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Abstract. Ensemble Prediction has become an essential partor weather parameters at German stations from the ECMWF
of numerical weather forecasting. In this paper we investi-ensemble.

gate the ability of ensemble forecasts to provide an a priori Recently, the need for skill forecasts in its original mean-
estimate of the expected forecast skill. Several quantities deing in terms of providing a forecast of the second moment
rived from the local ensemble distribution are investigated forof the distribution has been questioned as the forecast prob-
a two year data set of European Centre for Medium-Rangdem could be set up completely probabilisticallyin many
Weather Forecasts (ECMWF) temperature and wind speedases, however, a combination of a single forecast and its
ensemble forecasts at 30 German stations. The results indeorresponding skill forecast may be still preferable, where
cate that the population of the ensemble mode provides usehe “single” forecast can be either a statistic based on the
ful information for the uncertainty in temperature forecasts. ensemble, such as the ensemble mean or a forecast which is
The ensemble entropy is a similar good measure. This isndependent of the ensemble. First, a joint forecast/skill fore-
not true for the spread if it is simply calculated as the vari- cast may be more rapidly understood and interpreted than
ance of the ensemble members with respect to the ensembjgobabilistic forecasts. Second, most numerical weather pre-
mean. The number of clusters in the C regions is almost undiction (NWP) centers still run the ensemble forecasts with a
related to the local skill. For wind forecasts, the results aremodel simpler than their best high resolution forecast model.
less promising. Thus, the forecast could be based on the “best” model, while
an estimate of the expected forecast skill could be derived
from the ensemble. Hence, we focus our interest in this pa-
per on the feasibility of first order skill forecasts based on
ECMWF ensemble forecasts. In contrast to many other in-
“No forecast is complete without a forecast of forecast skill!” vest|gr_:lt|ons of this type, we qnaly.ze real We‘?‘ther fore_casts
This slogan was introduced by Tennekes et al. (1987) dur—at §t_ano_ns and not upper ar fields; gnother dlﬁgrengt_e Is the
ing a workshop held at the ECMWE and has since then beyerlflcatmn method applied to quantify skill predictability.
come a standard phrase in the context of ensemble predic-

tion. By predicting the forecast skill we mean in this paper > Data
to provide a priori, i.e. together with each individual fore-

cast, an individual estimate about the expected quality of this]-he results shown in this article are based on a 2 year data

forecast. But while ensemble forecasting has developed im%et between May 1997 and May 1999. It consists of the 50
an integral part of numerical weather forecasting (Toth andECMWF ensemble forecasts issued at 12:00 of temperature
Kalnay, 1993; Palmer et al., 1992; Hout.ekarr?‘er etal,, 1996:’,)and wind speetfor validation times 12:00 and 00:00 at 30

skill forecasts are not yet always provided “operationally” German stations. In addition, the corresponding observa-

by the national weather services. One exception is Meteogiong the unperturbed control forecast, and the high resolu-
France, issuing a 5 category confidence index (Atger, 2000).

The results presented in this paper were achieved under a !See van den Dool (1992) and also related papers of Tennekes
contract with the German weather service (DWD) with the (1992), Smith (1995, 1997), and Popper (1982) where the prob-
aim to investigate the possibility of deriving skill forecasts lems of accountability, simplicity of the models, infinite regress,
and higher order skill prediction are discussed.

Correspondence taC. Ziehmann 2Precipitation and cloud-cover will be addressed in a follow up
(christine.ziehmann@rms.com) paper.

1 Introduction
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Fig. 1. Scatter plots of 5 day forecast errors of the high resolution forecast and ensemble spread (standard deviation with respect to the
ensemble mean). The left panel shows the spread as a function of the forecast ensemble mean temperature, the middle panel, the same f
the error, and the right panel shows error versus spread. In all cases, a linear regression has been performed. Note the different scale of th
ordinate in the left panel.

tion operational forecasts (T213 and T319) are used. Finallythis relation is quantified either by the error-spread corre-
the so-called Kalman filtered ensemble mean forecasts werkation (Barker, 1991; Whitaker and Loughe, 1997; Buizza,
also used in some cases in order to reduce the effect of sy$997; Ziehmann, 2000) or by contingency tables (Barkmei-
tematic model errors. Several changes in the Ensemble Prger et al., 1993; Houtekamer, 1992; Molteni et al., 1996;
diction System (EPS) fall into this period: the introduction Whitaker and Loughe, 1997). Often, just scatter plots be-
of evolved singular vectors (25 March 1998), the introduc- tween error and spread are shown, or they are processed into
tion of a stochastic representation of model uncertainty (21more informative conditional probability diagrams, as shown
October 1998), and the change in the number of vertical layin Moore and Kleemann (1998). Common to all of these
ers from 31 to 40 (22 October 1999). The analysis, however;traditional” approaches is that when calculating the spread,
has not been performed separately for these sub-periods. it is not taken into account whether the ensemble forecasts
fall close to a climatologically mean value or to an extreme

situation. This may turn out to be crucial, as will be shown
3 Quantifying skill predictability below.

To give a firstimpression of this traditional approach, error
gnd spread of 5 day temperature forecasts at the station Dres-
den (station ID 10488) are shown in a scatter plot in the right
panel of Fig. 1. In this case, the error of the high resolution
forecast is shown together with the standard deviation of the
ensemble members with respect to the ensemble mean. No
stratification according to season has been made. A linear
fit shows, as expected, a tendency for larger errors to occur
Frequently, the variance of the ensemble with respect to &t larger spread values. The error spread correlation coeffi-
Sing|e valued forecast (for examp|e, the control or the ensemCient is about 0.3, thus the linear relation appears to be weak.
ble mean forecast) has been used as a measure of “spread@r most spread values, almost the entire range of errors can
which then has been related to the (absolute) error of thi€ccur. Only the smallest spread values seem to give rather
particular forecast. Not only variance-like measures but alsg-ertain indication for small errors.
correlation-type quantities are used for spread and skill (see, Figure 2 displays the statistical relation between error and
for example, Moore and Kleemann, 1998). The strength ofspread in these data as a function of forecast lead time, while

Obviously, an ensemble which “spreads” out quickly in time
indicates an uncertain forecast. In this paper, we investigat
different definitions of the skill predictor “spread” and test
their ability to stratify forecasts into certain and uncertain
forecasts.

3.1 The traditional spread approach
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Fig. 2. Conditional relative frequencies for smal-{ blue), large &, red) and medium (green line) errors of the high resolution 2 m

temperature forecasts for the station at Dresden depending on the observed spread as a function of forecast lead time. The spread is tt
standard deviation with respect to the ensemble mean. The three panels show the results for the small, medium, and large spreads separate

Each of the symbols+” and “x” corresponds to an independent evaluation of the data with a fit set of 500 cases drawn at random to

define the threshold values of three equally likely classes of small, medium, and large spread and errors, respectively. The average of thes

repetitions is shown as a solid line. The data have not been stratified according to season.
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Fig. 3. Boundaries of the ten equally likely temperature intervals at station Dresden (station ID 10488); on the left for the midnight tempera-

tures and on the right for the generally larger noon temperatures. Since no long temperature record was available when preparing this article
the climatology for each month was determined from the same 2 year data set of observations, leading to some wiggles in the nine 10% —

90% temperature percentiles.
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also quantifying the confidence in this relation. In this case,sive information provided by the ensemble onto the scalar
the error of the high resolution forecast was contrasted withquantity spread is insufficient. The same spread value may
the standard deviation with respect to the ensemble mearindicate a large error if the forecast is near the climatologi-
Each of the symbols “+” for small errors anck™ for large cal mean but a small error when the forecast is close to the
errors corresponds to an independent evaluation of the dataargins of the distribution. Similarly, the same spread may
with a fit set of 500 cases drawn at random to define theindicate different forecast uncertainties for different times of
threshold values of three equally likely classes of small,the year. In the next section, we discuss an alternative.
medium, and large spread and errors, respectively. These
thresholds are then applied to the independent test set of the&2 Mode population as a predictor of forecast uncertainty
remaining 200 cases to determine the relative frequencies of
the occurrence of small, medium, and large errors when a&he dependence of spread and error of the forecast state is
small, medium, or large spread in the ensemble has been offaken into account by the method recently introduced by Toth
served. The evaluation is repeated a couple of times, eacft al. (2000) to quantify the ability of the ensemble to dis-
time using new randomly determined fit and test sets, andinguish between forecasts with small and large uncertainty.
the solid lines are the averages of these random sampling&oth the ensemble forecast data and the observations are pro-
Obviously, the definition of the spread used here does disjected into a given number of climatologically and equally
criminate between cases with small and large errors. For exprobable intervals. Assuming a roughly Gaussian shaped dis-
ample, when the spread is small (left panel), the chance ofribution, the bins are wider towards the margins of the dis-
finding a small error is around 45% for the day 2 and 3 fore-tribution and narrower close to the mean. Figure 3 displays
casts, which is significantly larger than the 33% of finding the nine class bounds which define ten equally likely 10%-
a small error by chance. For medium spread, no conclusiomntervals for temperature in Dresden for each month, with
can be drawn for the forecast error, and when the spread ige generally lower midnight values on the left and the noon
large, again the frequencies for small and large errors diffetemperatures on the right.
from their random expectation values. Interestingly, the de- Next, the number of ensemble members that fall into each
pendence of the forecast lead time appears to be weak and fanterval is evaluated, as well as the interval corresponding
the short term forecasts of 1 day the spread seems to providi® the observation. The mode of the ensemble is the most
almost no information. populous interval. The mode population is now used as the
The results above indicate that the ECMWE ensemble proskill predictorto stratity the forecasts according to their ex-
vides information about the expected forecast error: herepected uncertainty. A high population reflects a certain or
even about the error of a forecast which is independent of thdlighly predictable forecast, while a small population indi-
ensembl2 and thus, the ensemble appears to reflect the atcates that there is only little agreement among the ensemble
mosphere’s inherent predictability. In the following, we will members, and thus a potentially poor forecast. When the en-
first show that quantifying skill predictability using spread semble mode agrees with the interval of the observation, the
and error as applied above may not be optimal and then wéorecast has skill and is called a success, otherwise it has no
discuss an alternative approach originally suggested by Totskill. The skill predictorand “success” is thus a binary vari-
et al. (2000). able. The relative frequency of successful cases in the total
Both error and spread depend on the forecast state. Ong@mple is called the success rate. The success rate of a subset
might expect that both quantities show larger values atof forecasts, for example, for those forecasts with an espe-
the margins of the climatological distributions and smaller ciallly large mode population, is a conditional success rate.
values when the forecast falls close to the cIimatoIogicaI'f these conditional success rates differ significantly from the
mean (Toth, 1991a,b). This is also the case in a maxi-2verage, the respectiggill predictoris skillful.
mum simplification of a forecast/observation system with a For 5 day forecasts, for example, the average success rate
red noise atmosphere and persistence forecasts (Fraedriéhabout 28%, as shown by the horizontal solid line in the left
and Ziehmann-Schlumbohm, 1994); in this toy system, thePanel of Fig. 4. The figure also shows conditional success
amount of the error is directly proportional to the amount rates for the highly predictable cases (with large mode pop-
of the anomaly from the climatological mean. The left and ulations) and the poorly predictable cases (with small mode
middle panels of Fig. 1 show the observed spread and erropopulations), both depending on the thresholds used to de-
values as a function of the forecast temperature and indeefine high and low predictability. If one evaluates the success
suggest a behaviour with large values at the margins of théate for those forecasts which belong to the top 10% with the
distribution which, in addition, seems to be superposed by dargest mode populations, the success rate increases to about
general but weak increase in error and spread with increasing5%. For the top 5% of mode populations, the success rate
temperature. increases even more; however, one has to trade this increased
These results suggest that the projection of the compreheriuccess rate against the smaller number of cases in which
one can issue such a “warning”. When the percentage ranges
3Independent in the sense that the high resolution forecast is neiused to define unusual predictability approach 100%, the av-
ther a member of the ensemble nor a forecast derived from the enerage success rates are recovered. Figure 5 is directly related
semble. to Fig. 4 and shows the corresponding two threshold values in
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Fig. 4. Performance of the 5 day temperature forecasts at Dresden averaged over all cases (solid line) and those cases which are classifie
as highly (dotted) or poorly (dashed) predictable. The results are presented as a function of the size of these classes. For example, th
results shown at 10% use the 10% and 90% of the mode population to define the poorly (highly) predictable cases. The threshold values
corresponding to these percentiles are shown in Fig. 6. The left panel shows results when verifying against the real observations in Dresden
The right panel displays a perfect model simulation of the same data, where the observation has been replaced by a randomly drawn ensemb
member.

the mode population used for the stratification into high andonly in the very few cases where the ensemble mode popu-
poor predictability, as a function of the percentage of casedation is exceptionally small. The right-hand side of Fig. 4
which are classified. For the 5 day forecasts and the top 10%shows the same analysis but under perfect model and perfect
for example, the ensemble mode needs to exceed 35 enserensemble conditions, which have been simulated by draw-
ble members in order to be identified as a highly predictableing the “observation” at random from the ensemble (see also
case, while it may contain at most 13 members for the 10%Molteni et al., 1996; Buizza, 1997). In this perfect case,
low predictable cases. Naturally, the population thresholdghe average success rate is notably increased and in partic-
vary for a given percentage with forecast lead time as showrular the poorly predictable cases are more distinguishable
in Fig. 6. Now the two marginal percentage ranges used tdrom the average than in the real world analysis. But even
define unusual predictability are fixed to 10%vVhile forthe  in the perfect model simulation, the figure is not symmetric
1 day forecasts, a top 10% predictability case requires that alvith respect to the average success rate, and the information
50 forecast members fall into one single interval, whereas orgain appears to be larger for large mode populations than for
day 10 an ensemble mode with more than 18 members is athe small mode populations. This demonstrates once more
ready considered as a highly predictable case, since in onlgMolteni et al., 1996) that when spread is small, the forecast
10% of the cases, the ensemble is still so tightly bound aftrajectory is constrained to be close to the observation; how-
ter 10 days. Note that for a completely random forecast, oneever, when the spread is large, the forecast is not constrained
should expect 5 members per interval, on average. to be far from the observation.

When returning to the left panel of Fig. 4 the results for
the poorly predictable cases appear to be not as pronouncegi3 Other stratifications of ensemble forecasts
as the cases where the ensemble mode has a large population.
This suggests that it may be better to use non-symmetric peiBefore we compare the performance of the “normal spread”
centages when defining the thresholds for high and low preand the alternative approach using the ensemble mode popu-
dictability and possibly issue a “poor predictability warning” lated described in the previous section, we consider four ad-

ditional scalar quantities which might also prove worthwhile

“Note that Toth et al. (2000) define these thresholds such thafor the stratification of ensemble forecasts into high and poor
75% of all forecasts with medium predictability remain unclassi- predictability. First, we introduce a bin spreaS, which
fied. is similar to the standard spread but based on the ensemble
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Fig. 5. Mode population thresholds as a function of the percentageFig. 6. Mode population thresholds as a function of forecast lead
ranges used to define poor and high predictability for 5 day fore-time when the top and bottom 10% of the ensemble mode popula-
casts. The corresponding conditional success rates are shown tion distribution are used to classify poor and high predictability.
Fig. 4.

predictability. In each case, the 10% and 90% of these distri-

histogram withnbin intervals of varying width and their rel- - pytions are determined and used as thresholds for poor and
ative frequencieg;, BS = > filimode —i|, Whereimoqe  high predictability. Then the respective conditional success
is the interval belonging to the mod&.S vanishes when all  rates have been determined, as well as the independent av-
ensemble members fall into one bin. Thus, the smdlsr  erage success rate. The results are shown in Fig. 7. Note
is, the smaller the uncertainty in the forecast. The entropy ofthat since we use 10 intervals, each covering 10%, a suc-
the ensemble i§ = — Z;”:b?'l" filog(f:) with f;log(f;) = 0, cess rate of 10% is to be expected by chance. Again, the left
its limiting value, if f; = 0. Itis also inversely oriented to panel of Fig. 7 displays the results for Dresden temperature
the mode population with a vanishing entropy when all en-forecasts and the perfect model simulations are shown on the
semble members fall into one interval (then all intervals areright. The peaks in the curves at every second 12 hour in-
empty and onlyf; .. = 1) and it reaches the maximum terval result from forecasts for the two different verification
value S,,.. = log(nbins) when the ensemble distributes times at 00:00 and 12:00. Note that the success rates of the
uniformly into thenbin intervals. The number of non-zero real forecasts appear to be systematically larger for the mid-
binsNZ = """ H(f;), whereH (z) = 1 forz > 0 and  night verification time, while under perfect conditions, the
H(x) = 0 for z = 0, may also serve as an indicator for midday temperatures show the larger success rates. Starting
skill predictability with a large number indicating reduced with the left panel, three quantities appear to be best suited
predictability. And finally, the number of clusters in the C for stratifying the ensembles forecasts: the mode population,
region, as provided by the ECMWF, might give an indica- the entropy, and the bin spread, since their conditional suc-
tion for forecast uncertainty with a large number of clusterscess rates differ most from the average success rate. The
indicating an uncertain forecast. Note that cluster informa-number of non-zero bins provides only an intermediate re-
tion is based on the ECMWF ensemble as well, but on thesult, and the standard spread seems even less suited. Note
geopotential for a region the size of Europe, on upper airthat results might change for the normal spread if one would
data and on a fixed forecast time window. We have used théake the seasonal dependence into account; however, this has
number of clusters in the C region 1%/ - 17.5 E, 32.5 — not been further addressed in this project. Almost no dis-
57.5 N, covering West and Central Europe), as provided op-crimination between certain and uncertain forecasts is made
erationally by the ECMWF. The ECMWF operational clus- by means of the number of clusters. Thus, for local temper-
tering is performed on the 51 ensemble forecasts, includingature skill forecasts, the local ensemble appears to be most
the control of the 500 hPa geopotential fields in a time win-relevant; however, alternative clusterings based on different
dow from 120 to 168 hours using a hierarchical cluster algo-algorithms (see, for example, Atger, 1998), variables, spatial
rithm and a RMS similarity measure among the cluster mem-domains, or time windows might provide more information
bers. For details, see the technical report (ECMWF). about the local skill.

All six scalar quantities are now used to stratify the ensem- When using the three suitable skill predictors to stratify
ble forecasts and tested for their potential to indicate unusuathe ensemble forecasts, the gain in the success rate for the
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Fig. 7. Conditional success rates of the top 10% and bottom 10% predictable cases when classified using the 6 different “skill predictors”
with line types shown in the figure, as well as the average performance for temperature forecasts at the station Dresden. The right pane
shows again, the perfect model simulation and hence, the potential improvement.
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Fig. 8. Same as Fig. 7 but for wind speed forecasts at Dresden. In this case, each ensemble member has been corrected by the differenc
between the ensemble mean and the Kalman filtered ensemble mean.
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highly predictable cases can be larger than 20%, compared to

the average success rate. Alternatively formulated, the per- 0.20 T T T bih differorce -
formance of the 10% highly predictable cases for lead times 0.18 | two bin difference ------- -
between 6 and 8 days compares to the average quality of 1 to 016 - .
3 day forecasts, which is astonishing. The results for the en-_ '
semble mode population agree qualitatively very well with = 0.14 - .

those reported by Toth et al. (2000), who contrast 500hPa8 12 | i

height ensemble mode forecasts with ensemble mode popug P
. . o = 0.10 | RN -
lation. In their study, however, the conditional success ratesg o

for the highly predictable cases differ by as much as 35%%  0.08 | P e

from the average success rates which is likely due to the bet-2 g | N .:" e

ter performance, in general, of the 500 hPa forecasts com-~ i

pared to the surface variables. 0.04 - PR ]
Note that the forecasts have not been post-processed inthis ~ 0.02 |- .

case and no calibration was necessary here. This was possi- g PO s A A T TN

ble since the temperature forecasts for the station at Dresden 0 1 2 3 4 5 6 7 8 9 10

are “well behaved” and do not suffer from significant model lead time (days)

errors. Other stations, for example, the Wendelstein (station

ID 10980) at an elevation of 1832m, show a large system-Fig. 9. Relative frequency of “multi-modality” of the temperature
atic error and the skill forecasts are not near|y as good as foﬁ-ns.emble forecasts at Dresden, when multl-.modallty is defined by
Dresden. But when correcting each ensemble member by th@"ding a second, almost equally populated bin separated by at least
difference between the ensemble mean and a post-processip Intermediate bins from the mode (long dashed). A weaker def-
ensemble mean (a so-called Kalman filtered ensemble mealfrqltlo_n which requires only one intermediate bin leads to a larger

. . . raction of multi-modal cases (short dashed).

is operationally performed at DWD), skill forecasts also be-

come feasible.

The results in the left panel of Fig. 7 are influenced t0 apyt not all forecast lead times. The perfect model results on
large extent by model errors. The perfect model simulationthe right-hand side do not differ much from those for temper-
results are shown in the right panel. Naturally, the overallatyre and they show the same order for the skill predictors.
results are better, but the relative differences between thehese results also show that model errors are responsible for
6.sk|II predictor remain more or less unchanged. Entro_py,the poor results for wind speed, which cannot simply be re-
bin spread, and mode population appear to be best suitedyced by subtracting a constant value from each ensemble
with the mode population providing the absolute best results,,emper. Thus, post-processing of the direct ensemble fore-
This is to be expected under ideal conditions as the ensemblgsts at stations might be necessary as well as worthwhile

mode population indicates the likelihood of the verification pt this problem has not been systematically investigated in
falling into that bin, while entropy and bin spread approxi- this study.

mate this characteristic.

In another verification setup, these 6 scalar quantities des.4 A closer look at the ensemble distributions
rived from the ensemble have been used as indicators for the
predictability of the high resolution model forecasts which One might wonder why the bin spread, the entropy and the
are not directly linked to the ensemble. Also in this case,ensemble mode population perform similarly well, although
some of the 6 quantities provide useful information for the the ensemble mode population seems to contain a smaller
skill of this independent forecast. The success rates aramount of information than the other two quantities, as it
only a little smaller and in this case, the entropy performsonly requires the frequency in one single bin. Does this mean
(marginally) better than all other skill predictors (figures not that in most cases, the ensemble is unimodal with no further
shown). peaks of similar height in the distribution? A simple test on

Next, we analyze another weather parameter at the sameaulti-modality has been applied here. Whenever the second
station. The results for 10 m wind speed are given in Fig. 8.most populated bin was separated by at least 2 intervals from
Although each ensemble member has been corrected for thine ensemble mode and displayed a population of at least
bias, the overall results, including the average success rat®0% of the mode population, the distribution was defined as
are not as good as for temperature. This is consistent witmulti-modal.
the general result that wind speed belongs to those parame- The rate of such cases is shown in Fig. 9 for Dresden tem-
ters which are quite difficult to predict (Balzer et al., 1998), perature forecasts as a function of lead time. Although the
as wind speed is very sensitive to local properties and theverage rate of multi-modality increases with increasing lead
vertical stability of the atmosphere, both of which are nottime, the occurrence of multiple modes is a rare event. But
well represented in medium range forecast models. The bestote that this definition of multi-modality relies on the pre-
skill predictor cannot be uniquely identified, as is the case fordefined climatological temperature classes. It might be cer-
temperature. The bin spread appears to be the best for mo&inly possible to observe a “truly” bimodal distribution, but
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with both modes falling into a single bin. Such cases cannoskill prediction of station weather based on local ensemble

be detected and are not relevant in this investigation. forecasts is possible; in particular, high predictability “warn-
Returning to the question of the good performance ofings” in those cases when the ensemble dispersion is unusu-

the ensemble mode in identifying unusual predictability, it ally small, appear to be reliable.

turns out that (as to be expected) no single case with multi-

modality has been found among the highly predictable casegcknowledgementd.like to thank Zoltan Toth and Leonard Smith

when defined by mode population. The same is true for thefor the invitation to contribute to this special issue on predictability.
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modal cases provide a much larger fraction among the poorly

predictable cases according to mode population than accord-

ing to entropy. References
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