at-
tention has been devoted to the prediction of mesoscale pro-
cesses that characterize energetic frontal systems, such as the
Western Boundary Current (WBC) systems, and their exten-
sions, of which the Gulf Stream in the North Atlantic and
the Kuroshio in the North Pacific are prominent examples.
For such nonlinear systems, however, prediction is ultimately
limited by the predictability of the system itself, which de-
pends on its dynamic instabilities. Hence, there is the need
to investigate and to understand the intrinsic predictability of
the types of flow considered in this study. Strong oceanic
frontal systems are characterized by the intermittent appear-
ance of energetic events, such as meandering and ring for-
mation. The classical studies of barotropic, baroclinic and
mixed quasi-geostrophic instabilities (Pedlosky, 1987) have
shed much light on the fundamental mechanisms responsible
for the growth of mesoscale meandering events. In particular,
the classical linear eigenvalue analysis of the normal modes
of the system reveals the energy pathways that can sup-
port meander growth. Such analytical or semi-analytical ap-
proaches are, however, limited to simplified flows, of which
a unidirectional, steady and along-stream invariant jet is the
canonical example. (See, for instance, the linear theories of
infinitely long, straight WBCs of Ierley and Young (1991)
and Berloff and Meacham (1998), among others.) Linear in-
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stability theory can be extended by considering basic flows
that are slowly varying in time and/or space, but such treat-
ments generally require that the time scale or the along-
stream length scale of the basic state be long in comparison
to the intrinsic time and length scales of the instabilities. Ex-
ceptions to this constraint are studies based on Floquet anal-
ysis (Lorenz, 1972) which, however, require that the basic
state be periodic in time or space.

In a real system, such as the Gulf Stream and its extension,
the ocean jet is convoluted and time-dependent, and exhibits
strong along-stream variations. The fact that the spatial and
temporal inhomogeneities of such current systems occur on
scales comparable to those suggested by the above instability
theories is a testimony to the power of these theories in ex-
posing the underlying physical mechanisms responsible for
synoptic scale variability. However, the spatial-temporal in-
homogeneity of the ocean also means that the classical in-
stability theories are limited in their predictive ability. In-
deed, it is difficult to even choose an appropriate reference
or basic state in which to apply a linear stability theory. A
realistic oceanic frontal flow, such as the Gulf Stream sys-
tem, is more appropriately thought of as a chaotic nonlinear
system. As such, it possesses the defining characteristic of
chaotic systems, with a sensitive dependence on initial con-
ditions. Thus, the following broad question exists: “How
predictable is a given time-dependent flow?” This needs to
be addressed by constructing well defined measures of pre-
dictability. One such quantifiable measure is the rate of diver-
gence of two oceanic flows differing slightly from each other
at initial time, i.e. the rate of divergence of neighboring solu-
tion trajectories. A second useful measure is the evaluation
of the spatial structure and localization of the fastest growing
perturbations over a prescribed time interval. Since the ocean
is an evolving, fully nonlinear system, a complete answer to
the question of “How predictable is the oceanic circulation?”
would require a detailed study of the phase space of the flow
for some distance from a specified segment of the model tra-
jectory. With existing techniques, this is too difficult a task
except for very constrained flows. However, by forsaking a
description of the nonlinear evolution of perturbations for a
linear approximation, it is possible to tackle the complex spa-
tial and temporal inhomogeneities in a nonlinearly evolving
basic state. Two mutually related techniques that can be used
for such studies have been developed and extensively used
in meteorology. They are the singular vector analysis, first
introduced by Lorenz (1965), and the generalized stability
analysis, proposed by Farrell and Ioannou (1996a,b). These
methods have been recently used in the oceanographic con-
text by Farrell and Moore (1992, 1993); Moore and Mariano
(1999); Moore (1999) among others. In the Moore and Mari-
ano (1999) study, the generalized stability analysis is applied
to a QG numerical model of the Gulf Stream, defined by the
open boundary conditions of Charney (1955) as a jet entering
an open ocean domain where it undergoes intense meander-
ing associated with its intrinsic instabilities. The analysis is
carried out for a localized sector of the frontal jet, leading to
the fastest growing perturbations, the so-called optimal per-

turbations related to meander growth of the front itself and to
localized eddy formation and interactions with the main jet.
Such an open ocean model, however, cannot address the ba-
sic features of the subtropical gyre circulation that crucially
affect the behaviour of the Gulf Stream system. The Gulf
Stream and its extension are components of the larger and
intricately interlinked wind-driven circulation of the North
Atlantic basin. Important properties, such as the stream sep-
aration point and its penetration scale into the interior, are de-
termined not only by its instabilities, but also by the surface
wind forcing and by the state of the large-scale circulation.
Inertial recirculations south and north of the Gulf Stream pro-
foundly affect both its instabilities and the long time variabil-
ity of the whole basin, as shown by McCalpin and Haidvogel
(1996) and Primeau (1999).

In this study, we address the problem of predictabil-
ity of a strong oceanic frontal system, such as the Gulf
Stream, but in the idealized context of a time-dependent,
wind-forced, quasi-geostrophic (QG), double-gyre circula-
tion model. Even though idealized, such a model contains
important dynamical ingredients associated with embedding
the Gulf Stream jet and its instabilities in the overall, non-
linear gyre circulation. We consider two types of models, a
reduced gravity QG model with one active layer, and a two-
layer QG model with finite total depth. In Sect. 2 of this
paper, we discuss the circulation models used. In Sect. 3,
we summarize the generalized stability analysis based on the
evaluation of the optimal perturbations, the singular vectors,
and discuss some of their interpretations. In Sect. 4, we ex-
amine the singular vectors of the steady circulations of the
two models run with the same parameters and wind-forcing.
We compare the flow predictability for the two systems with
different instability properties. In Sect. 5, we extend the sin-
gular vector analysis to weakly aperiodic, double-gyre circu-
lations, characterized by irregular vacillations. The singular
vector analysis is further extended to strongly aperiodic flows
in Sect. 6. Finally, in Sect. 7, we provide a summarizing dis-
cussion, the conclusions of the present study, and directions
for future research.

2 Models

We consider two types of quasi-geostrophic ocean circula-
tion models: a reduced gravity model with one active (upper)
layer, i.e. an equivalent barotropic model, henceforth referred
to as the EB model, and a two-layer model with finite total
depth that is baroclinic and referred to as the 2LQG model.
The governing equations describe the evolution of potential
vorticity q, and are written in terms of the stream functionψ .
In the 2LQG model, the upper (active) and lower layers are
distinguished by subscripts 1 and 2. The equations for each
layer are:

∂tq1 + J (ψ1, q1)+ βψ1x = ν∇4ψ1 +
fwE

H1
(1)

∂tq2 + J (ψ2, q2)+ βψ2x = ν∇4ψ2, (2)
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whereJ (A,B) ≡
∂A
∂x

∂B
∂y

−
∂A
∂y

∂B
∂x

. Here,f andβ are the
planetary vorticity and its gradient,ν is a uniform eddy vis-
cosity,H1 is the upper layer depth, and the Ekman suction
velocity is

wE = Ww(y/L) = ẑ · ∇ ×
τ (y)

ρ0f
, (3)

whereL is the zonal width of the basin,W is a dimensional
scale for the vertical Ekman velocity,w is a dimensionless
function describing the spatial pattern of the vertical Ekman
velocity, ẑ is the unit vector normal to the Earth’s surface,
ρ0 is an approximate density of seawater, andτ (y) is the
horizontal surface wind stress. The models are written using
zonal and meridional Cartesian coordinates,x andy. For the
EB model, Eq. (2) is absent and

q1 = (∇2
− L−2

D )ψ1, (4)

where the internal deformation radius,LD ≡ (g′H)1/2/f0,
andg′ is the usual acceleration due to gravityg, multiplied
by the relative density difference between the layers1ρ/ρ0.
In the 2LQG or baroclinic model,

q1 = ∇
2ψ1 +

L−2
D

1 + δ
(ψ2 − ψ1),

q2 = ∇
2ψ2 +

δL−2
D

1 + δ
(ψ1 − ψ2), (5)

whereδ = H1/H2 is the ratio of upper and lower layer depths
andLD ≡ (g′H1H3/f

2
0H)

1/2. In each model, the rigid lid
approximation is used and the volume of each layer is con-
served.

We non-dimensionalize by scalingx andy with L, t with
(βL)−1, andψ with (fWL/βH1), and introduce the dimen-
sional Munk and inertial boundary layer scales,

δ∗M =

(
ν

β

) 1
3

, δ∗I =

(
fW

β2H1

) 1
2

, (6)

together with their dimensionless counterparts

δM =
δ∗M

L
, δI =

δ∗I

L
. (7)

The non-dimensional vorticity equations are then

∂tq1 + δ2
I J (ψ1, q1)+ ψ1x = δ3

M∇
4ψ1 + w(y) (8)

∂tq2 + δ2
I J (ψ2, q2)+ ψ2x = δ3

M∇
4ψ2. (9)

Introducingλ = L/LD, the dimensionless potential vorticity
anomalies become

q1 = (∇2
− λ2)ψ1 (10)

for the EB model and

q1 = ∇
2ψ1 +

λ2

1 + δ
(ψ2 − ψ1),

q2 = ∇
2ψ2 +

δλ2

1 + δ
(ψ1 − ψ2), (11)

for the 2LQG model.
In the experiments discussed below, the basin is rectan-

gular and the dimensionless model domain is 0< x < 1,
0 < y < 2. The models are forced with a double-gyre pat-
tern of Ekman suction,

w(y) = − sin(πy), 0< y ≤ 2. (12)

The dimensionless parameters that appear in each of the
models areδI , δM and the non-dimensional inverse baro-
clinic deformation radius,λ. In addition, the 2LQG model
depends on the layer depth ratioδ. We define the Reynolds
number for these models as the ratio

δ2
I

δ3
M

=
fW

βH1

L

ν
=
fWL

βH1δj

δj

ν
, (13)

wherej = M or I .
In Sects. 4, 5 and 6, we explore the time-evolving singular

values and singular vector structure in three different regimes
of the wind-driven double-gyre circulation. The experiments
are conducted with both the EB and 2LQG models in order
to observe first, the behaviour of the first baroclinic mode
alone, and then the effect of adding a barotropic mode. The
models are spun up in an idealized rectangular ocean basin of
dimensionLx = 2048 km andLy = 4096 km in the merid-
ional and zonal directions, respectively, and the characteristic
width L is taken to be 2048 km. The upper layer depthH1,
in both models, is set to 500 m for all the cases. The internal
deformation radiusLD, is taken to be 40 km when model-
ing the steady and weakly aperiodic regimes, and 48 km for
the strongly aperiodic regime. The Coriolis parameterf is
10−4s−1, β is 2 × 10−11 m−1s−1 andρ0 is 1000 kg m−3.
W is taken to beτ0/fLρ0, which corresponds to applying a
sinusoidal wind stressτ = −π−1τ0 cos(πy), 0< y < 2.

The EB model is always run with no-slip lateral bound-
ary conditions, while the 2LQG model uses free-slip bound-
aries for all but the steady-state case. For a domain of this
size, higher Reynolds numbers result in an early separation
of the WBC from the coast in the 2LQG model when no-
slip boundaries are used. This is prevented by using free-slip
boundary conditions. Bottom friction is negligible in these
model runs. During the spin-up phase, which lasts 2500–
4500 days in these experiments that starts from rest, we add
a small, time-varying random perturbation to the wind in or-
der to break the symmetry of the flow. Beyond spin-up, the
models are forced by a steady symmetric wind field. In the
2LQG model, the ratio of layer depthsδ, is 1/9. The viscos-
ity and wind stress are varied to obtain different regimes of
the flow.

The nonlinear forward model is similar to the one used
by Holland (1978). The vorticity equations are discretized
with second order finite differences and advanced in time
with a second-order Runge-Kutta scheme. The Jacobian is
discretized following Arakawa (1966). The grid is uniform
with square mesh elements and a resolution of 129×257. The
time step is 0.1 non-dimensional units, which corresponds to
127 min and 50 s. The elliptic relations (11) are inverted for
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the stream functions by first applying a linear transformation
that yields elliptic equations for the barotropic and baroclinic
components. The equation for the baroclinic stream function
is split into two parts, an inhomogeneous equation with ho-
mogeneous boundary conditions and a homogeneous equa-
tion with inhomogeneous boundary conditions. The two el-
liptic problems with homogeneous boundary conditions are
solved using a direct solver (one-dimensional sine-FFT fol-
lowed by tridiagonal inversion). The remaining elliptic prob-
lem is solved once at the start of each run with a unit bound-
ary condition, using a multi-grid solver.

3 Singular vectors

Singular vectors have a long history with implicit applica-
tions in fluid dynamics dating back to at least the work of
Orr (1907). Ideas about the transient growth of perturba-
tions governed by non-normal operators has received consid-
erable attention in fluid dynamical studies of the transition to
turbulence (Gustavsson, 1991; Trefethen et al., 1993). At-
mospheric scientists have looked at singular vectors or non-
normal instabilities as a way of understanding the growth of
the errors in the forecasts (Lorenz, 1965; Palmer et al., 1998)
or the transient growth of the disturbances (Farell, 1984).

We adopt the notation thatq represents a column vector
with elements that are the value of the potential vorticity at
each successive interior grid point of the model. In the case
of the two-layer model, values of the lower layer potential
vorticity are listed after the upper layer potential vorticity
values.

Both of our circulation models can be expressed as a gen-
eralized, nonlinear model (NLM) of the form

dq

dt
= N(q, t). (14)

By its definition, the state vectorq(t) consists of the values
of all of the prognostic variables at all of the grid points in the
finite difference model.N represents the discretized form of
the nonlinear governing equations.

We choose an inner product, (x, y), between any two state
vectorsx andy. The associated norm is‖ x ‖:= (x, x), e.g.
‖ x ‖ may be the energy or enstrophy of the flow. The choice
of norm dictates the quantity whose growth is maximized by
the dominant singular vector. This has an implicit effect on
the scale content of the initial and final forms of the singular
vector (Palmer et al., 1998).

Given an initial condition,q0, and a time intervalIT :=

[0, T ], integrating the NLM yields a trajectory

Cq0 :=

{
q̂(t) : q̂ = q0;

dq̂

dt
= N(q̂, t), t ∈ IT

}
. (15)

Linearizing about Equ. (14) provides a Forward Tangent
Model (FTM) to the original nonlinear model along the tra-
jectoryCq0, i.e.

dq ′

dt
= M(q̂(t), t)q ′. (16)

Integrating Eq. (16) over any finite intervalI1 := [t0, t1],
0 ≤ t0 < t1 ≤ T contained inIT , we obtain a linear map

q ′

1 = L(t0, t1)q
′

0, q ′

0 ∈ Ht0, q ′

1 ∈ Ht1, (17)

from the Hilbert space (equipped with the norm defined
above) of initial conditions att = t0,Ht0, to the Hilbert space
of final states att = t1,Ht1.

We callL the forward tangent propagatorand define an
adjoint propagator, L∗

: Ht1 → Ht0, by

(L∗x, y) = (x, Ly) for all x ∈ Ht1, y ∈ Ht0. (18)

Thesingular vectors, {ei}, andsingular values, {σi} are de-
fined to be the eigenvectors and eigenvalues of the linear Os-
eledec operator,L∗L, which mapsHt0 to itself.

The forward nonlinear model, the forward tangent model,
and the adjoint model are all readily implemented numeri-
cally. Note, for example, that the forward nonlinear model
for the equivalent barotropic model may be written as

dq

dt
= N(q, t) = Aq + Bp + C(p, q)

= Aq + BD−1q + C(D−1q, q), (19)

whereA, B, andD are linear difference operators (D is
just the discretized Helmholtz operator), andC is a skew-
symmetric bilinear form that corresponds to the discretiza-
tion of the Jacobian.

We now discuss the interpretation of singular vectors. Let
the singular values be indexed in order of decreasing size,
σ1 > σ2 > . . . . Let the initial conditionq ′

0 represent asmall
disturbance to the solution of the nonlinear model at timet0.
If the interval I1 is sufficiently short that the FTM, which
is a linearization thatfollows the time-dependent trajectory
of the nonlinear model, remains a good approximation for
the evolution of this disturbance overI1, then the norm of
the perturbation to the nonlinear model at timet1 is approxi-
mately

‖ q ′

1 ‖= (q ′

1, q
′

1) = (Lq ′

0, Lq ′

0) = (q ′

0, L
∗Lq ′

0). (20)

Hansen and Smith (2000) discuss the relation between limits
on the length ofI1 and the initial disturbanceq ′

0. Then

max
q ′

0

(
‖ q ′

1 ‖

‖ q ′

0 ‖

)
= σ1, (21)

i.e. the maximum amplification of a small disturbance that
can occur over the intervalI1 is given by the first singular
value,σ1, and the spatial structure of the maximally ampli-
fied initial condition is given by the first singular vector,e1.
The shape of the disturbance into which this evolves att = t1
is given byf 1 = Le1. In general,L is non-normal,e1 is not
a scalar multiple ofe1, ande1 is not a normal mode.

The size ofσ1 provides an indirect measure of the fastest
rate at which a trajectory perturbed a small distance from
the original model trajectorŷq(t), at t0, will diverge from
the original trajectory when averaged over the intervalI1.
Hansen and Smith (2000) discuss the relation between limits
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on the length ofI1 and the initial disturbanceq ′

0. A related
measure of the rapidity of the growth of the dominant singu-
lar vector is the time it takes for the singular vector to double,
which has the advantage of being independent of the choice
of I1. When considering transiently growing disturbances,
neither of these completely characterizes the evolution of the
singular vector, since there are typically multiple time scales
involved, for example, the length of the period of growth and
the inverse of the growth rate averaged over that period. One
should remember that since bothσ1 and the doubling rate
are properties of the “most rapidly” growing singular vec-
tor, they depend on the optimization time used. For example,
if the optimization time is shortened, thenσ1 may increase.
However, for the examples below, the structure of the lead-
ing singular vectors and their associated doubling times are
smooth, and fairly weak functions of the optimization time
over time scales characteristic of the ocean mesoscale (3–30
days).

The singular vectors and values have another interpreta-
tion. If we imagine a predictive numerical model of part
of the ocean, the singular vectors and values describe how
small errors in the state vector at timet0 evolve over the in-
terval I1. If the initial error covariance matrix is isotropic,
then the vectorsLei are the principle axes of the error co-
variance matrix att = t1, and the singular valuesσi describe
the amount of extension or contraction along each principle
axis. Conversely, if we wish to have an isotropic error covari-
ance matrix at timet1, then we must ensure that the lengths
of the principle axes,ei of the initial error covariance matrix
are proportional to 1/σi . This identifies the “directions” in
which it is most important to minimize initialization errors if
we are to control the prediction errors. Sinceq is the state
vector of an ocean general circulation model, each singular
vector corresponds to a particular spatial pattern of the prog-
nostic variables.

Yet another geometric interpretation of the singular vec-
tors is the following and is illustrated in Fig. 1. If we take
a particular pointq0 on a nonlinear trajectory and imag-
ine a hyperspherical ball of initial conditions centered onq0
(for example, a cloud of initial conditions representative of
measurement errors), then while the linear approximation re-
mains reasonable, this cluster of initial conditions will evolve
into a hyperellipsoid with axes corresponding to the evolved
formsf of the singular vectors. These are mutually orthog-
onal (or can be made so in the event of eigenvalues with a
multiplicity greater than 1), since they are eigenvectors of
the normal operatorLL∗. The expansion of the ellipsoid in
some directions gives an indication of the degree to which
trajectories diverge. Note that an extension of the ellipsoid
parallel to the tangent to the nonlinear trajectory at the final
time t1 represents a different sort of error than an extension
perpendicular to the final tangent direction. The first is really
a phase error and represents an error in predicting when the
flow will pass through the pointq(t1) on the nonlinear tra-
jectory. The second type of error represents an error in the
predictedstructureof the final state.

It is important to remember that growing singular vectors,

q0

E0

q(t1)

E(t1)
q(t )

Fig. 1. In this geometric interpretation of the singular vectors, a par-
ticular pointq0 on a nonlinear trajectory is surrounded by a hyper-
spherical ball or cloud of possible initial conditions (such as those
arising from measurement errors) centered onq0. While the linear
approximation remains reasonable, this cluster of initial conditions
will evolve into a hyperellipsoid with (mutually orthogonal) prin-
cipal axes corresponding to the evolved formsf of the singular
vectors. The expansion of the ellipsoid in some directions gives an
indication of the degree to which the trajectories diverge.

those with singular values are greater than 1, can exist for a
combination of reasons. One mechanism that can give rise to
an amplifying disturbance is a dynamical instability. For ex-
ample, suppose that the operatorL is stationary andnormal,
then the eigenvectors are orthogonal and the singular vectors
are parallel to the eigenvectors. Consider the simple exam-
ple of an unstable, two-dimensional system with one grow-
ing eigenvector and one decaying eigenvector, as shown in
Fig. 2a. Any disturbance that is sufficiently close to being
parallel to the unstable direction will grow as a result of that
instability. When the linearized system represented by the
operatorL is non-normal, the eigenvectors ofL are typically
non-orthogonal. Again, considering an example in whichL

is stationary and two-dimensional demonstrates how a dy-
namical instability represented by a growing eigenvector can
lead to the growth of a disturbance that is initially almost par-
allel to it (Fig. 2b). However, one of the somewhat counter-
intuitive aspects of non-normal systems that should be kept
in mind is that even for a stable system, there can exist dis-
turbances which exhibit transient growth. This can occur
when two decaying eigenvectors of the non-normal opera-
tor L are non-orthogonal and have different eigenvalues, as
demonstrated in Fig. 2c.

When computing singular vectors, the choice of norm is
dictated, in part, by their intended use. Here, we are in-
terested in the differences between trajectories of the phase
space of the model. Potential vorticity is the natural dy-
namical variable in the QG models and its grid-point values
are chosen as the coordinates for this phase space. A natu-
ral choice of metric in this space is thus enstrophy, and the
enstrophy norm is used in the singular vector calculations.
Since the potential vorticity of the flow is the only prognostic
quasi-geostrophics variable in a closed domain with properly
posed boundary conditions, all non-trivial choices of a norm
will lead, in one way or another, to singular vectors that rear-
range the potential vorticity field. However, two other typical
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e1

e2

q
0(a)

f2

q1

f1

(c)

(b) e1

e2

q
0

f2

q1

f1

e1 e2

q
0

f2

q1

f1

Fig. 2. In each panel, two eigenvectors of a stationary linear oper-
ator,L, are shown with bold lines. A third vectorq0, correspond-
ing to a disturbance to the underlying system, is shown by a thin
line. The initial (non-normalized) eigenvectors are denoted byei
and their evolved forms (after being operated on byL) are denoted
by fi . The evolved form ofq0 is q1. The following three cases are
depicted:(a)L normal, with one unstable and one stable eigenvec-
tor; (b) L non-normal, with one unstable and one stable eigenvec-
tor; (c) L non-normal, with two stable eigenvectors with unequal
eigenvalues.

choices of norm, the stream function and the energy norms,
tend to integrate the effects of the rearrangements of potential
vorticity in different parts of the flow.

In our numerical calculations of singular vectors, the tan-
gent model used is a linearized form of the nonlinear forward
model. The linearization is an approximation to the time-
dependent trajectory of the nonlinear model constructed by
piecewise linear interpolation between points on the exact
trajectory that are spaced 10 time steps apart. The adjoint is
the exact (to within machine rounding error) discrete adjoint
of the discrete tangent model. The singular vectors of the
system are obtained by finding eigenvectors of the Oseledec
operator using the Lanzcos algorithm.

4 Singular vectors of steady circulations

In this section, we examine the singular vectors of steady,
double-gyre circulations. Forν = 1000 m2 s−1, LD =

40 km, a wind stress intensity ofτ0 = 0.11 Nm−2, and the
existance of no-slip boundary conditions, both the EB and
2LQG models possess a stable, steady-state, double-gyre cir-
culation. Since the same upper layer depth is used in both
models, their upper layer circulations, shown in Fig. 3, are
identical. Perturbations to the steady state evolve differently
in the two models on account of their different vertical struc-
tures. In the EB model, a small perturbation can exchange

Fig. 3. Steady-state value of the upper layer(a) stream function and
(b) potential velocity for the case withν = 1000 m2 s−1, LD =

40 km, τ0 = 0.11 Nm−2, and no-slip boundary conditions. Both
the EB and 2LQG model upper layers have identical steady states.

energy with the background flow only through the barotropic
energy conversion process associated with the rate of work-
ing of the horizontal Reynolds stress on the background mo-
mentum gradient (Pedlosky, 1987). The 2LQG model, on the
other hand, can also simulate a horizontal heat flux. In this
model, a small perturbation may exchange energy with the
background flow through both barotropic and baroclinic en-
ergy conversion terms. We will attempt to identify physical
mechanisms associated with the growth of optimal pertur-
bations (singular vectors) by initializing the models with a
singular vector and allowing this perturbation to evolve lin-
early. We will then compare the initial and evolved states of
the perturbation, and examine the spatial pattern of energy
conversion between the perturbation and background flow.

As was noted in Sect. 3, it is not a contradiction that asta-
ble flow (in the mathematical sense of asymptotic stability)
should possessgrowingfinite-time singular vectors. Due to
the shears present in the steady-state flow, small disturbances
with an appropriately chosen spatial distribution can extract
energy from the local horizontal or vertical shear. As the
locally growing part of the perturbation grows, it is also ad-
vected through the region where its phase structure favors the
extraction of energy from the background flow. Once outside
this region, growth ceases and dissipation acts to dampen the
local disturbance, while the adverse shear may extract en-
ergy from the disturbance. Sustained growth (as would be
seen if the disturbance were a growing normal mode) can
only occur if (a) the disturbance is eventually advected back
into the unstable part of the background flow, (b) some com-
ponent of the disturbance re-entering the unstable region has
the correct phase structure to extract energy from the back-
ground flow, and (c) the growth in enstrophy experienced by
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the disturbance as it passes through the unstable region is
greater than the decay experienced during the phase in which
the disturbance is being advected away from and then back
into the unstable region. From the perspective of trajecto-
ries in phase space, the case in which a stable flow possesses
growing finite-time singular vectors corresponds to a situa-
tion in which there exist some directions in which nearby
trajectories are locally diverging from the fiducial trajectory
(the point in phase space that corresponds to the steady state).
However, eventually these trajectories curve back towards
the fiducial trajectory and asymptote to it.

We begin by examining the singular vectors of the stable
steady state in the two models. The singular vectors are cal-
culated to optimize enstrophy growth over a period of 10 time
units, i.e. approximately 8.9 days. Figures 4 and 5 show, in
an enlarged view of the region surrounding the separation
point of the jet, the first or dominant singular vector, i.e. the
transient disturbance with the largest amplification rate, for
the EB and 2LQG models, respectively. The left panels show
the singular vector structure or initial potential vorticity and
stream function prescribed as a perturbation, the middle pan-
els show their linearly evolved states att = 10, and the right-
most panels show the mean energy conversion rates over the
period t = 10, as defined in the Appendix of Berloff and
Meacham (1998). In both models, the first singular vector,
which has the largest singular value, corresponds to the lat-
itudinal variation of the point at which the mid-latitude jet
separates from the western boundary. The initial structure
of this perturbation has a relatively large spatial scale and
is anti-symmetric about the middle latitude of the basin. Its
largest amplitude occurs straddling this line, over towards the
western boundary. Since the anomaly has the same sign on
both sides of the middle latitude, its effect is to strengthen
one of the inertial gyre recirculations and weaken the other.
This intensification of circulation in one half-basin and the
weakening in the other, strengthens the WBC on one side
of the separation point and weakens it on the other. When
superimposed on the basic state, i.e. the steady solution in
Fig. 3, the result is a meridional displacement of the sepa-
ration point into the half-basin with the weakened recircu-
lation. Evidence of the deceleration of one WBC and the
acceleration of the other may be seen in the final state of the
singular vector, in which a thin band of anomalous potential
vorticity, symmetric about the mid-latitude of the basin, ap-
pears adjacent to the western boundary. This is due to the
change in shear stress and hence, the vorticity in the viscous
sub-layer adjacent to the western boundary. The acceleration
of one boundary current in one direction and the deceleration
of the second boundary current flowing in the opposite direc-
tion give vorticity anomalies of the same sign adjacent to the
boundary.

The final state of the dominant singular vector also con-
tains two zonally elongated extrema of potential vorticity of
the same sign on either side of the axis of the jet. When
combined with the strong shears that are the poleward and
equatorward flanks of the mid-latitude jet, these strengthen
one and weaken the other. To leading order, they represent

a meridional displacement of the axis of the jet within a few
hundred kilometers of the western boundary. As the separa-
tion point moves, advection along the jet carries the knowl-
edge of the position of the separation point into the domain.
Zonal flow speeds in the shear maxima off the axis of the jet
are roughly 0.15 m/s. In 8.9 days, water parcels moving at
this speed will travel approximately 115 km. This is similar
to the penetration scale of the vorticity extrema on the flanks
of the jet. Note that while the meridional displacement of the
separation point and jet axis is proportional to the amplitude
of the disturbance, which is arbitrary in this linear theory, the
zonal penetration of the influence of the displacement of the
separation point is proportional to the strength of the zonal
flow of the basic state.

While the structure and evolution of the dominant singu-
lar vector are similar in both the reduced gravity and two-
layer cases, there are some differences. Most notable is the
fact that in the two-layer case, the perturbation has a larger
zonal scale, which is larger than its meridional scale. The
large-scale component has a significant barotropic part. The
structure of the dominant singular vector for the two-layer
problem can be thought of, somewhat crudely, as a distur-
bance similar to that seen in the reduced gravity problem,
plus a barotropic Rossby wave, which has a larger zonal than
meridional scale and hence, has a westward group velocity. It
propagates rapidly westward to the western boundary where
it reflects as a Rossby wave of short zonal scale and east-
ward group velocity. Since the magnitude of the zonal group
velocity of the eastward wave is much less than that of the
westward wave, the reflected wave has a significantly larger
amplitude. For times less than half the period of the wave,
its effect on the WBC is to reinforce the effect produced by
the baroclinic disturbance, slowing one of the WBCs while
accelerating the other. While the QG model with a rigid-lid
does contain a representation of a baroclinic Kelvin wave,
albeit one with an infinite phase speed, it does not admit
a barotropic Kelvin wave and so no such wave is induced
by the incident Rossby wave. Even if the rigid-lid approxi-
mation were relaxed, the amplitude of the barotropic Kelvin
wave would be weak.

In the barotropic and baroclinic energy conversion terms
of Figs. 4 and 5, the positive values near the boundary in-
dicate that over the periodt = 10, the initial perturbation
extracts energy from the mean state. The growth of the per-
turbation initially consists of a strong symmetric potential
vorticity anomaly in the region of the WBC near the separa-
tion point. Since the flow is actually stable, this disturbance
would eventually start to lose energy to the background flow
if integrated further. If integrated over a period long enough
to re-establish a steady state, then the sum of the growth and
decay would amount to zero.

The singular vector corresponding to the second largest
distinct singular value is anti-symmetric with more of its
structure distributed away from the jet axis, while that cor-
responding to the third is similar to the first, which is sym-
metric about the jet axis (Fig. 6).
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Fig. 4. The first singular vector corresponding to the enstrophy norm computed for the steady state in the EB model using an integration
time of 10 units (approximately 8.9 days). The figures show an enlarged view of the western half of the domain and only half of the northern
and southern extent. The left panels show the singular vector structure or the initial potential vorticity and stream function prescribed as a
perturbation, the middle panels show their linearly evolved states att = 10 (8.9 days), and the right-most panels show the mean (over the
periodt = 10) of the energy conversion rates defined in the Appendix of Berloff and Meacham (1998).

5 Singular vectors of weakly aperiodic (irregularly
vacillating) flows

Reducing the eddy viscosity toν = 500 m2 s−1changes the
solution of the wind-driven double-gyre model described
above, from a steady state to one that varies aperiodically be-
tween states of “high” and “low” energy in a relaxation oscil-

lation. To attain this state, we spin up the EB and 2LQG mod-
els for 12 and 18 years, respectively, with a small time vary-
ing random perturbation to the wind stress. Once spun up,
the wind stress is held symmetric and steady, and the model
solution vacillates between different states due to its own nat-
ural internal variability. A time series of the kinetic energy
of the upper layer shows the build up of energy that corre-
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Fig. 5. Same as Fig. 4, but for the upper layer of the 2LQG model.

sponds to the increasing extension of the zonal jet, which
then breaks up catastrophically, resulting in a sudden drop in
the kinetic energy. Figures 7 and 8 show snapshots of the
upper layer stream function in the high and low energy states
for the EB and 2LQG models, respectively. The high energy
state, in the left panels of Figs. 7 and 8, are characterized
by an intense jet that penetrates into the basin interior with
strong northern and southern inertial recirculations. The low
energy states, seen in the right panels, are characterized by a
“retracted” jet whose structure has been broken by instabil-

ities giving rise to smaller recirculations localized near the
western boundary. In the EB model, the mid-latitude jet ex-
hibits a greater tendency to fold back on itself. Baroclinic ed-
dies in the 2LQG model result in a higher level of mesoscale
“noise” in the energy (Fig. 10), as compared to the EB model
(Fig. 9). The breakup of the extended jet in the 2LQG model
occurs with the formation of baroclinic eddies that dissipate
energy more effectively, and consequently, the drop in en-
ergy in the 2LQG model is rather more dramatic than in the
EB model (see Figs. 9 and 10). The vacillation time scales
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Fig. 6. The left panels show the structure of the 2nd and 3rd singular vectors, i.e. singular vectors corresponding to the 2nd and 3rd largest
unique singular values, from the 2LQG model. The right panels show the evolved state of these singular vectors when the domain is initialized
with these potential vorticity perturbations and allowed to evolve linearly fort = 10 (8.9 days). Once again, the region of interest around the
jet separation point is enlarged.

for the EB and 2LQG flows are approximately 10 and 20
years, respectively. These high and low energy states cor-
respond to similar states observed in the simulations of Mc-

Calpin and Haidvogel (1996), Primeau (1999) and Meacham
(2000), and are indicative of long-time internal variabilities
of the wind-driven gyres.
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Fig. 7. Snapshots of the EB model stream function in high and low
energy states of the weakly aperiodic or irregularly vacillating flow
regime attained whenν = 500 m2 s−1. The high energy state in the
left panel is characterized by the increased penetration of the mid-
latitude jet into the basin interior, while the low energy state seen in
the right panel is characterized by a retracted and less energetic jet.

The question is whether the singular values and singular
vector structure reflect the large-scale change in the state of
the evolving flow field. Could they also be viewed as precur-
sors to these changes? To address these issues, we compute
the singular values and vectors, once again maximizing the
enstrophy norm over a periodt = 10 (8.9 days), at intervals
of t = 100 following the evolution of the flow. Figure 9
shows a time series of the first three singular values and the
total kinetic energy for the EB model. The upper panel shows
the original time series, and the lower panel shows the time
evolution smoothed with a running mean over a period of
roughly 1.6 years. The first three singular values are highly
correlated with the kinetic energy, with sharp increases in the
singular values preceding sharp decreases in the kinetic en-
ergy, and sharp decreases in the singular values preceding
a smoother successive increase in the kinetic energy. The
singular value behaviour is thus a precursor of the transition
from high to low energy states andvice versa. The transition
from the high to the low energy state is rather abrupt, while
the opposite transition is smooth and gradual. The precursor
of a transition in the flow regime is an abrupt change in the
slope of the time evolution of the singular value. A sharp in-
crease in the slope always precedes the successive collapse of
the kinetic energy. The successive sharp decrease in the sin-
gular value with a strongly negative slope is a precursor of
the consequent increase in kinetic energy, at which time the
singular value begins to grow again until the next transition
to the low energy state.

Preliminary experiments with the 2LQG model showed
that there was no resemblance between the time series of sin-
gular values and kinetic energy, since with no-slip boundary
conditions, the singular vector structure is dominated by the

Fig. 8. Same as Fig. 7, but for the upper layer of the 2LQG model.

boundary adjustment in the lower layer of the model. In or-
der to eliminate the effect of the boundaries, we only con-
sider the interior of the domain, leaving out a buffer region
(arbitrarily chosen to be 9 grid points wide) along the bound-
ary. Formally, this is done by redefining‖ q ′

1 ‖ in Eq. (20)
as

‖ q ′

1 ‖=
(
q ′

1,Gq ′

1

)
, (22)

whereG is a diagonal matrix with 1’s and 0’s on its diagonal.
The 0’s are situated in order to zero out the near-boundary
grid point values ofq upon multiplication. With this modi-
fication, we begin to see a large correspondence between the
time series of the dominant singular values and the kinetic
energy. Figure 10 shows a time series of the 3 largest singu-
lar values. The time series is smoothed by a running mean
with a window oft = 500 or 1.2 years to filter the very high
frequencies as the singular values show much greater high
frequency variability than in the EB case. All three singular
values shown exhibit a change in their value corresponding to
the change in the large-scale state of the flow, but the second
shows the largest change in correspondence. The predictive
character, i.e. the increase in slope or the rate of change in
the singular value prior to the break up of the extended jet, is
not as clear as in the EB case.

The singular vectors are constantly changing as the flow
evolves. But the structure of the first, second and third singu-
lar vectors in this weakly periodic state are continuations of
the structure of the respective singular vectors in the steady
state. The first singular vector from the 2LQG model has a
larger zonal extent than that from the EB model, but the size
of the evolved structures are comparable. As in the steady
state, this singular vector is associated with the north-south
migration of the separation point.

To explore the extent of the parameter range in which the
singular value maintains its predictive capability in the case
of the EB model, we have explored the case with a reduced
eddy viscosity coefficientν = 350 m2 s−1. Figure 11 shows
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Fig. 9. Time series of total kinetic
energy (in arbitrary, non-dimensional
units) and the first three singular values
of the EB model in the weakly aperiodic
regime withν = 500 m2 s−1. The up-
per panel shows the original time series,
while the lower panel shows the time
series smoothed with a running mean
over a period of roughly 1.6 years.

the analogous time series of the first three singular values
evaluated as discussed above, together with the correspond-
ing evolution of the kinetic energy for this reduced viscosity
case. The upper panel shows again the original time series,
and the lower panel shows the evolutions smoothed over a
period of about 3.6 years. The period of the vacillation cy-
cle has now increased to roughly 20 years. Both the singu-
lar values and the kinetic energy show much more vigorous
high energy fluctuations, due to the more intense barotropic
instability allowed by the reduced viscosity. Nevertheless,
the singular values still have a predictive capability, as is ap-
parent in the smoothed time series shown in the lower panel
of Fig. 11. Again, the sharp change in the slope of the singu-
lar value evolution is a precursor of the transition in the flow
regime, now characterized by greater changes in the energy
levels.

Other indices of the large-scale state of the flow, such as
the WBC transports and the crossing of the zero potential
vorticity line, are also explored in the EB case. We estimate
the WBC transports to be the difference in the stream func-
tion between the grid pointi = 10 and the boundary for

sections that are 40 grid points north and south of the mid-
latitude jet axis. In Fig. 12 we plot these WBC transports,
where the northern transport is positive, and the difference
between northern and southern WBC transports is indicative
of the gyre asymmetry. We also plot the migration of the zero
potential velocity line or jet axis just interior of the boundary
(at i = 2) from the mid-axis of the domain. Both of these
indices track the singular values and KE of the flow. How-
ever, they show that the vacillations are not symmetric. The
jet axis near the separation point is gradually pushed north-
ward by a growing recirculation region just south of the jet
(see Fig. 7). This continues until the recirculating region col-
lapses and the jet suddenly whips back in a southern direc-
tion. This abrupt change in jet position from north to south
is coincident with a surge in the northern WBC transport and
the attainment of maximum KE (see Figs. 11 and 12). Earlier
experiments have shown that over long integration periods,
the flow will also, at times, make a transition into the op-
posite phase where the jet will be forced southward and then
whip back in a northern direction with a surge in the southern
WBC.
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Fig. 10. Time series of the first three
singular values (upper panel) and to-
tal kinetic energy (in arbitrary non-
dimensional units) of the 2LQG model
in the weakly aperiodic regime. The
time series of the singular values was
originally very noisy and, therefore, is
smoothed by a running mean with a
window of t = 500 or 1.2 years to fil-
ter the high frequencies.

6 Strongly aperiodic flows

When we move to more strongly aperiodic flows, the high
degree of correlation between the behaviour of the singular
values and the evolution of the structure of the large-scale
flow disappears. Figure 13 shows the smoothed time series
of the upper layer kinetic energy and the first three singular
values for a run of the 2LQG model withν = 100 m2 s−1,
the deformation radiusLD set to 48 km, and the wind stress
intensityτ0 =0.05 Nm−2. Significant variations in the mag-
nitudes of the singular values can be seen. There is coherence
between the time series of the three dominant singular values
themselves, but no significant coherence between any of the
singular values and the basin integrated kinetic energy of the
upper layer flow. There is a similar lack of coherence be-
tween the time series of the dominant singular vectors and
other integral measures of the flow, such as the WBC trans-
port (not shown).

The reason for the lack of a strong correlation between the
singular values and time series representing the large-scale
spatial structure of the flow lies in the character of the singu-

lar vectors. In the strongly chaotic regime, there are a con-
siderable number of mesoscale eddies in the flow, as well
as strong meanders in the WBC extension. Much of the en-
ergy extracted by the dominant singular vectors as they grow
comes from the intensification of perturbations in the regions
of strong shears associated with these mesoscale phenomena,
and the evolved forms of the singular vectors typically have
large amplitudes near one or more of the mesoscale features.
When the evolved singular vectors are assigned an arbitrary
amplitude and superimposed on the unperturbed trajectory,
they frequently correspond to displacements of one or more
of the strong mesoscale features present.

As one moves from the regime of steady, periodic or
weakly aperiodic solutions to that of the strongly chaotic
solutions, the physics underlying the growth of the domi-
nant singular vectors changes. The generation of the changes
in the separation point and meridional displacement of the
WBC extension is now supplemented by the displacement
or stretching of strong meanders and mesoscale eddies as
perturbations grow transiently in the strong shears adjacent
to these features. The nature of the dominant singular vec-



462 A. Mahadevan et al.: The predictability of large-scale wind-driven flows

Fig. 11. Same as Fig. 9, but withν =

350 m2 s−1.

tors and the sizes of their associated singular values depend
on relatively localized structures in the flow. As they grow,
they produce localized changes to the flow (Moore and Mar-
iano, 1999). This high degree of locality implies that the
forecasting problem for flows in the strongly chaotic regime
is both simpler and more difficult than in the weakly aperi-
odic regime. On the one hand, if the flow is to be predicted
with a high level of accuracy over the whole domain, then
all of these local “instabilities” must be resolved which, for
an assimilative forecasting scheme, implies gathering a lot
of data. On the other hand, it also implies that for much
of the time, the short-term behaviour of the flow in a lim-
ited region will tend to be influenced more strongly by local
processes rather than by remote ones, so that observations
concentrated in a limited area around the region of interest
should be more relevant to the forecasts in that region than
the observations made further away. The obvious exception
is close to the western boundary, where a significant signal
can be associated with the reflection of large-scale barotropic
Rossby waves. Observations in the interior of the basin
would probably be needed to accurately include the effects
of such phenomena in a forecast model for the flow adjacent
to the boundary. The implication is that the variability in the

separation point of the WBCs, when relatively unconstrained
by topography (e.g. off the east coast of South America), may
be a more challenging problem than predicting the evolution
of meanders in the Gulf Stream.

7 Summary and discussion

In this work, we briefly examined the structure of the dom-
inant singular vectors of simple models of the wind-driven
circulation and the way in which the associated singular val-
ues vary with the large-scale circulation. The main moti-
vation comes from the information that the singular vectors
contain the local rates of divergences of the trajectories in
phase space and hence, the speed with which small errors in
the initial or analyzed field of a forecast model will grow.

The main points that we would like to emphasize here are:

1. In time-dependent flows, the singular values, which re-
flect the rate of growth in the errors, and hence, the pre-
dictability of the flow, is very dependent on the instan-
taneous state of the flow.

2. When the Reynolds number of the modeled circulation
is low and the time dependence of the flow is weak, the
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Fig. 12. Time series of the WBC trans-
ports (northward positive) and the zero
potential vorticity crossing for the EB
model in the weakly aperiodic regime
with ν = 350 m2 s−1. The upper
panel shows the southern WBC trans-
port (solid line with positive values), the
northern WBC transport (dashed line
with negative values) and the difference
between the two. These transports are
computed as the stream function dif-
ference between the pointsi=10 and
1, at sections that are 40 grid points
north and south of the mid-latitudinal
axis. The lower panel shows the north
and south migration of the zero po-
tential vorticity line (i.e. the jet axis)
in grid points, just inside of the west-
ern boundary (ati=2). We observe an
asymmetry in the vacillations. The jet
axis near the separation point gradually
migrates northward and then suddenly
whips back in a southern direction. This
abrupt change in jet position from north
to south is coincident with a surge in the
northern WBC transport.

singular vectors are relatively large-scale and the asso-
ciated variability of the singular values is sensitive to
simple measures of the large-scale flow. In the reduced
gravity model, changes in the dominant singular values
also herald large and relatively abrupt changes in the
structure of the large-scale flow.

3. When the Reynolds number is high, local instabilities
of mesoscale structures, similar to those examined by
Moore and Mariano (1999), become significant contrib-
utors to the dominant singular vectors. Larger scale
processes remain important contributors to phenomena,
such as variability in the separation point of the WBC
extension.

These results have a number of implications for the de-
sign of assimilative ocean forecasting systems. If one of the
goals of the forecast system is to predict the position of the
strong front associated with a WBC extension, then a signif-
icant amount of local data will be needed to accurately pre-
dict the evolution of meanders, ring genesis and the evolution
of detached rings. Given that the singular values associated

with the dominant 9-day singular vectors are onlyO(100)
(so thatT/(0.5 logσ) is O(3–5) days, whereT is the inte-
gration time andσ is the singular value), dynamical models
initialized with detailed information about the location of the
Gulf Stream extension and its associated rings should pro-
duce useful forecasts over periods ofO(10–20) days. This is
the approach taken by Robinson et al. (1989) in their work
on forecast models for the Gulf Stream extension based on
initialization with feature models. Our results suggest that
such an approach could work well when one is interested in
a regional forecast for a WBC extension or other strong open
ocean front, and the region is either a significant distance
downstream of any separation point or the separation point
is locked by local topography. In a region such as the Malv-
inas Current – Brazil Current confluence of eastern South
America, in which the latitudes of the separation points of the
Brazil and Malvinas Currents are not strongly constrained by
topography, information about larger scale structures, such
as long barotropic Rossby waves in the adjacent ocean, are
likely to be needed for accurate forecasting in the vicinity of
the separation points.
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Fig. 13. Time series of the first
three singular values (upper panel)
and total kinetic energy of the 2LQG
model in the strongly aperiodic regime
(ν=10 m2s−1). The time series of the
singular values smoothed using a run-
ning mean with a window oft = 1100
or 2.67 years to filter the high frequen-
cies.

On a more abstract level, our results suggest that when one
constructs assimilative forecast models of the behaviour of
ocean fronts in a large domain, effectiveely reduced Kalman
filters, which use a relatively small set of basis functions to
represent both the data model misfit and the error covari-
ance fields, are likely to be difficult to construct. The rea-
son for this lies in the difficulty of representing strong local
processes at time-varying locations with a small set of ba-
sis functions on a large domain. Well designed, ad hoc ap-
proaches, such as feature-based initialization or filters that
use a larger number of static basis functions and a static error
covariance matrix, while not as theoretically elegant as the
full Kalman filter and its reduced space cousins, are likely to
be more effective and more efficient.
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