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Abstract. The singular values associated with optimally chaotic regime, in which energetic mesoscale eddies are pro-
growing perturbations to stationary and time-dependent soduced by the meandering of the separated western boundary
lutions for the general circulation in an ocean basin providecurrent extension, the predictability of the flow locally tends

a measure of the rate at which solutions with nearby initialto be a stronger function of the local mesoscale eddy struc-
conditions begin to diverge, and hence, a measure of the praure than of the larger scale structure of the circulation. This
dictability of the flow. In this paper, the singular vectors and has a broader implication for the effectiveness of different
singular values of stationary and evolving examples of wind-approaches to forecasting the ocean with models which se-
driven, double-gyre circulations in different flow regimes are quentially assimilate new observations.

explored. By changing the Reynolds number in simple quasi-
geostrophic models of the wind-driven circulation, steady,
weakly aperiodic and chaotic states may be examined. Th<_9L
singular vectors of the steady state reveal some of the physi-

cal mechanisms responsible for optimally growing perturba-The prediction of ocean currents and ocean circulation on
tions. In time-dependent cases, the dominant singular valuegitferent spatial and temporal scales has emerged as an im-
show significant variability in time, indicating strong varia- portant scientific pursuit over the last decade. Particular at-
tions in the predictability of the flow. When the underlying tention has been devoted to the prediction of mesoscale pro-
flow is weakly aperiodic, the dominant singular values co- cesses that characterize energetic frontal systems, such as the
vary with integral measures of the large-scale flow, such aspestern Boundary Current (WBC) systems, and their exten-
the basin-integrated upper ocean kinetic energy and the trangjons, of which the Gulf Stream in the North Atlantic and
portin the western boundary current extension. Furthermoreghe Kuroshio in the North Pacific are prominent examples.
in a reduced gravity quasi-geostrophic model of a weaklyFor such nonlinear systems, however, prediction is ultimately
aperiodic, double-gyre flow, the behaviour of the dominantjimited by the predictability of the system itself, which de-
singular values may be used to predict a change in the largeyends on its dynamic instabilities. Hence, there is the need
scale flow, a feature not shared by an analogous two-layefg investigate and to understand the intrinsic predictability of
model. When the circulation is in a strongly aperiodic state,the types of flow considered in this study. Strong oceanic
the dominant singular values no longer vary coherently withfrontal systems are characterized by the intermittent appear-
integral measures of the flow. InStead, they fluctuate in aance of energetic eventS, such as meandering and ring for-
very aperiodic fashion on mesoscale time scales. The dommation. The classical studies of barotropic, baroclinic and
inant singular vectors then depend strongly on the arrangemixed quasi-geostrophic instabilities (Pedlosky, 1987) have
ment of mesoscale features in the flow and the evolved formghed much light on the fundamental mechanisms responsible
of the associated singular vectors have relatively short spatiglyr the growth of mesoscale meandering events. In particular,
scales. These results have several implications. In weaklyhe classical linear eigenvalue analysis of the normal modes
aperiodic, periodic, and stationary regimes, the mesoscalgf the system reveals the energy pathways that can sup-
energy content is usually relatively low and the predictabil- hort meander growth. Such analytical or semi-analytical ap-
ity of the wind-driven circulation is determined by the large- proaches are, however, limited to simplified flows, of which
scale structure of the flow. In the more realistic, strongly 3 ynidirectional, steady and along-stream invariant jet is the
canonical example. (See, for instance, the linear theories of
Correspondence toA. Mahadevan infinitely long, straight WBCs of lerley and Young (1991)
(a.mahadevan@damtp.cam.ac.uk) and Berloff and Meacham (1998), among others.) Linear in-
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stability theory can be extended by considering basic flowsturbations related to meander growth of the front itself and to
that are slowly varying in time and/or space, but such treat{ocalized eddy formation and interactions with the main jet.
ments generally require that the time scale or the along-Such an open ocean model, however, cannot address the ba-
stream length scale of the basic state be long in comparisonric features of the subtropical gyre circulation that crucially
to the intrinsic time and length scales of the instabilities. Ex-affect the behaviour of the Gulf Stream system. The Gulf
ceptions to this constraint are studies based on Floquet anatream and its extension are components of the larger and
ysis (Lorenz, 1972) which, however, require that the basicintricately interlinked wind-driven circulation of the North
state be periodic in time or space. Atlantic basin. Important properties, such as the stream sep-
In areal system, such as the Gulf Stream and its extensiorgration point and its penetration scale into the interior, are de-
the ocean jet is convoluted and time-dependent, and exhibiteermined not only by its instabilities, but also by the surface
strong along-stream variations. The fact that the spatial anavind forcing and by the state of the large-scale circulation.
temporal inhomogeneities of such current systems occur omnertial recirculations south and north of the Gulf Stream pro-
scales comparable to those suggested by the above instabilifpundly affect both its instabilities and the long time variabil-
theories is a testimony to the power of these theories in exity of the whole basin, as shown by McCalpin and Haidvogel
posing the underlying physical mechanisms responsible fo(1996) and Primeau (1999).
synoptic scale variability. However, the spatial-temporal in- In this study, we address the problem of predictabil-
homogeneity of the ocean also means that the classical inty of a strong oceanic frontal system, such as the Gulf
stability theories are limited in their predictive ability. In- Stream, but in the idealized context of a time-dependent,
deed, it is difficult to even choose an appropriate referencavind-forced, quasi-geostrophic (QG), double-gyre circula-
or basic state in which to apply a linear stability theory. A tion model. Even though idealized, such a model contains
realistic oceanic frontal flow, such as the Gulf Stream sys-important dynamical ingredients associated with embedding
tem, is more appropriately thought of as a chaotic nonlineathe Gulf Stream jet and its instabilities in the overall, non-
system. As such, it possesses the defining characteristic dinear gyre circulation. We consider two types of models, a
chaotic systems, with a sensitive dependence on initial conreduced gravity QG model with one active layer, and a two-
ditions. Thus, the following broad question exists: “How layer QG model with finite total depth. In Sect. 2 of this
predictable is a given time-dependent flow?” This needs topaper, we discuss the circulation models used. In Sect. 3,
be addressed by constructing well defined measures of prave summarize the generalized stability analysis based on the
dictability. One such quantifiable measure is the rate of diver-evaluation of the optimal perturbations, the singular vectors,
gence of two oceanic flows differing slightly from each other and discuss some of their interpretations. In Sect. 4, we ex-
at initial time, i.e. the rate of divergence of neighboring solu- amine the singular vectors of the steady circulations of the
tion trajectories. A second useful measure is the evaluationwo models run with the same parameters and wind-forcing.
of the spatial structure and localization of the fastest growingWe compare the flow predictability for the two systems with
perturbations over a prescribed time interval. Since the oceadifferent instability properties. In Sect. 5, we extend the sin-
is an evolving, fully nonlinear system, a complete answer togular vector analysis to weakly aperiodic, double-gyre circu-
the question of “How predictable is the oceanic circulation?” lations, characterized by irregular vacillations. The singular
would require a detailed study of the phase space of the flowector analysis is further extended to strongly aperiodic flows
for some distance from a specified segment of the model train Sect. 6. Finally, in Sect. 7, we provide a summarizing dis-
jectory. With existing techniques, this is too difficult a task cussion, the conclusions of the present study, and directions
except for very constrained flows. However, by forsaking afor future research.
description of the nonlinear evolution of perturbations for a
linear approximation, it is possible to tackle the complex spa-
tial and temporal inhomogeneities in a nonlinearly evolving2 Models
basic state. Two mutually related techniques that can be used
for such studies have been developed and extensively usédle consider two types of quasi-geostrophic ocean circula-
in meteorology. They are the singular vector analysis, firsttion models: a reduced gravity model with one active (upper)
introduced by Lorenz (1965), and the generalized stabilitylayer, i.e. an equivalent barotropic model, henceforth referred
analysis, proposed by Farrell and loannou (1996a,b). Thesto as the EB model, and a two-layer model with finite total
methods have been recently used in the oceanographic colepth that is baroclinic and referred to as the 2LQG model.
text by Farrell and Moore (1992, 1993); Moore and Mariano The governing equations describe the evolution of potential
(1999); Moore (1999) among others. In the Moore and Mari-vorticity ¢, and are written in terms of the stream functipn
ano (1999) study, the generalized stability analysis is appliedn the 2LQG model, the upper (active) and lower layers are
to a QG numerical model of the Gulf Stream, defined by thedistinguished by subscripts 1 and 2. The equations for each
open boundary conditions of Charney (1955) as a jet enterindayer are:
an open ocean domain where it undergoes intense meander-
ing associated with its intrinsic instabilities. The analysis is 5,4, + J (1, ¢1) + By = ,,v41/,1 + M (1)
carried out for a localized sector of the frontal jet, leading to H
the fastest growing perturbations, the so-called optimal perd; gz + J (Y2, g2) + Bvrax = vV, (2)
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whereJ(A, B) = %% — %—;}%. Here, f and 8 are the  for the 2LQG model.

planetary vorticity and its gradient,is a uniform eddy vis- In the experiments discussed below, the basin is rectan-
cosity, H1 is the upper layer depth, and the Ekman suctiongular and the dimensionless model domain iscQx < 1,
velocity is 0 < y < 2. The models are forced with a double-gyre pat-
tern of Ekman suction,
wp = Wuy/L) =2V x 22 3)
pof w(y) = —sin(ry), O<y=2 (12)

whereL is the zonal width of the basiny is a dimensional  The dimensionless parameters that appear in each of the
scale for the vertical Ekman velocity, is a dimensionless  models ares;, §,, and the non-dimensional inverse baro-
function describing the spatial pattern of the vertical Ekmanciinic deformation radiusi. In addition, the 2LQG model

po IS an approximate density of seawater, an@) is the number for these models as the ratio
horizontal surface wind stress. The models are written using

zonal and meridional Cartesian coordinateandy. Forthe 07 _ fW L _ fWL §;
EB model, Eq. (2) is absent and 83, BH1v BHi5; v’

(13)

q1= (V> = L))y, (4) wherej=Morl.

] . . In Sects. 4, 5 and 6, we explore the time-evolving singular
where the internal deformation radiusp = (s/H)"?/fo,  values and singular vector structure in three different regimes
andg is the usual acceleration due to gravitymultiplied  of the wind-driven double-gyre circulation. The experiments
by the relative density difference between the lay®r§00.  are conducted with both the EB and 2LQG models in order

In the 2L.QG or baroclinic model, to observe first, the behaviour of the first baroclinic mode
12 alone, and then the effect of adding a barotropic mode. The
g1 = V2 + 1 fa (Y2 — Y1), models are spun up in an idealized rectangular ocean basin of

dimensionL, = 2048 km andL, = 4096 km in the merid-
ional and zonal directions, respectively, and the characteristic
width L is taken to be 2048 km. The upper layer defth

. . in both models, is set to 500 m for all the cases. The internal
where = Hi/ Hz is the ratio of upper and lower layer depths deformation radiud. p, is taken to be 40 km when model-

= 2r1y1/2 igid i
andLD_ — (.g’H.1H3/f0 H)“*. In each model, the ”g'd. lid ing the steady and weakly aperiodic regimes, and 48 km for
approximation is used and the volume of each layer is con- - i . .
served. the strongly aperiodic regime. The Coriolis parametes

4-1 p: 11 11 i 3
We non-dimensionalize by scalingandy with L, ¢ with %Vo_isstaléeﬁ tI(S; é; 10; r\T/]vhiih Cgrrigo(;idlsogjogg InTin. a
(BL)~%, andy with (f W L/BHz), and introduce the dimen- o/ Lpo, P pRlyIng

; i i _ -1
sional Munk and inertial boundary layer scales, sinusoidal wind Stfes‘s =—7 70 C.Os(”y)’ .0 <y<2
The EB model is always run with no-slip lateral bound-

. 3 w 1 ary conditions, while the 2LQG model uses free-slip bound-
8y = (—) , 7= (2—> , (6) aries for all but the steady-state case. For a domain of this
p peHy size, higher Reynolds numbers result in an early separation
together with their dimensionless counterparts of the WBC from the coast in the 2LQG model when no-
slip boundaries are used. This is prevented by using free-slip

-2

SL
g2 = VYo + 1 fs (Y1 — ¥2), (5)

Sy = ﬁ 8 = ﬁ @) boundary conditions. Bottom friction is negligible in these
L L model runs. During the spin-up phase, which lasts 2500—
The non-dimensional vorticity equations are then 4500 days in these experiments that starts from rest, we add
a small, time-varying random perturbation to the wind in or-
dq1 + 87T (Y1, q1) + Y = 83 VA1 + w(y) (8) der to break the symmetry of the flow. Beyond spin-up, the
iqa + 827 (V2. q2) + Vrax = 83,V . (9)  models are forced by a steady symmetric wind field. In the

2LQG model, the ratio of layer deptldsis 1/9. The viscos-
Introducingh = L/L p, the dimensionless potential vorticity ity and wind stress are varied to obtain different regimes of

anomalies become the flow.

2 2 The nonlinear forward model is similar to the one used
q1= (V= =91 (10) by Holland (1978). The vorticity equations are discretized
for the EB model and with second order finite differences and advanced in time

with a second-order Runge-Kutta scheme. The Jacobian is

A2 discretized following Arakawa (1966). The grid is uniform
=v? — . ot
7 Vit 1+36 W2 =), with square mesh elements and a resolution of12Z%7. The
a2 time step is 0.1 non-dimensional units, which corresponds to

g2 = VY2 + 155 (Y1 —2), (11) 127 min and 50s. The elliptic relations (11) are inverted for
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the stream functions by first applying a linear transformationintegrating Eq. (16) over any finite intervad := [z, 1],
that yields elliptic equations for the barotropic and baroclinic 0 < 19 < 11 < T contained in/7, we obtain a linear map
components. The equation for the baroclinic stream function , , , ,
is split into two parts, an inhomogeneous equation with ho-91 = L (0. 11)40, 90 € Hi,  q1 € Hy, (17)
mogeneous boundary conditions and a homogeneous edUgrym the Hilbert space (equipped with the norm defined
tion with inhomogeneous boundary conditions. The two el-3p4ye) of initial conditions at= o, H,,, to the Hilbert space
liptic problems with homogeneous boundary conditions areq final states at — 11, Hy,.

solved using a direct solver (one-dimensional sine-FFT fol-  \yie call L the forward tangent propagatoand define an
lowed by tridiagonal inversion). The remaining elliptic prob- adjoint propagator L* : Hy, — Hj,, by

lem is solved once at the start of each run with a unit bound-

ary condition, using a multi-grid solver. (L*x,y) = (x,Ly) forall x e H;,y € Hy,. (18)

Thesingular vectors{e;}, andsingular values{o;} are de-
3 Singular vectors fined to be the eigenvectors and eigenvalues of the linear Os-
eledec operatod,* L, which mapsH,, to itself.
Singular vectors have a long history with implicit applica-  The forward nonlinear model, the forward tangent model,
tions in fluid dynamics dating back to at least the work of and the adjoint model are all readily implemented numeri-
Orr (1907). Ideas about the transient growth of perturba-cally. Note, for example, that the forward nonlinear model
tions governed by non-normal operators has received considror the equivalent barotropic model may be written as
erable attention in fluid dynamical studies of the transition to
turbulence (Gustavsson, 1991; Trefethen et al., 1993). Atd4 =N(g,1)=Aq+ Bp+C(p,q)
mospheric scientists have looked at singular vectors or non<t
normal instabilities as a way of understanding the growth of = Aq + BD'q +C(D7q. q), (19)
the errors in the forecasts (Lorenz, 1965; Palmer et al., 1998

or the transient growth of the disturbances (Farell, 1984). ?NhereA, .B' aldi are linear difference opgratorst)ﬂs
We adopt the notation that represents a column vector just the discretized Helmholtz operator), a@dis a skew-

with elements that are the value of the potential vorticity atsymmetnc bilinear form that corresponds to the discretiza-

each successive interior grid point of the model. In the casd'on of the Ja}coblan. . . .
of the two-layer model, values of the lower layer potential We now discuss the interpretation of singular vectors. Let

vorticity are listed after the upper layer potential vorticity the singular values be_ 'T‘.dexed |r_1_ord/er of decreasing size,
values. o1 > o2 > .... Letthe initial conditiong, represent amall

Both of our circulation models can be expressed as a gengisturpance to thg solu_ti(_)n of the nonlinear model at “ﬁ?“e
eralized, nonlinear model (NLM) of the form !f the' mterval'll is sufficiently short that the FTM, .WhICh

is a linearization thafollows the time-dependent trajectory
of the nonlinear model, remains a good approximation for
the evolution of this disturbance ovéy, then the norm of
the perturbation to the nonlinear model at timés approxi-

mately

dq
i N(q,1). (14)
By its definition, the state vecta@r(z) consists of the values
of all of the prognostic variables at all of the grid points in the
finite dlﬁerence mongN represents the discretized form of 14 1= (gL 4} = (Lqlh, La}) = (g}, L*Lq}). (20)
the nonlinear governing equations.
We choose an inner produck,(y), between any two state Hansen and Smith (2000) discuss the relation between limits
vectorsx andy. The associated normjisx ||:= (x, x), e.g. on the length off; and the initial disturbance,. Then
I x || may be the energy or enstrophy of the flow. The choice ,
of norm dictates the quantity whose growth is maximized bymax< g3 ||> — o1 1)
the dominant singular vector. This has an implicit effect on ¢, \ Il qg |l ’

the scale content of the initial and final forms of the singular, . L .
vector (Palmer et al., 1998). i.e. the maximum amplification of a small disturbance that

Given an initial conditiongo, and a time intervaly := can occur over the intervdl is given by the first singular
[0, T, integrating the NLM yieids a trajectory value,o1, and the spatial structure of the maximally ampli-
o fied initial condition is given by the first singular vectey,.

The shape of the disturbance into which this evolvesat;
is given by f1 = Les. In general L is non-normale; is not
a scalar multiple oé1, ande; is not a normal mode.

The size ofsy provides an indirect measure of the fastest
rate at which a trajectory perturbed a small distance from
the original model trajectory (¢), at rg, will diverge from
/ the original trajectory when averaged over the interkal
=M(@@),0)q'. (16)  Hansen and Smith (2000) discuss the relation between limits

N dq .
Cqo = {q(t):qzqo;EZN(q,t),tGIT}. (15)
Linearizing about Equ. (14) provides a Forward Tangent
Model (FTM) to the original nonlinear model along the tra-
jectory Cy,, i.e.

dq
dt
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on the length off; and the initial disturbancg;,. A related E
measure of the rapidity of the growth of the dominant singu-
lar vector is the time it takes for the singular vector to double,
which has the advantage of being independent of the choice
of Iy. When considering transiently growing disturbances,
neither of these completely characterizes the evolution of the
singular vector, since there are typically multiple time scales
involved, for example, the length of the period of growth and
the inverse of the growth rate averaged over that period. One
should remember that since bath and the doubling rate

" f the ¢ v . . | Fig. 1. In this geometric interpretation of the singular vectors, a par-
are properties of the "most rapidly” growing singuiar vec- e, pointgg on a nonlinear trajectory is surrounded by a hyper-

tor, they depend on the optimization time used. For exampleggnerical ball or cloud of possible initial conditions (such as those

if the optimization time is shortened, then may increase. grising from measurement errors) centeredzgnWhile the linear
However, for the examples below, the structure of the lead-approximation remains reasonable, this cluster of initial conditions

ing singular vectors and their associated doubling times araill evolve into a hyperellipsoid with (mutually orthogonal) prin-
smooth, and fairly weak functions of the optimization time cipal axes corresponding to the evolved forgfisof the singular
over time scales characteristic of the ocean mesoscale (3—3@ctors. The expansion of the ellipsoid in some directions gives an
days). indication of the degree to which the trajectories diverge.

The singular vectors and values have another interpreta-
tion. If we imagine a predictive numerical model of part
of the ocean, the singular vectors and values describe how
small errors in the state vector at timgevolve over the in-  those with singular values are greater than 1, can exist for a
terval I1. If the initial error covariance matrix is isotropic, Ccombination of reasons. One mechanism that can give rise to
then the vectorde; are the principle axes of the error co- an amplifying disturbance is a dynamical instability. For ex-
variance matrix at = t1, and the singular values describe ~ ample, suppose that the operatois stationary antgormal
the amount of extension or contraction along each principlethen the eigenvectors are orthogonal and the singular vectors
axis. Conversely, if we wish to have an isotropic error covari- are parallel to the eigenvectors. Consider the simple exam-
ance matrix at time, then we must ensure that the lengths Ple of an unstable, two-dimensional system with one grow-
of the principle axes; of the initial error covariance matrix ing eigenvector and one decaying eigenvector, as shown in
are proportional to Ao;. This identifies the “directions” in ~ Fig. 2a. Any disturbance that is sufficiently close to being
which it is most important to minimize initialization errors if Parallel to the unstable direction will grow as a result of that
we are to control the prediction errors. Singés the state  instability. When the linearized system represented by the
vector of an ocean general circulation model, each singulaPperatorL is non-normal, the eigenvectors bfare typically
vector corresponds to a particular spatial pattern of the proghon-orthogonal. Again, considering an example in which
nostic variables. is stationary and two-dimensional demonstrates how a dy-

Yet another geometric interpretation of the singular vec-namical instability represented by a growing eigenvector can
tors is the following and is illustrated in Fig. 1. If we take leadtothe growth of a disturbance that is initially almost par-
a particu|ar pointqo on a nonlinear trajectory and imag- allel to it (Flg Zb) However, one of the somewhat counter-
ine a hyperspherical ball of initial conditions centeredggn  intuitive aspects of non-normal systems that should be kept
(for example, a cloud of initial conditions representative of in mind is that even for a stable system, there can exist dis-
measurement errors), then while the linear approximation returbances which exhibit transient growth. This can occur
mains reasonable, this cluster of initial conditions will evolve When two decaying eigenvectors of the non-normal opera-
into a hyperellipsoid with axes corresponding to the evolvedtor L are non-orthogonal and have different eigenvalues, as
forms f of the singular vectors. These are mutually orthog- demonstrated in Fig. 2c.
onal (or can be made so in the event of eigenvalues with a When computing singular vectors, the choice of norm is
multiplicity greater than 1), since they are eigenvectors ofdictated, in part, by their intended use. Here, we are in-
the normal operatof. L*. The expansion of the ellipsoid in terested in the differences between trajectories of the phase
some directions gives an indication of the degree to whichspace of the model. Potential vorticity is the natural dy-
trajectories diverge. Note that an extension of the ellipsoidnamical variable in the QG models and its grid-point values
parallel to the tangent to the nonlinear trajectory at the finalare chosen as the coordinates for this phase space. A natu-
time 11 represents a different sort of error than an extensionral choice of metric in this space is thus enstrophy, and the
perpendicular to the final tangent direction. The first is really enstrophy norm is used in the singular vector calculations.
a phase error and represents an error in predicting when th8ince the potential vorticity of the flow is the only prognostic
flow will pass through the poing(#1) on the nonlinear tra- quasi-geostrophics variable in a closed domain with properly
jectory. The second type of error represents an error in thggosed boundary conditions, all non-trivial choices of a norm
predictedstructureof the final state. will lead, in one way or another, to singular vectors that rear-

It is important to remember that growing singular vectors, range the potential vorticity field. However, two other typical



454 A. Mahadevan et al.: The predictability of large-scale wind-driven flows

|

4000 | - [ R Ye
he Tl
 —— 9, 3500 = =
@
3000 - -
2500 - -
2000 — - -
(b) —_— 1500 - -
1000 - -
500 - -
& 3”,02000—/ T
. - -100-----""
d o 0

(C) _ % l T T T T T T T T T T

T = 0 400 800 1200 1600 2000 0 400 800 1200 1600 2000

2 (a) Streamfunction (b) Potential Vorticity

Fig. 2. In each panel, two eigenvectors of a stationary linear oper-Fig. 3. Steady-state value of the upper layaystream function and
ator, L, are shown with bold lines. A third vectgp, correspond-  (b) potential velocity for the case with = 1000nfs™1, L =

ing to a disturbance to the underlying system, is shown by a thin40km, 7y = 0.11Nn2, and no-slip boundary conditions. Both
line. The initial (non-normalized) eigenvectors are denoted;by the EB and 2LQG model upper layers have identical steady states.
and their evolved forms (after being operated o yare denoted

by f;. The evolved form ofjg is g1. The following three cases are

depicted:(a) L normal, with one unstable and one stable eigenvec-

tor; (b) L non-normal, with one unstable and one stable eigenvec- . .
tor; (¢) L non-normal, with two stable eigenvectors with unequal €N€rgy with the background flow only through the barotropic
eigenvalues. energy conversion process associated with the rate of work-

ing of the horizontal Reynolds stress on the background mo-
mentum gradient (Pedlosky, 1987). The 2LQG model, on the
other hand, can also simulate a horizontal heat flux. In this
choices of norm, the stream function and the energy normsmodel, a small perturbation may exchange energy with the
tend to integrate the effects of the rearrangements of potentiddackground flow through both barotropic and baroclinic en-
vorticity in different parts of the flow. ergy conversion terms. We will attempt to identify physical
In our numerical calculations of singular vectors, the tan-mechanisms associated with the growth of optimal pertur-
gent model used is a linearized form of the nonlinear forwardbations (singular vectors) by initializing the models with a
model. The linearization is an approximation to the time- singular vector and allowing this perturbation to evolve lin-
dependent trajectory of the nonlinear model constructed byearly. We will then compare the initial and evolved states of
piecewise linear interpolation between points on the exacthe perturbation, and examine the spatial pattern of energy
trajectory that are spaced 10 time steps apart. The adjoint isonversion between the perturbation and background flow.
the exact (to within machine rounding error) discrete adjoint  As was noted in Sect. 3, it is not a contradiction thata
of the discrete tangent model. The singular vectors of theple flow (in the mathematical sense of asymptotic stability)
system are obtained by finding eigenvectors of the Oseledeshould possesgrowing finite-time singular vectors. Due to
operator using the Lanzcos algorithm. the shears present in the steady-state flow, small disturbances
with an appropriately chosen spatial distribution can extract
energy from the local horizontal or vertical shear. As the
4 Singular vectors of steady circulations locally growing part of the perturbation grows, it is also ad-
vected through the region where its phase structure favors the
In this section, we examine the singular vectors of steadygextraction of energy from the background flow. Once outside
double-gyre circulations. For = 1000nfsi Lp = this region, growth ceases and dissipation acts to dampen the
40 km, a wind stress intensity af = 0.11Nm 2, and the local disturbance, while the adverse shear may extract en-
existance of no-slip boundary conditions, both the EB andergy from the disturbance. Sustained growth (as would be
2LQG models possess a stable, steady-state, double-gyre cgeen if the disturbance were a growing normal mode) can
culation. Since the same upper layer depth is used in botlonly occur if (a) the disturbance is eventually advected back
models, their upper layer circulations, shown in Fig. 3, areinto the unstable part of the background flow, (b) some com-
identical. Perturbations to the steady state evolve differentlyponent of the disturbance re-entering the unstable region has
in the two models on account of their different vertical struc- the correct phase structure to extract energy from the back-
tures. In the EB model, a small perturbation can exchangeround flow, and (c) the growth in enstrophy experienced by
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the disturbance as it passes through the unstable region & meridional displacement of the axis of the jet within a few
greater than the decay experienced during the phase in whichundred kilometers of the western boundary. As the separa-
the disturbance is being advected away from and then backion point moves, advection along the jet carries the knowl-
into the unstable region. From the perspective of trajecto-edge of the position of the separation point into the domain.
ries in phase space, the case in which a stable flow possess&snal flow speeds in the shear maxima off the axis of the jet
growing finite-time singular vectors corresponds to a situa-are roughly 0.15m/s. In 8.9 days, water parcels moving at
tion in which there exist some directions in which nearby this speed will travel approximately 115 km. This is similar
trajectories are locally diverging from the fiducial trajectory to the penetration scale of the vorticity extrema on the flanks
(the pointin phase space that corresponds to the steady statef.the jet. Note that while the meridional displacement of the
However, eventually these trajectories curve back towardseparation point and jet axis is proportional to the amplitude
the fiducial trajectory and asymptote to it. of the disturbance, which is arbitrary in this linear theory, the

We begin by examining the singular vectors of the stablezonal penetration of the influence of the displacement of the
steady state in the two models. The singular vectors are calseparation point is proportional to the strength of the zonal
culated to optimize enstrophy growth over a period of 10 timeflow of the basic state.

units, i.e. approximately 8.9 days. Figures 4 and 5 show, in - \yhje the structure and evolution of the dominant singu-

an enlarged view of the region surrounding the separation, yector are similar in both the reduced gravity and two-

point of the jet, the first or dominant singular vector, i.e. the layer cases, there are some differences. Most notable is the
transient disturbance with the largest amplification rate, forg,t that in the two-layer case, the perturbation has a larger

the EB and 2LQG models, respectively. The left panels show, a1 scale, which is larger than its meridional scale. The

the singular vector structure or initial potential vorticity and large-scale component has a significant barotropic part. The
stream function prescribed as a perturbation, the middle pansi.,cture of the dominant singular vector for the two-layer
els show their linearly evolved statesat 10, and the right- problem can be thought of, somewhat crudely, as a distur-
most panels show the mean energy conversion rates over tgynce similar to that seen in the reduced gravity problem,
periods = 10, as defined in the Appendix of Berloff and ;5 5 barotropic Rossby wave, which has a larger zonal than
Meacham (1998). In both models, the first singular vector, ,qrigional scale and hence, has a westward group velocity. It
which has the largest singular value, corresponds to the Iatbropagates rapidly westward to the western boundary where
itudinal variation of the point at which the mid-latitude jet it reflects as a Rossby wave of short zonal scale and east-
separates from the western boundary. The initial structurg, ;. group velocity. Since the magnitude of the zonal group
of this perturbation has a relatively large spatial scale and,g|ocity of the eastward wave is much less than that of the
is anti-symmetric about the middle latitude of the basin. Itsyesyard wave, the reflected wave has a significantly larger
largest amplitude occurs straddling this line, over towards theamplitude. For times less than half the period of the wave,
western boundary. Since the anomaly has the same sign 9 effect on the WBC is to reinforce the effect produced by

both sides _of the middle Ia.titude., its effect is to strengthenya paroclinic disturbance, slowing one of the WBCs while
one of the inertial gyre recirculations and weaken the otheryccelerating the other. While the QG model with a rigid-lid
This intensification of circulation in one half-basin and the 4,as contain a representation of a baroclinic Kelvin wave

weakening in the other, strengthens the WBC on one sidgyheit one with an infinite phase speed, it does not admit

of the separation point and weakens it on the other. When, pa6r0pic Kelvin wave and so no such wave is induced
superimposed on the basic state, i.e. the steady solution By the incident Rossby wave. Even if the rigid-lid approxi-

Fig. 3, the result is a meridional displacement of the sepaynation were relaxed, the amplitude of the barotropic Kelvin
ration point into the half-basin with the weakened recircu- wave would be weak.

lation. Evidence of the deceleration of one WBC and the . . .
acceleration of the other may be seen in the final state of the I the barotropic and baroclinic energy conversion terms
singular vector, in which a thin band of anomalous potential®f Figs- 4 and 5, the positive values near the boundary in-
vorticity, symmetric about the mid-latitude of the basin, ap- dicate that over the period = 10, the initial perturbation
pears adjacent to the western boundary. This is due to thEXtracts energy from the mean state. The growth of the per-

change in shear stress and hence, the vorticity in the viscou&!"Pation initially consists of a strong symmetric potential

sub-layer adjacent to the western boundary. The acceleratiofrticity anomaly in the region of the WBC near the separa-

of one boundary current in one direction and the deceleratiofion Point. Since the flow is actually stable, this disturbance
of the second boundary current flowing in the opposite direc-Vould eventually start to lose energy to the background flow

tion give vorticity anomalies of the same sign adjacent to thelf integrated further. If integrated over a period long enough
boundary. to re-establish a steady state, then the sum of the growth and

The final state of the dominant singular vector also con-d€cay would amount to zero.

tains two zonally elongated extrema of potential vorticity of  The singular vector corresponding to the second largest
the same sign on either side of the axis of the jet. Whendistinct singular value is anti-symmetric with more of its
combined with the strong shears that are the poleward andtructure distributed away from the jet axis, while that cor-
equatorward flanks of the mid-latitude jet, these strengthenmesponding to the third is similar to the first, which is sym-
one and weaken the other. To leading order, they represemhetric about the jet axis (Fig. 6).
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Fig. 4. The first singular vector corresponding to the enstrophy norm computed for the steady state in the EB model using an integration
time of 10 units (approximately 8.9 days). The figures show an enlarged view of the western half of the domain and only half of the northern
and southern extent. The left panels show the singular vector structure or the initial potential vorticity and stream function prescribed as a
perturbation, the middle panels show their linearly evolved states=al0 (8.9 days), and the right-most panels show the mean (over the
period: = 10) of the energy conversion rates defined in the Appendix of Berloff and Meacham (1998).

5 Singular vectors of weakly aperiodic (irregularly lation. To attain this state, we spin up the EB and 2LQG mod-
vacillating) flows els for 12 and 18 years, respectively, with a small time vary-
ing random perturbation to the wind stress. Once spun up,
Reducing the eddy viscosity to = 500 n? s 1changes the the wind stress is held symmetric and steady, and the model
solution of the wind-driven double-gyre model described solution vacillates between different states due to its own nat-
above, from a steady state to one that varies aperiodically bedral internal variability. A time series of the kinetic energy
tween states of “high” and “low” energy in a relaxation oscil- of the upper layer shows the build up of energy that corre-
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Fig. 5. Same as Fig. 4, but for the upper layer of the 2LQG model.

sponds to the increasing extension of the zonal jet, whichities giving rise to smaller recirculations localized near the
then breaks up catastrophically, resulting in a sudden drop inwestern boundary. In the EB model, the mid-latitude jet ex-
the kinetic energy. Figures 7 and 8 show snapshots of thdibits a greater tendency to fold back on itself. Baroclinic ed-
upper layer stream function in the high and low energy stateglies in the 2LQG model result in a higher level of mesoscale
for the EB and 2LQG models, respectively. The high energy“noise” in the energy (Fig. 10), as compared to the EB model
state, in the left panels of Figs. 7 and 8, are characterizedFig. 9). The breakup of the extended jet in the 2LQG model
by an intense jet that penetrates into the basin interior withoccurs with the formation of baroclinic eddies that dissipate
strong northern and southern inertial recirculations. The lowenergy more effectively, and consequently, the drop in en-
energy states, seen in the right panels, are characterized byeagy in the 2LQG model is rather more dramatic than in the
“retracted” jet whose structure has been broken by instabil-EB model (see Figs. 9 and 10). The vacillation time scales
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Fig. 6. The left panels show the structure of the 2nd and 3rd singular vectors, i.e. singular vectors corresponding to the 2nd and 3rd largest
unique singular values, from the 2LQG model. The right panels show the evolved state of these singular vectors when the domain is initialized
with these potential vorticity perturbations and allowed to evolve linearly ferl0 (8.9 days). Once again, the region of interest around the

jet separation point is enlarged.

for the EB and 2LQG flows are approximately 10 and 20 Calpin and Haidvogel (1996), Primeau (1999) and Meacham
years, respectively. These high and low energy states cor2000), and are indicative of long-time internal variabilities
respond to similar states observed in the simulations of Mc-of the wind-driven gyres.
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Fig. 7. Snapshots of the EB model stream function in high and low Fig. 8. Same as Fig. 7, but for the upper layer of the 2LQG model.

energy states of the weakly aperiodic or irregularly vacillating flow

regime attained when = 500 n?s~1. The high energy state in the

left panel is characterized by the increased penetration of the mid-

latitude jet into the basin interior, while the low energy state seen inboundary adjustment in the lower layer of the model. In or-

the right panel is characterized by a retracted and less energetic jeder to eliminate the effect of the boundaries, we only con-
sider the interior of the domain, leaving out a buffer region
(arbitrarily chosen to be 9 grid points wide) along the bound-
ary. Formally, this is done by redefinirjgg | in Eq. (20)

The question is whether the singular values and singulats
vector structure reflect the large-scale change in the state of |, , ,
the evolving flow field. Could they also be viewed as precur- | 91 1= (41, Ga3), (22)
sors to these changes? To address these issues, we compufigereG is a diagonal matrix with 1's and 0’s on its diagonal.
the singular values and vectors, once again maximizing therhe 0’s are situated in order to zero out the near-boundary
enstrophy norm over a periad= 10 (8.9 days), at intervals grid point values ofy upon multiplication. With this modi-
of + = 100 following the evolution of the flow. Figure 9 fication, we begin to see a large correspondence between the
shows a time series of the first three singular values and théime series of the dominant singular values and the kinetic
total kinetic energy for the EB model. The upper panel showsenergy. Figure 10 shows a time series of the 3 largest singu-
the original time series, and the lower panel shows the timdar values. The time series is smoothed by a running mean
evolution smoothed with a running mean over a period ofwith a window ofr = 500 or 1.2 years to filter the very high
roughly 1.6years. The first three singular values are highlyfrequencies as the singular values show much greater high
correlated with the kinetic energy, with sharp increases in thérequency variability than in the EB case. All three singular
singular values preceding sharp decreases in the kinetic envalues shown exhibit a change in their value corresponding to
ergy, and sharp decreases in the singular values precedingie change in the large-scale state of the flow, but the second
a smoother successive increase in the kinetic energy. Thehows the largest change in correspondence. The predictive
singular value behaviour is thus a precursor of the transitiorcharacter, i.e. the increase in slope or the rate of change in
from high to low energy states anite versaThe transition  the singular value prior to the break up of the extended jet, is
from the high to the low energy state is rather abrupt, whilenot as clear as in the EB case.
the opposite transition is smooth and gradual. The precursor The singular vectors are constantly changing as the flow
of a transition in the flow regime is an abrupt change in theevolves. But the structure of the first, second and third singu-
slope of the time evolution of the singular value. A sharp in- |ar vectors in this weakly periodic state are continuations of
crease in the slope always precedes the successive collapsetf structure of the respective singular vectors in the steady
the kinetic energy. The successive sharp decrease in the sigtate. The first singular vector from the 2LQG model has a
gular value with a strongly negative slope is a precursor ofiarger zonal extent than that from the EB model, but the size
the consequent increase in kinetic energy, at which time thef the evolved structures are comparable. As in the steady
singular value begins to grow again until the next transitionstate, this singular vector is associated with the north-south
to the low energy state. migration of the separation point.

Preliminary experiments with the 2LQG model showed To explore the extent of the parameter range in which the
that there was no resemblance between the time series of sisingular value maintains its predictive capability in the case
gular values and kinetic energy, since with no-slip boundaryof the EB model, we have explored the case with a reduced
conditions, the singular vector structure is dominated by theeddy viscosity coefficient = 350 n?s~1. Figure 11 shows
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the analogous time series of the first three singular valuesections that are 40 grid points north and south of the mid-
evaluated as discussed above, together with the corresponéhtitude jet axis. In Fig. 12 we plot these WBC transports,
ing evolution of the kinetic energy for this reduced viscosity where the northern transport is positive, and the difference
case. The upper panel shows again the original time seriefetween northern and southern WBC transports is indicative
and the lower panel shows the evolutions smoothed over a&f the gyre asymmetry. We also plot the migration of the zero
period of about 3.6 years. The period of the vacillation cy- potential velocity line or jet axis just interior of the boundary
cle has now increased to roughly 20 years. Both the singu{ati = 2) from the mid-axis of the domain. Both of these
lar values and the kinetic energy show much more vigorousndices track the singular values and KE of the flow. How-
high energy fluctuations, due to the more intense barotropi@ver, they show that the vacillations are not symmetric. The
instability allowed by the reduced viscosity. Nevertheless,jet axis near the separation point is gradually pushed north-
the singular values still have a predictive capability, as is ap-ward by a growing recirculation region just south of the jet
parent in the smoothed time series shown in the lower pane{see Fig. 7). This continues until the recirculating region col-
of Fig. 11. Again, the sharp change in the slope of the singudapses and the jet suddenly whips back in a southern direc-
lar value evolution is a precursor of the transition in the flow tion. This abrupt change in jet position from north to south
regime, now characterized by greater changes in the energig coincident with a surge in the northern WBC transport and
levels. the attainment of maximum KE (see Figs. 11 and 12). Earlier
experiments have shown that over long integration periods,
he flow will also, at times, make a transition into the op-
posite phase where the jet will be forced southward and then

Other indices of the large-scale state of the flow, such a
the WBC transports and the crossing of the zero potential
vorticity line, are also explored in the EB case. We estimate" . o : .
the WBC transports to be the difference in the stream func_wh|p back in a northern direction with a surge in the southern

tion between the grid point = 10 and the boundary for WBC.
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lar vectors. In the strongly chaotic regime, there are a con-

siderable number of mesoscale eddies in the flow, as well

When we move to more strongly aperiodic flows, the highas strong meanders in the WBC extension. Much of the en-
degree of correlation between the behaviour of the singulaergy extracted by the dominant singular vectors as they grow
values and the evolution of the structure of the large-scalecomes from the intensification of perturbations in the regions
flow disappears. Figure 13 shows the smoothed time seriesf strong shears associated with these mesoscale phenomena,
of the upper layer kinetic energy and the first three singularand the evolved forms of the singular vectors typically have
values for a run of the 2LQG model with = 100n?s™1, large amplitudes near one or more of the mesoscale features.
the deformation radius p set to 48 km, and the wind stress When the evolved singular vectors are assigned an arbitrary
intensity g =0.05 NnT 2. Significant variations in the mag- amplitude and superimposed on the unperturbed trajectory,
nitudes of the singular values can be seen. There is coherentkey frequently correspond to displacements of one or more
between the time series of the three dominant singular valuesf the strong mesoscale features present.
themselves, but no significant coherence between any of the As one moves from the regime of steady, periodic or
singular values and the basin integrated kinetic energy of theveakly aperiodic solutions to that of the strongly chaotic
upper layer flow. There is a similar lack of coherence be-solutions, the physics underlying the growth of the domi-
tween the time series of the dominant singular vectors andhant singular vectors changes. The generation of the changes
other integral measures of the flow, such as the WBC transin the separation point and meridional displacement of the
port (not shown). WBC extension is now supplemented by the displacement

The reason for the lack of a strong correlation between theor stretching of strong meanders and mesoscale eddies as
singular values and time series representing the large-scalgerturbations grow transiently in the strong shears adjacent
spatial structure of the flow lies in the character of the singu-to these features. The nature of the dominant singular vec-
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tors and the sizes of their associated singular values depergkparation point of the WBCs, when relatively unconstrained
on relatively localized structures in the flow. As they grow, by topography (e.g. off the east coast of South America), may
they produce localized changes to the flow (Moore and Mar-be a more challenging problem than predicting the evolution
iano, 1999). This high degree of locality implies that the of meanders in the Gulf Stream.

forecasting problem for flows in the strongly chaotic regime

is both simpler and more difficult than in the weakly aperi- ] ]

odic regime. On the one hand, if the flow is to be predicted?/ Summary and discussion

with a high level of accuracy over the whole domain, then
all of these local “instabilities” must be resolved which, for

an assimilative forecasting scheme, implies gathering a lo
of data. On the other hand, it also implies that for much
of the time, the short-term behaviour of the flow in a lim-

In this work, we briefly examined the structure of the dom-
{'nant singular vectors of simple models of the wind-driven
circulation and the way in which the associated singular val-
ues vary with the large-scale circulation. The main moti-

ited region will tend to be influenced more strongly by local vation comes from the information that the singular vectors

processes rather than by remote ones, so that observatioﬁ]%ggaemstgiéogri; La;izeOftr?évsrgeir;lc\?visthoffvthr:ghtrsarLe;chjer:i)Sr:}n
concentrated in a limited area around the region of intereslf P ' P

should be more relevant to the forecasts in that region tha h?l'lhneltlrila(i)r: agﬁ:{;?ﬁ;s\g Svfoilfgrlieliceatsot ;nn?dﬁgglz”eg;z\pg are:
the observations made further away. The obvious exception P P :

is close to the western boundary, where a significant signal 1 |n time-dependent flows, the singular values, which re-
can be associated with the reflection of large-scale barotropic  flect the rate of growth in the errors, and hence, the pre-

Rossby waves. Observations in the interior of the basin gjctability of the flow, is very dependent on the instan-

would probably be needed to accurately include the effects  tg3neous state of the flow.

of such phenomena in a forecast model for the flow adjacent

to the boundary. The implication is that the variability in the 2. When the Reynolds number of the modeled circulation
is low and the time dependence of the flow is weak, the



. Mahadevan et al.: The predictability of large-scale wind-driven flows 463
\ \ \ \ \ \ \ \
o 20 *wa
e
o | .
o
S 0.0 L
g —2.0 \\ //’ \\ /// \\ /A/A \\ e
@ 1 [URETIN \ i \ I A r
] . / VL | L Vi) Fig. 12. Time series of the WBC trans-
Q 4.0 — (I V! - ViE - ports (northward positive) and the zero
o L vl \ v X .. .
s | " L W Vo potential vorticity crossing for the EB
” W V) model in the weakly aperiodic regime
-6.0 : ‘ ‘ : : with v = 350n?s~1. The upper
70. 90. 110. 130. panel shows the southern WBC trans-
T s time in yrs port (solid line with positive values), the
o northern WBC transport (dashed line
with negative values) and the difference
between the two. These transports are
12.0 — computed as the stream function dif-
- - ference between the poinis10 and
8.0 L 1, at sections that are 40 grid points
B L north and south of the mid-latitudinal
S .o | axis. The lower panel shows the north
2 and south migration of the zero po-
g ] I~ tential vorticity line (i.e. the jet axis)
> 007 ™ in grid points, just inside of the west-
5 7 B ern boundary (at=2). We observe an
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singular vectors are relatively large-scale and the assowith the dominant 9-day singular vectors are oiily100)
ciated variability of the singular values is sensitive to (so thatT/(0.5logo) is O(3-5) days, wherd is the inte-
simple measures of the large-scale flow. In the reducedyration time and is the singular value), dynamical models
gravity model, changes in the dominant singular valuesinitialized with detailed information about the location of the
also herald large and relatively abrupt changes in theGulf Stream extension and its associated rings should pro-
structure of the large-scale flow. duce useful forecasts over periods®f10—-20) days. This is
o , ... the approach taken by Robinson et al. (1989) in their work
3. When the Reynolds number is high, local instabilities ,, ¢recast models for the Gulf Stream extension based on

of mesoscale s_tructures, similar to thosg exammed. BYnitialization with feature models. Our results suggest that
Moore and Mariano (1999), become significant contrib- ;i an approach could work well when one is interested in
utors to the dominant singular vectors. Larger scale,, yoqignal forecast for a WBC extension or other strong open
processes remain important cont.nbutorfs to phenomengy o5, front, and the region is either a significant distance
such as variability in the separation point of the WBC downstream of any separation point or the separation point
extension. is locked by local topography. In a region such as the Malv-

These results have a number of implications for the de-inas Current — Brazil Current confluence of eastern South
sign of assimilative ocean forecasting systems. If one of theAmerica, in which the latitudes of the separation points of the
goals of the forecast system is to predict the position of theBrazil and Malvinas Currents are not strongly constrained by
strong front associated with a WBC extension, then a signif-topography, information about larger scale structures, such
icant amount of local data will be needed to accurately pre-2s long barotropic Rossby waves in the adjacent ocean, are
dict the evolution of meanders, ring genesis and the evolutiorlikely to be needed for accurate forecasting in the vicinity of
of detached rings. Given that the singular values associatete separation points.
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Smoothed Time Series: 2—Layer QG Model
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On a more abstract level, our results suggest that when ongarrell, B. and loannou, P.: Generalized stability theory. Part I: Au-
constructs assimilative forecast models of the behaviour of tonomous operators, Journal of Atmospheric Science, 53, 2025-
ocean fronts in a large domain, effectiveely reduced Kalman 2040, 1996a. _ N
filters, which use a relatively small set of basis functions to Farrell, B. and loannou, P.: Generalized stability t_heory. Part I:
represent both the data model misfit and the error covari- Nonautonomous operators, Journal of Atmospheric Science, 53,
ance fields, are likely to be difficult to construct. The rea- 2041-2053, 1996b. - -

N e . Farrell, B. and Moore, A.: An adjoint method for obtaining the
son for this lies in the difficulty of representing strong local

- ina | . ith I b most rapidly growing perturbation to oceanic flows, Journal of
processes at time-varying locations with a small set of ba- Physical Oceanography, 22, 338-349, 1992.

sis functions on a large domain. Well designed, ad hoc apgaprell, B. and Moore, A.: Rapid perturbation growth on spatially
proaCheS, SUCh as feature'based initia”zation or fi|teI‘S that and tempora”y Varying oceanic flows determined using an ad-
use a larger number of static basis functions and a static error joint method: Application to the Gulf Stream, Journal of Physi-
covariance matrix, while not as theoretically elegant as the cal Oceanography, 23, 1682-1702, 1993.
full Kalman filter and its reduced space cousins, are likely toGustavsson, L.: Energy growth of 3-dimensional disturbances in
be more effective and more efficient. plane poiseuille flow, Journal of Fluid Mechanics, 224, 241-260,
1991.
Hansen, J. A. and Smith, L. A.: The role of operational con-
straints in selecting supplementary observations, J. Atmos. Sci.,
References 57, 2859-2871, 2000.
Holland, W.: The role of mesoscale eddies in the general circula-

Arakawa, A.: Computational design for long-term integration of the ~ ion of the ocean — Numerical experiments using a wind-driven

equations of fluid motions, Journal of Computational Physics, 1, duasigeostrophic model, Journal of Physical Oceanography, 8,
119-143, 1966. 363-392, 1978.

Berloff, P. and Meacham, S.: On the stability of the wind-driven '€rleY; G. and Young, W.: Viscous instabilities in the western
circulation, Journal of Marine Research, 56, 937—-993, 1998. boundary layer, Journal of Physical Oceanography, 21, 1323~

Charney, J.: The generation of oceanic currents by wind, Journal of 1332, 1991. ) . )
Marine Research, 14, 477—498, 1955. Lorenz, E.: A study of the predictability of a 28-variable atmo-

Farell, B.: Modal and non-modal baroclinic waves, Journal of At-  SPheric model, Tellus, 17, 321-333, 1965. _
mospheric Science, 41, 668-673, 1984. Lorenz, E.: Barotropic instability of rossby wave motion, Journal



A. Mahadevan et al.: The predictability of large-scale wind-driven flows 465

of the Atmospheric Sciences, 29, 258-264, 1972. Academy, A, 27, 9-68, 1907.

McCalpin, J. and Haidvogel, D.: Phenomenology of the low- Palmer, T., Gelaro, R., Barkmeijer, J., and Buizza, R.: Singular
frequency variability in a reduced gravity, quasigeostrophic vectors, metrics and adaptive observations, Journal of the Atmo-
double-gyre model, Journal of Physical Oceanography, 26, 739— spheric Sciences, 55, 633-653, 1998.

752, 1996. Pedlosky, J.: Geophysical Fluid Dynamics, Springer-Verlag, 1987.

Meacham, S.: Low-frequency variability in the wind-driven circu- Primeau, F., Multiple equilibria of a double-gyre ocean model with
lation, Journal of Physical Oceanography, 30, 269—293, 2000. super-slip boundary conditions, Journal of Physical Oceanogra-

Moore, A.: Wind-induced variability of ocean gyres, Dyanmics of  phy, 28, 2130-2147, 1999.

Atmospheres and Oceans, 29, 335-364, 1999. Robinson, A., Spall, M., and Pinardi, N.: Gulf stream simula-

Moore, A. and Mariano, A.: The dynamics of error growth and pre-  tions and the dynamics of ring and meander processes, Journal
dictability in a model of the Gulf Stream. part I: Singular vector  of Physical Oceanography, 18, 1811-1853, 1989.
analysis, Journal of Physical Oceanography, 29, 158-176, 1999Trefethen, L., Trefethen, A., Reddy, S., and Driscoll, T.: Hydro-

Orr, W.: The stability or instability of the steady motions of a perfect ~ dynamics stability without eigenvalues, Science, 261, 578-584,
liquid and of a viscous liquid, Proceedings of the Royal Irish  1993.



