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Abstract. The performance of single models and ensem-ment with respect to the forecast of intense precipitations
ble prediction systems has been investigated with respect tBuizza et al., 1999). The impact of the resolution is partic-
guantitative precipitation forecasts. Evaluation is based orularly in question when comparing a high resolution single
the potential economic value af72 h4-96 h forecasts. The model to an ensemble prediction system (EPS) that is gener-
verification procedure consists of taking into account all pre-ally based on a lower resolution model (Buizza et al., 1997).
cipitation amounts that are predicted in the vicinity of an On the other hand, it has been mentioned that a large num-
observation in order to compute spatial, multi-event contin-ber of ensemble members is required for successful detection
gency tables. A probabilistic forecast from an ensemble carof rare events (Buizza and Palmer, 1998). A densely popu-
thus be compared to a probabilistic forecast from a singldated ensemble distribution seems indeed more adequate than
model run. The main results are the following: (1) The a single model run to detect those events that are located in
performance of the forecasts increases with the precipitathe tails of the climate distribution.
tion threshold. High levels of potential value reflect high hit A number of studies have been devoted, at least partially,
rates that are obtained at the expense of a high frequency the comparative performance of EPSs and single models
of false alarms. (2) The ECMWF ensemble performs bet-with respect to quantitative precipitation forecasts (QPFs).
ter than a single forecast based on the same model, eveRichardson (2000) compared the relative economic value of
when the resolution of the ensemble is lower. This is truea single model to the ensemble forecasts from the European
for the NCEP ensemble as well, but only for morning pre- Centre for Medium-range Weather Forecasts (ECMWF) with
cipitations. (3) The ECMWF ensemble performs better thanrespect to QPF. Zhu et al. (2001) did similar work in the
the 5-member NCEP ensemble running at 12:00UTC, evenJ. S. for the National Centers for Environmental Prediction
when the population of the former is reduced to 5 members(NCEP) operational forecasting system. In these studies, de-
(4) The impact of reducing the population of the ECMWF en- terministic forecasts based on a single model are compared
semble is rather small. Differences between 51 members angh probabilistic forecasts based on an EPS. The information
21 members are hardly significant. (5) A 2-member poormarcontent of a probabilistic forecast is essentially higher than
ensemble consisting of the control forecasts of the ECMWFthat of a deterministic forecast, since it allows the user to
and the NCEP ensembles performs as well as the ECMWfselect the right probability threshold that corresponds to his
ensemble for afternoon precipitations. concern (Murphy, 1985). The results of most comparative
studies are thus not surprising: EPS probabilistic forecasts
are more accurate, skillful and valuable than deterministic
single model forecasts (Toth et al., 1998).

Operational forecasters, however, use information from

An important aspect of the performance of weather predic-2 Single model as probabilistic guidance. This is particu-
tion systems is their ability to accurately forecast intense prelarly obvious when dealing with extreme events, whose a
cipitation events, i.e. those events whose intensity is suffiPriori probability is very low, such as intense precipitations.

ciently exceptional to cause public disruption. Floods, for Physical processes that are involved in extreme precipitation
instance, represent an important loss for human commu€Vvents are not taken into account very well in atmospheric

nities all around the world. The increase in model reso-Models, due to approximations introduced, for example, by
lution is believed to be an important factor for improve- the parameterization of the convection, the limited horizon-

tal and vertical resolution, and the poor representation of to-
Correspondence td=. Atger (frederic.atger@meteo.fr) pography. As a consequence, events that rarely occur are

1 Introduction




402 F. Atger: Verification of intense precipitation forecasts

even less often predicted by operational models. However,
the lack of performance of nhumerical models in that respect
has never prevented operational forecasters to successfulfy"
forecast rare, extreme events, on occasion. Forecasters are
apparently able to extract from the model output information N
indicating that an extreme event, although not explicitly pre-4sn
dicted by the model, might still occur with significant proba-
bility.

Forecasters’ judgments are essentially probabilistic (Mur-,,
phy, 1993), even when the technical information available is
purely deterministic, as is the case when a forecaster inter-
prets a single model output. In the case of QPF, the fore-
caster's judgment can take the form of probabilities of cer-42™
tain thresholds being reached. For example, given a model
forecasting of 10 mm/12 h, a forecaster might consider a 5%
probability of less than 1mm/12h and an 80% probability Fig. 1. The French network of rain gauges used in this study. The
of more than 8 mm/12 h, with the numbers depending on1194 stations have reported at least one 12 h-precipitation amount
expected model biases and uncertainties. This probabilistiduring the winter of 1998-1999.
judgment is not necessarily stated explicitly, but it represents
the basis of any statement, including the very deterministic
“12 mm/12 h” that may be required for operational purposes.order to: (i) assess the performance of operational forecast-
Furthermore, an experienced forecaster would not elaborat®d systems for the prediction of intense precipitations; (i)
a QPF at a given location from the precipitation amount pre-evaluate the usefulness of an EPS when used in conjunction
dicted by the model at only that location. Forecasters are wellvith one or several higher resolution models; (iii) investigate
aware of the limitations of numerical weather prediction, es-the relative impact of model resolution and ensemble popu-
pecially the consequences of insufficient resolution or pooration on the performance of an EPS.
representation of the topography, as well as the effect of er- The article is organized as follows. The methodology is
rors in the initial conditions. They generally consider the described in Sect. 2. The results are presented in Sect. 3,
whole model output in order to obtain an opinion about thediscussed in Sect. 4, and summarized in Sect. 5.
expected value of a meteorological variable at a given point.

In other words, a forecaster takes advantage of the spatial

distribution of a forecast variable in order to predict its local 2 Methodology
probability density function (pdf). In practice, a high amount 21 Data

of precipitation predicted by the model at a short distance™

from_a.giv'en point may indic;ate a corjs'ide.rabl'e risk qf a high2.1.1 Observations
precipitation amount, even if no precipitation is predicted by

the model at that point. The forecaster's experience, as welbpserved precipitation data from the French rain gauges
as considerations about orography, the expected weather paiatwork have been collected from winter 1998-1999.
tern, the model resolution and other characteristics, play age 9o days from 1 December 1998 to 28 February 1999.
important role in the way this indication is inferred from the QOyiginal data are 6h accumulations at 1194 stations in
available information. The forecaster’s judgment can still france (Fig. 1). The final set consists of 12h accumula-
be facilitated by the use of model output statistics (MOS), tjons from 00:00 UTC to 12:00 UTC, and from 12:00 UTC to
especially when explicit probabilistic forecasts are requiredpo:00 UTC every day. Selected observations have success-
(Carter, 1989). fully passed quality controls, so that gross departures from

all lead times than deterministic forecasts based on a singhe final set contains 194 191 values.

gle model (Zhu et al., 2001). On the other hand, it has

been shown that it is possible to beat an ensemble at earlg.1.2 Forecasts

lead times with a probabilistic forecast based only on a sin-

gle model output and model statistics, when considering upThe verification procedure has been applied to single runs
per level variables, such as 850 hPa temperature (Talagranétom the ECMWF model which was operational in win-
1997) or 500 hPa geopotential height (Atger, 1999). In theter 1998-1999 (Simmons et al., 1989; Courtier et al., 1991)
present article, a forecast procedure is designed in order ti its high resolution version ECH (I319) and its lower res-
mimic the way in which an operational forecaster infers aolution, ensemble prediction version ECL (I59). Both
QPF from a single model output. Single models with differ- versions run at 12:00 UTC. The verification procedure has
ent resolutions, operational ensembles and a “poorman erelso been applied to single runs from the NCEP model,
semble” (consisting of single model runs) are compared inrunning at 12:00 UTC NC12 (T126 resolution up-+t@4 h,
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T62 resolution afterwards) and at 00:00UTC NCO (T62  {p° ' ' ' ' ' '
resolution). Concerning ensemble prediction, the verifi- Y = ——
cation procedure has been applied to the ECMWF EPS 4 - ECMWF T319
(Palmer et al., 1993; Molteni et al., 1996), which consists 10
of 51 integrations of the 7159 ECMWF model running at T
12:00UTC (ECEPS) and to the NCEP EPS (Tracton and ® 10° Vo
Kalnay, 1993; Toth and Kalnay, 1997), which consists of @ >
5 integrations of the T62 NCEP model running at 12:00 UTC © 10
(NCEPS12) and of 11 integrations of the T62 NCEP model .
running at 00:00 UTC (NCEPSO0). Smaller ensembles have ; \ R
been constructed from the ECMWF EPS by retaining the 10 \
control forecast and the first 10, 20, 32 perturbed member:
(ECEPS11, ECEPS21, ECEPS33). A 2-member “poormar  10° e
ensemble” (ECNC) has been constructed from the single 0 5 10 15 20 25 30 35 40 45 80
model runs described above. It consists of the ECMWF T159 mm/12h

model forecast ECL and the NCEP T126/T62 model fore'Fig. 2. Cumulative distribution of observed and forecast precipita-

cast _NClZ' . . tion amounts for 50 thresholds from 1 mm/12 h to 50 mm/12 h. Ob-
Prior to verification, all forecasts have been interpolatedseyations: all (thick solid line), 00:00-12:00 UTC (thin solid line),

onto th.e same 2?52-50 grid that roughly corresponds to  12:00-00:00 UTC (thin dash-dotted line). Forecast84h) inter-
the horizontal resolution of the NCEP T62 model (the low- polated at all observations: ECMWF, I59 model (dashed line),

est resolution of the considered models). Forecasts havECMWF T;319 model (dotted line), NCEP T126 model (long
been retrieved over a large area surrounding FranceNp6 dashed line).
12W, 36°N, 15°E) so that forecast data are available

in a 500km circular area around every available observa- ) )
tion. In this section, precipitation accumulated fref@2h IS more important after 12:00 UTC (this effect would have

to +84h and from+84h to +96h have been considered Probably been emphasized if a summer season had been in-
together. Morning precipitations (valid from 00:00UTC cluded in the considered period).

to 12:00UTC) and afternoon precipitations (valid from ) ) i

12:00 UTC to 00:00 UTC) have been verified separately in2-2 Contingency tables and relative operating curve

Sect. 3.

—— NCGEP T126/T62
— OBS
morming
—-— afternoon

In awide sense, forecast verification consists of a comparison
of a distribution of forecastg( f) to a distribution of obser-
vations or analysep(x). The level of correspondence be-

A cumulative distribution of 12h precipitations has been W€€NP(f) andp(x) indicates how accurate the forecasting
computed from the whole set of selected observations. Ap_system is. There exist a number of methods to estimate this

proximately 100 cases (0.05%) have been identified with a€€! Of correspondence; the most widely used is the compu-

accumulation exceeding 50 mm, 1000 observations (0.5%§aton of the moments of the distribution of errgréf — x),

with an accumulation exceeding 20 mm, and 10000 obserWhiCh leads to the mean error, the mean square error, the

vations (5%) with an accumulation exceeding 5 mm. sincesStandard deviation of the error, etc. The most informative
the definition of an intense 12 h precipitation event is rather®PProach, however, consists of a double factorization of the

arbitrary, the 5mm, 20 mm and 50 mm thresholds have beedPint distribution of forecasts and observations (Murphy and
used as detection thresholds for verification in this study.

2.1.3 Observed and forecast distribution

Winkler, 1987).

For pr.ecipita_tion thresholds from 1mlm to.50_mm_ (12h ac- p(f,x) = pl)p(f) = p(flx) p(x) 1)
cumulation), Fig. 2 shows the cumulative distribution of the
observations and the corresponding forecasts of the differenivhere the joint distributiop (£, x) contains all of the infor-
models used in the study, obtained from a bilinear interpola-mation that is needed to evaluate the forecast’s accuracy. By
tion at the observations. The impact of model horizontal res-stratifying the data according to the forecasts, the joint distri-
olution is clearly visible, with the forecast distribution that is bution can be seen as the product of the distribution of fore-
closer to the observed distribution corresponding to ECH, thecastsp( f) and the conditional distribution of observations,
ECMWEF T319 model. Note that different results might have given the forecasp(x| f). Similarly, by stratifying the data
been obtained with forecasts interpolated onto a more accuaccording to the observations, the joint distribution can be
rate grid, especially for ECH, whose horizontal resolution is seen as the product of the distribution of observatipts
much sharper than the 2/2.5° grid used in the study. and the conditional distribution of forecasts, given the obser-

Figure 2 also shows that morning precipitations (00:00-vation p(f|x).
12:00 UTC) and afternoon precipitations (12:00-00:00 UTC) In the case of the deterministic forecast of a meteorolog-
have a different distribution. Intense precipitations are moreical event, e.g. a precipitation amount exceeding 5mm/12 h,
frequent during the afternoon, probably because convectiotthe joint distribution is most generally represented as<a22
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Table 1. Contingency table based on ECL (ECMWF T159 model, Table 2. Contingency table based on ECEPS (ECMWF EP& h
+72h to+96 h) for the 5mm/12 h observed threshokl: number to +96h) for the 5 mm/12 h observed threshalf}; (FA j): number

of Hits. FA: number of False AlarmsM: number of MissesCR: of Hits (False Alarms) for more thap members forecasting the
number of Correct RejectionsHR = H/(H + M) = 0.29 (Hit eventHR; = Hj/%H; (HitRate). FAR; = FA;/XFA; (False
Rate). FAR = FA/(FA + CR) = 0.05 (False Alarm Rate) Alarm Rate). ExampleH R, = 0.78; FAR, = 0.28. The number

of forecast categories is 51 (ensemble members)

ECL5mm/12h Observed Not observed

Forecast H =4094 FA =9426
Not forecast M = 10061 CR = 170610 Forecast at least by 1 forecast Hj = 12263 FAj = 67534

Forecast at least by 2 forecasts Hp = 11031 FA,50410

ECEPS 5mm/12h Observed Not observed

) ) Forecast at least byforecasts H; FA;
contingency table. This table indicates, for a given observed

(not observed) event, the number of times this event was pre-
dicted (non-predicted). Table 1 shows, for example, the con-
tingency table for the 5mm/12 h threshold and ECL. From : : :
this table, the stratification according to observations leads Forecast at least by 51 forecastsHs; = 0 FA51=0
to two useful indicators: the hit raté4(R), which is the pro-
portion of observed events that were successfully predicted
and the false alarm raté"@A R), which is the proportion of

non-observed events that were erroneously predicted. HR =0.78 andFAR = 0.28 for the second probability cat-

In the case of a probabilistic forecast, the joint distribu- egory based on ECEPS (“at least 2 members are forecasting
tion can be represented similarly as a contingency table builimore than 5 mm/12 h”), whilé/ R = 0.29 andFAR = 0.05
from a number of probability categories. This table indicates,for the deterministic forecast based on ECL.
for a given observed (non-observed) event, the number of
times every probability category is predicted (non-predicted).2.3 The cost-loss ratio
When verifying EPS forecasts, the categories are generally
defined according to the number of ensemble members thdtigure 3 shows clearly that the advantage of a probabilistic
forecast the event, from 1 8 (if N is the number of ensem- forecast comes primarily from the fact that certain probabil-
ble members). Table 2 shows, for example, an extract of thety categories lead to highéf Rs or lowerF ARs than those
contingency table for the 5mm/12 h threshold and ECEPSobtained with a single deterministic forecast. This is at the
for a selection of probability categories based on the numbeexpense of an increase in thei R or a decrease in thH R.
of ensemble membersH R and FAR are computed sepa- For certain forecast users, a highé€r is valuable enough
rately for every category, so that the contingency table lead$o tolerate a larger number of false alarms, typically when a
to an ensemble of pair§’@ R, H R). Every pair indicates the user has the power to avoid a high Idsby protecting at low
performance of a deterministic forecast that would be basedostC. An example is given by the protection of Bordeaux
on the fact that at least a certain number of ensemble memvineyards from the frost in early spring: given the impor-
bers forecast the considered event. tance of the potential loss and the relatively low cost of pro-

It is convenient to plot theseF(AR, H R) pairs as an en- tection, vineyards are protected as soon as the risk of frost
semble of points on a diagram, forming the so-called Rela-exists, even when this risk is low. The so-called cost-loss ra-
tive Operating Curve ROC) (Mason, 1982). The relative tio C/L is low. Another extreme example of lo@/ L is the
position of theR O C obtained from a probabilistic forecast- protection of human life in the case of the risk of a dangerous
ing system and the single poiff AR, H R) obtained froma  meteorological event (e.g. storm, flood). The loss of a human
deterministic forecasting system indicates their relative acculife is incredibly high and the cost to protect it is generally
racy (Stanski et al., 1989). A single point above (below) thelow, so thatC/L tends toward zero.
curve indicates that the deterministic system is more (less) Other users do not tolerate false alarms. Due to a high
accurate than the probabilistic system. Similarly, the rela-C/L, they require aF AR as small as possible, even if this
tive position of theROCs obtained from two probabilistic  condition implies a decrease in tiieR. High C/L are typi-
forecasting systems indicates their relative accuracy. Fig<al of long-term decision making situations, for example, the
ure 3 shows, for example, thROC for the 5mm thresh- management of energy production: activation/deactivation of
old and ECEPS. TheHAR, HR) point for ECL is plotted  a nuclear reactor unit costs a lot, but the expected loss (or
on the same figure. The position of the latter with respectbenefit, in this case) is limited.
to the former indicates a very similar overall performance of Although all forecast users would benefit from points of
the two systems. Nevertheless, higlieRs (lower FARS) the ROC that are ideally located close to the top left corner
are attained by ECEPS for certain probability categories abf Fig. 3, high and lowC/L users do not benefit from the
the expense of higher FARs (lowéf Rs). For example, same part of the curve; lo@ /L users benefit from points

Forecast at least by 40 forecastsHyg = 105  FAyq = 123
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Fig. 3. Relative Operating CurveR(OC) for the 5mm/12h ob- By construction, the maximum value is obtained in both cases for
served threshold, drawn from the contingency table shown in Ta-C/L = f, the frequency of occurence of the event (see Eqg. 3).
ble 2, based on ECEPS (ECMWF ERS/2 h to+96 h). From the
top of the curve, every point indicates the performance of a deter-
ministic forecast based on the fact that at least 1, 2, 3, etc., ensembRdge. If f. is the expected climatological frequency of the
members forecast at least 5mm/12 h (51 points). The single squarévent, it is easy to show that the user should always protect
indicated by the arrow is theF(AR, HR) point drawn from the if C/L < f,, otherwise the user should never protect. Let
contingency table shown in Table 1, based on ECL (ECMWF T158 f be the actual frequency of the event during the considered
model, +72h to+96 h). It indicates the performance of a deter- period. Under the assumption that= f, the mean expense
ministic forecast based on the fact that the model forecasts at leagper unit loss) MEjimate is, therefore, the min of /L and f.
Smm/12h. On the other hand, a perfect knowledge of the future
weather would allow the user to protect only when the event
occurs, so that Mferfect Would be the product o€ /L and
f. The relative economic value of a weather forec&stié
defined as the amount of money that is saved by the user, nor-
malized by the amount of money that he could save by using
2.4 Relative value a perfect (hypothetical) forecast:

of the ROC that are located in the upper part of the curve
(higher HR), while high C/L users benefit from points in
the lower part of the curve (lowdarAR).

MEforecast— MEciimate
M Eperfect — MEciimate

Angstrem (1919) was probably the first who introduced theV = (2
concept of value in the field of weather forecasting (Liljas
and Murphy 1994). After Murphy (1977), several authors Relative value is thus a skill-score based on the mean ex-
explored multiple aspects of the usefulness/value problem iPected expense, according to the usual definition of the fore-
the 70’s and 80’s (Katz and Murphy, 1997) According to cast skill (eg Stanski et al., 1989) The maximum value
this approach, users of weather forecasts are “decision mak¥ = 1 is obtained by a perfect forecast, avid= 0 for the

ers”: they have to take different decisions according to theclimate forecast. From the above discussion about the rela-
expected weather conditions. The usefulness of a weathefve importance of highet/ R and FAR for different cate-
forecast can thus be quantified by considering the occasiongories of users, the relative value can be expressed as a func-

when the use of the forecast has been beneficial, detrimentaion of the user'sC’/L on the one hand, and as a function of
or neutral to the user, with respect to the process of decithe forecast"AR and H R, on the other hand. Richardson

sion making. (2000) has demonstrated the following relation:

Here we consider the particular situation when a user re- c c
quires a forecast in order to avoid potential damages causett = (min <—, f) — FAR—(1—- f)+ HR
by adverse weather conditions, e.g. intense precipitations. A L L
simple economic model can be applied when the user has just C L /C c\!
two alternatives: to protect or to do nothing. The cost of pro- ' (1 - Z) f- f) (mm (Z’ f) - fz) )
tectionC is known, as well as the expected Ids®ccurring
in case of damage. If no weather forecast is available, thdt is important to note that this formulation is correct under
decision to protect is likely to be based on climate knowl- the assumption thaf. = f, as mentioned above. In prac-
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Table 3. Multi-event contingency table based on ECL (ECMWF Table 4. Multi-event contingency table based on ECEPS (ECMWF
T159 model,4+72h to+96 h) for the 5mm/12 h observed thresh- EPS, +72h to +96h) for the 5mm/12h observed threshold.
old. Hy (FAg): number of Hits (False Alarms) for themm/12 h H; i (FAj ). number of Hits (False Alarms) for more thamem-

forecast threshold. HR, = H/X H; (Hit Rate). FAR, = bers forecasting more tharmm/12h.HR; ; = H; /X H; i (Hit
FA/EXFAy (False Alarm Rate). The number of forecast cate- Rate). FAR; = FA/ZFA; (False Alarm Rate). The num-
gories is 20 (forecast thresholds) ber of forecast categories is 20 (forecast thresholds) (ensemble
members) = 1020
ECL 5mm/12h Observed Not observed
ECEPS 5mm/12h Observed Not observed
Forecast- 1mm/12h  Hy =11797 FA1 = 60225
Forecast-2mm/12h  Hy = 9312 FAy = 34145 : : : :
: : : Forecast At least by Hj 1 FAp1
Forecast- k mm/12h  H; FA > kmm/12h 1 forecast
: : : Forecast
: ) ) kmm/12h
Forecast 5mm/12h  Hg = 4094  FAs = 9426 > kmm
. . . Forecast At least by Hj s FAy 51
>kmm/12h 51 forecasts

Forecast-20mm/12h Hpg=5 FAyq=70

tice, f is not known before the end of the verification pe- given observed (non-observed) event, the number of times
riod. The climate forecast is based only on the knowledgegifferent events are predicted (non-predicted). This approach

of f. and is not as reliable as it might be if it was based onhas been followed in seasonal prediction verification studies
the knowledge off, the actual frequency of occurrence of (e.g. Mason and Graham, 1999).

the event. MBimate is, therefore, underestimated in Eq. (2),  rpje 3 shows, for example, the multi-event contingency
which has a slight impact on the computed value. The abovg,pe of ECL for the 5mm/12h observed threshold, based
formulation has, however, been used in most studies, sincgn 20 forecast thresholds from 1 mm/12h to 20 mm/12 h
the computation can be done from the sample only, with N0y;yher forecast thresholds are not used since they occur very
need for independent climatological data. It has been used ”Parely, partly due to the coarse interpolation grid that has
the present Sn_de for the same reasons. been used. Similar to a probabilistic forecast contingency
When considering a probabilistic forecast, there are asype (e.g. Table 2), a multi-event contingency table leads to
many (FAR, HR) pairs as probability categories. FOr & goyeral fAR, HR) pairs, each of which indicates the per-
givenC/L, itis, therefore, convenient to consider the maxi- ¢, mance of a deterministic forecast that would be based on
mum value that is attained for the probability category that iSy,q 50t that a specified forecast threshold is reached by the
optimal for the user, i.e. that leads to the better compromisg,qqel. Therefore. the ensemble #AR, HR) pairs indi-
between alow”AR and a hight! R (Richardson, 2000). Fig-  ¢4tes the performance of a probabilistic forecast based on a

ure 4 shows, for example, the value as a functiol’L, gjngle model run. Figure 5a shows tRe& C corresponding
for the 5mm/12 h observed threshold, for the determmlsucto Table 3. The performance is very similar to that shown

forecast based on ECL and the probabilistic forecast baseg, Fig. 3, corresponding to the probabilistic forecast based

on ECEPS (same forecasts as Fig. 3). The ECEPS curve i%n ECEPS

in fact, the envelope of the 51 curves of value that are ob- _ . -
; p Multi-event contingency tables can be used for the verifi-

tained for every forecast category, from "at least 1 membercation of robabilistig forgcasts based on an EPS as well. A

forecasting the event” to “all members forecasting the event” P )

The better performance of the probabilistic forecast based o

'rtla\ble indicates, for a given observed (non-observed) event,
ECEPS is clearly visible, especially for lowéy L. t

e number of times different events are predicted (non-
predicted) by at least a certain number of ensemble members.
2.5 Multi-event contingency tables Table 4 shows, for example, an extract of the multi-event

contingency table of ECEPS for the 5mm/12h observed
In the previous subsection, it has been described how théhreshold, based on 20 forecast thresholds from 1 mm/12h
performance of a deterministic forecast based on a singlé0 20 mm/12h. Figure 5b shows tf#&0 C corresponding to
model can be investigated from a simplex2 contingency ~ Table 4. The performance is improved, compared to Fig. 3
table, which gives a simplified representation of the joint dis- (ECEPS) and Fig. 5a (ECL multi-event), in the upper part of
tribution of forecasts and observations, limited to the fore-the curves where forecasts are primarily beneficial to lower
casts and observations of one specified event (see Sect. 2.%/L users.
Multi-event contingency tables give a more complete repre- Figure 6 shows the relative value as a functionGyfL
sentation of the joint distribution. A table indicates, for a for the multi-event contingency tables based on ECL and
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better overall than the forecast based on ECL, but is much
better for lowerC/L.
1]
e 2.6 Spatial contingency tables
+ Verification of QPF as well as most quantitative weather fore-
casts would ideally require one to consider the correspon-
dence between 3-dimensional distributions of forecasts and
observations: two dimensions for the physical space, and one
dimension for time. In practice, verification generally con-

sists of an evaluation of the correspondence between (time
., distributions of) local forecasts and local observations, as de-
0 01 02 03 04 0506 07 08 0.9 1 scribed in the previous subsections. Space connections be-
False Alarm Rate tween local forecasts and local observations are rarely con-
sidered. A spatial approach of verification would consist of
Fig. 5. Relative Operating CurveROC) for the 5mm/12h ob-  an evaluation of the correspondence between (time distribu-
served threshold, based on the multi-event contingency tablegions of) spatial distributions of forecasts and spatial distri-
shown in Table 3 and Table 4a) ECL (ECMWF T159 model,  1y;1ions of observations. One application of this approach is

*+72h t0+96h); from the top O.f t.he curve, every point indicates o o\ aiyation of the correspondence between forecast and
the performance of a deterministic forecast based on the fact tha(t)bserved meteoroloqical patterns. throuah the computation
the model forecasts at least 1, 2, 3, etc., mm/12 h (20 poii3). 9 P ! 9 P

ECEPS (ECMWF EPS72 h to+96 h); every point indicates the qf Anomaly Correlation or the categorization of large-scale
performance of a deterministic forecast based on the fact that agirculation patterns (Chessa and Lalaurette, 2000). Another
least 1, 2, 3, etc., ensemble members forecast at least 1, 2, 3, et@pplication is the evaluation of the correspondence between
mm/12 h (5% 20=1020 points). a local observation and the local forecasts that are found in
the vicinity of this observation.

Spatial multi-event contingency tables have been used in
ECEPS (same forecasts as in Fig. 5a and Fig. 5b). The¢he present study. Each table indicates, for a given ob-
ECL curve is, in fact, the envelope of the 20 curves of served (non-observed) event, the number of times different
value that are obtained for every forecast threshold, fromevents are predicted (non-predicted) at different distances
1mm/12h to 20mm/12h. The ECEPS curve is the envefrom the observed event. Table 5 shows, for example, an
lope of the 2x51=1020 curves of value that are obtained for extract of the spatial multi-event contingency table of ECL
every forecast category, from “at least 1 member forecastingor the 5mm/12h observed threshold, based on 20 fore-
more than 1 mm/12 h” to “all members forecasting more thancast thresholds from 1 mm/12h to 20mm/12 h, at 100 km,
20mm/12 h”. The forecast based on ECEPS is only slightly200 km, 300 km, 400 km and 500 km from the observation.
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Table 5. Spatial multi-event contingency table based on ECL 1 - = - R 4 *
(ECMWF T159 modelkt-72 h to+96 h) for the 5mm/12 h observed 0.9 E e * :
threshold. Hy ;(F A ;): number of Hits (False Alarms) for more : : ; : :

thank mm/12 h forecast at less thar 100 km from the observa- 0.8 [

tion. HRy; = Hy;/ X Hy (HitRate). FARy; = FAy;/XFAy, A

(False Alarm Rate). The number of forecast categories is 20 (fore: 0.7
cast thresholdsk 5 (distances to the observation) = 100

@
ECL5mm/12h Observed Not observed n‘:U
%
Forecast At less than  Hj, FAp1
>kmm/12h 100km  from
observation
Forecast
>kmm/12h o : : : : : :
Forecast At less than  Hys FAys 0 0 01 02 03 04 05 06 07 08 00 1
>kmm/12h 500km  from False Alarm Rate
observation

Figure 7a shows th& OC corresponding to Table 5. Al-
though most of the points of Fig. 7a are located below those
of Fig. 5a, the envelope of the curves is almost identical, ex-
cept in the upper part of the curve where a higheR can
be obtained at the expense of a higii&t R. This part of
the curve is obtained with forecast categories that are ven
“sensitive” in detecting the occurrence of rain, with the most
sensitive at 1 mm/12 h at 500 km from the observation.
Table 6 shows an extract of the spatial multi-event contin-
gency table of ECEPS for the 5mm/12 h observed thresh:
old, based on 20 forecast thresholds from 1mm/12h to 0 _ _ _
20mm/12 h, at 100 km, 200 km, 300 km, 400 km and 500 km 0 01 0203040506 07 08 09 1
from the observation. Figure 7b shows @ C correspond- False Alarm Rate
ing to this contingency table. Again, most of the points of
Fig. 7b are located below those of Fig. 5b, but the higherFig. 7. Relative Operating CurveROC) for the 5mm/12h ob-
density of points leads to an envelope that is slightly betterserved threghold, based on the spatial multi-event contingency ta-
Figure 8 shows the relative value as a functionCofL for bles shown in Table 5 and Table @) ECL (ECMWF T159 model,

the spatial multi-event contingency tables based on ECL and /2 h.t°+96 h); every point indicates the performance of a deter-
ECEPS (same forecasts as in Fig. 7a and Fig. 7b). The curv ministic forecast based on the fact that the model forecasts at least
’ ’ ) ef 2, 3, etc., mm/12 h at less than 100, 200, etc., km from the con-

are, in fact, the envelopes of the curves of value that are 0bz;jqreq 1ocation (26c 5=100 points).(b) ECEPS (ECMWF EPS,

tained for every forecast Categolry£5202100 categories for | 75 to+96h); every point indicates the performance of a deter-
ECL, 5x 20 x 51=5100 categories for ECEPS). The forecast ministic forecast based on the fact that at least 1, 2, 3, etc., ensemble

based on ECEPS is better than the forecast based on ECL f@fiembers forecast at least 1, 2, 3, etc., mm/12 h at less than 100, 200,
lower C/L, but the difference is reduced compared to Fig. 6. etc., km from the considered location (%120 x 5=5100 points).

Hit Rate

2.7 Significance tests

with respect to extreme events, such as intense precipita-
Figure 8 is an example of a comparison between two curvegion that rarely occurs in the data sample. Furthermore, the
of value obtained from spatial multi-event contingency tablesmethod of verification implies the use of a large number of
based on different forecasting systems. Some differences agerecast categories, which emphasizes the effect of insuffi-
pear for a wide range of /L ratios. Are these differences cient sampling.
statistically significant? This question is particularly impor-  As pointed out by Hamill (1999), spatial correlation and
tant when verifying the performance of forecasting systemsthe non-normality of errors make it difficult to use common
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Table 6. Spatial multi-event contingency table based on ECEPS (ECMWF ER3h to+96 h) for the 5mm/12 h observed threshold.
Hj  1(FAj . 1): number of Hits (False Alarms) for more thgrmembers forecasting more thamm/12 h at less thahx 100 km from the
observationHR; i ;= Hj /X Hj; (HitRate). FAR; v = FAj /X FAj i, (False Alarm Rate). The number of forecast categories
is 20 (forecast thresholds) 51 (ensemble members)5 (distances to the observation) = 5100

ECEPS 5mm/12h Observed Not observed

Forecast- kmm/12h  Atleast byj forecasts At less than 100 km from the observatio#; ;1 FAjr1

Forecast- kmm/12h At least byj forecasts

Forecast- kmm/12h  Atleast byj forecasts At less than 500 km from the observatio#; ; 5 FAjrs

hypothesis tests (e.g.test) for assessing the significance 3 Results

of weather forecasting verification results. Computer-based

methods of hypothesis testing have been used in this study tthtense precipitation events occur more frequently during the
evaluate the significance of the results. A resampling methodifternoon. The results presented in this section are based
has been systematically applied in order to estimate the probsolely on 12:00-00:00 UTC precipitations. Unless otherwise
ability that differences in the relative value between two fore- stated, the lead-time ig-84 h (precipitations accumulated
casting systems could have been obtained by chance. from +72h to+84 h).

3.1 Ensemble vs. single run

The method consists of the construction of an empirical
distribution of differences that are not statistically significant An important requirement for an ensemble is that it performs
(Hamill, 1999). The probability that the actual difference better than a control single forecast based on the same model.
belongs to this distribution, i.e. that the difference is not sig- As mentioned in Sect. 1, the superiority of probabilistic fore-
nificant, is then evaluated. This null distribution is obtained casts based on EPSs over deterministic control forecasts has
by comparing the relative value for eve@y/L ratio of two  been demonstrated. In this subsection, the value of an ensem-
sets of independent forecasts that should perform identicallyble is compared to that of the control forecast on the basis of
These two sets are generated 1000 times by randomly choospatial multi-event contingency tables. This means that the
ing the forecasts from either one or the other forecasting sysperformance of a probabilistic forecast based on the ensem-
tems. Since it is very likely that the errors are spatially cor- ble is compared to that of a probabilistic forecast based on
related, all local forecasts valid for a given 12 h period arethe control single run. The latter is designed to represent the
considered together as a unique case. Temporal correlatioprobabilistic judgment of an operational forecaster using a
of errors is also probable. In order to limit the dependenciessingle model forecast. The comparison of these forecasts is
forecasts valid for the 12:00-00:00 UTC period (afternoonmeant to indicate the usefulness of an EPS in an operational
precipitations) and for the 00:00-12:00 UTC period (morn- environment, with respect to QPFs.
ing precipitations) have been considered separately, so that
no consecutive 12 h periods can be found in the sample.  3.1.1 ECMWF ensemble vs. control forecast

Figure 9 shows the relative value of the ECMWF EPS

The different steps of the procedure are as follows: (i) con-(ECEPS) and the control forecast (ECL) for the total range
tingency tables are computed for every 12 h period for systenof C/L ratios (0 to 1). For eaclt/L, the statistical sig-
A and system B; (ii) the sample of 12 h periods is randomly nificance of the difference between the curves of value has
halved into 2 sub-samples; (iii) the relative value is computedbeen evaluated through the resampling procedure described
separately from each sub-sample using the contingency tan Sect. 2. For the 5mm/12 h observed threshold (Fig. 9a),
bles; (iv) the difference between the relative value of the 2ECEPS and ECL perform similarly faf /L above the opti-
sub-samples is computed; (v) the procedure is iterated 100fnhal value (that corresponds to the sample frequency of the
times from (ii) to (iv); (vi) the probability that the difference event, i.e. 0.07 approx.). For lower thresholds, as small as
between the actual value of systerand the actual value of 104, the superiority of ECEPS over ECL is confirmed by
systemB is significant is estimated from the empirical dis- the curves of value, but the 90% significance level is reached
tribution obtained at the end of step (V). only for a proportion ofC/L ratios. By contrast, ECEPS is
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Fig. 8. Relative value for the 5mm/12h observed threshold, asa 0.9 : 3
function of the userC/L, based on the spatial multi-event con- 0.8
tingency tables shown in Table 5 and Table 6. Dash line: ECL

(ECMWF T159 model,+72h to +96h). Solid line: ECEPS 3§ 7 © ]
(ECMWF EPS+72h to+96 h). g 068 - 3
e 05 ¢ .
o 04 ¢ ;
significantly better than ECL with respect to the 20 mm/12 h & 03 [ 3
threshold for a wide range @f/ L ratios from approximately
2.1075t0 102 (Fig. 9b). 0.2 ¢ : ]
Although the 50 mm/12 h curves of value exhibit an ad- 01¢ S 1
vgntage for ensemble forecasts for higldetL ratios, sig- (1’076 1OLs y 0L4 0% 1 0L2 10‘4 10°
nificance tests show that ECEPS and ECL do not perform ciL
differently at the 90% level (Fig. 9c). Low significance of 1
the results concerning the higher precipitation thresholds is 0.9 ¢ E
probably due to, in this case as in many others presented be g ¢ uﬁggﬁ::% ]
low, the limited number of observed cases. For example, les o 07 ¢ & '-.jﬁoo% ]
than 100 cases of precipitations above 50 mm/12 h have beeTﬂu 06 b 5 e |
reported during the considered season. These 100 cases he= ¢ %
occurred during 6 periods of 24 h, so that the number of inde-.f;J 05 ¢ N . E f
pendent observed cases is very small when only considering 04 - h s 3
12:00 UTC—-00:00 UTC precipitations. T 03 v :
02 ¢ ; e .
3.1.2 NCEP ensemble vs. control forecast 04 ¢ ) o ]
Figure 10 shows the relative value of the NCEP EPS run- (1)0_5 10‘_5 10L4 10‘_3 10'-2 16—* 10°
ning at 12:00 UTC (NCEPS12) and the corresponding con- CiL

trol forecast (NC12). The differences are often not significant

at the 90% level. When the differences are significant, NC12Fig. 9. Relative value as a function of the usefL, based on spa-

is generally better than NCEPS12, except for small¢f. tial multi-event contingency tables. Afternoon precipitation only
ratios for 20 mm/12 h (Fig. 10b) and 50 mm/12 h (Fig. 10c). (+72h to+84h). Blank symbols: ECEPS (ECMWF EPS). Filled
This result is rather disappointing, but indicates the impor-Symbols: ECL (ECMWF T159 model). The size of the circles indi-
tance of model resolution for QPF. The horizontal resolu- ¢ate the level of statistical significance of the difference in the value

1 . 0, | 0, —
tion of NC12 is T126, while the resolution of the 4 perturbed gggfesg_tggozwgf(ﬁzfea;s?nn(ﬁczztzqqes\;elf sfs Stih?]?fiign/z’eigb;?e/;gz’z
members of NCEPS12 is only T62. ‘ >4 g '

. . ] (a) 5mm/12 h observed thresholgh) 20 mm/12 h observed thresh-
The relative value of the NCEP EPS running at 00:00 UTC o4 (c) 50mm/12 h observed threshold. The legend indicated in

(NCEPSO0) and the corresponding T62 control forecast (NCO)ig. 9a is valid for all figures from Fig. 9 to Fig. 16.

has been examined. The lead-time-86 h, so that afternoon

precipitations are considered (value is consequently lower

than in the previous results where the lead-time-84 h).

Surprisingly, the result of the comparison (not shown) isto contradict the conclusion of the previous paragraph about
similar to that obtained at 12:00 UTC, although NCO andthe importance of model resolution. It also contradicts the

NCEPSO have the same resolution (T62). This result seemprevious results based on 500 hPa geopotential height fore-
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Fig. 10. Same as Fig. 9, but for NCEPS12 (NCEP EPS running atFig. 11. Same as Fig. 9, but for ECEPS (ECMWF EPS, blank sym-
12:00 UTC, blank symbols) and NC12 (NCEP T126 model, filled bols) and ECH (ECMWF T319 model, filled symbols).

symbols). Differences are hardly visible, but there is a slight advan-

tage for NCEPS12 in Fig. 10c.

subsection.

casts (Toth et al, 1998; Zhu et al, 2001). One should re-3.1.3 ECMWF ensemble vs. higher resolution model

main cautious in interpreting these contradicting results. The single run

overperformance of the T62 control forecast might point to

a special behaviour of the NCEP ensemble with respect td-igure 11 shows the relative value of the ECMWF EPS
QPF. This possible weakness might be linked to essentiafECEPS) and the higher resolution (T319) ECMWF model
differences in the ECMWF ensembile: (i) the method of gen-forecast (ECH). Most differences are not significant at the
eration of the perturbations; (ii) the lower resolution of the 90% level. For the 5mm/12 h threshold (Fig. 11a), ECH is
NCEP model; (iii) the limited population of the NCEP en- significantly better than ECEPS for tli&/ L corresponding
semble. The impact of (ii) and (iii) is examined in the next to the maximum value, while the comparison is the opposite
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for a lowerC/L. For the 20 mm/12 h threshold (Fig. 11b), 1 . .
ECEPS is significantly better than ECH f6y L lower than 09 E ]
10~ (at 99% level). No difference is significant for the o8 | ;
50 mm/12 h (Fig. 11c). '
o 07} 3
3
d 06 f E
3.2 Ensemble vs. ensemble >
g 05 -
. . _ T 04} :
In this subsection, ensembles running at 12:00UTC have&
been compared in terms of the relative value computed frorr 03 ¢ f
spatial multi-event contingency tables. 0.2 ¢ 1
01 ¢ 3
3.2.1 ECMWF ensemble vs. NCEP ensemble 00 —
Figure 12 shows the relative value of the ECMWF 1
EPS (ECEPS) and the NCEP EPS running at 12:00UTC 08 ¢ E
(NCEPS12). ECEPS performs better than NCEPS12, witt  pg | ]
a high level of significance (often more than 99%) for the 5, o 07 L ]
20 and 50 mm/12 h thresholds. This result is not surprising.2 06 | ]
given the difference in resolution of the models, on the one> ™
hand, and the difference in the number of members, on th(_fz: 05 ¢ E
other hand. 9 04 ¢ 1
In order to evaluate the relative influence of these two fac-= 0.3 ¢ E
tors, a smaller ensemble based on the ECMWF EPS hasbee 0.2 ]
constructed, consisting of the control forecast and the first g4 i
4 perturbed members. The value of this smaller ensemble 0
(ECEPS5) has been compared to the value of the NCEP EP 10°° 10°
(NCEPS12). The results (not shown) are very similar to those
obtained with the fully populated ECMWF ensemble, indi- 1
cating that the impact of the ensemble population might be 0.9 ¢ ]
much lower than the impact of the model resolution (or other g E
characteristics of the ensembles, e.g. the method of generi 7 | ]
tion of the perturbations). =
g 06 ¢ E
>
© 05} E
3.2.2 ECMWEF ensemble vs. smaller ensemble ERYR ]
o 0.
, . . € 03¢ i
In order to further investigate the impact of the ensemble 02 | j
population, smaller ensembles based on the ECMWF EP! '
control forecast and the 10/20/32 first perturbed member: 0.1 ¢ E
(ECEPS11, ECEPS21, ECEPS33) have been compared - C1)0,6 1o

the fully populated EPS (ECEPS). Note, however, that the
first perturbed members’ initial conditions are still obtained

from all 25 singular vectors (SVs), since the perturbations &g 12, Same as Fig. 9, but for ECEPS (ECMWE EPS, blank sym-

combinations of SVs (Molteni et al., 1996). This comparison s) and NCEPS12 (NCEP EPS running at 12:00 UTC, filled sym-
thus favors smaller ensembles and only addresses the queggls).

tion of the number of integrations that are needed.

Value curves shown in Fig. 13 indicate that ECEPS21 per-

forms as well as ECEPS, except for the 20 mm/12 h thresh3.2.3 ECMWF ensemble vs. “poorman ensemble”

old and smallelC/L (order of 10%). Differences between

ECEPS11 and ECEPS (not shown) are significant at the 90%ince the impact of the ensemble population is limited, it
level for a limited range of rather small/L ratios for the  might be interesting to consider the small “poorman ensem-
5mm/12 h and 20 mm/12 h thresholds. No significant differ- ble” consisting of the ECMWF T159 control forecast and the
ences have been found for the 50 mm/12 h threshold and ndICEP T126 control forecast (ECNC). Since they simultane-
significant differences have been found between ECEPS38usly take into account the uncertainties of the initial con-
and ECEPS for any threshold (not shown). ditions and model formulation, “poorman ensembles” have
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Fig. 13. Same as Fig. 9, but for ECEPS21 (ECMWF EPS control Fig. 14. Same as Fig. 9, but for ECEPS (ECMWF EPS, blank sym-

+ 20 perturbed members, blank symbols) and ECEPS (ECMWFbols) and ECNC (“poorman ensemble” consisting of the ECMWF

EPS, filled symbols). T159 control forecast and the NCEP T126 control forecast, filled
symbols).

proven to perform as operational EPSs for certain aspects of

the prediction of upper level atmospheric parameters in thaatios for 5mm/12h (Fig. 14a) and 20 mm/12h (Fig. 14b).

early medium-range (Ziehman, 2000; Atger, 1999). For the 20 mm/12 h threshold, ECNC is significantly better
Figure 14 shows the relative value of the ECMWF EPSthan ECEPS (at the 90% level) for a limited range(yfL

(ECEPS) and the “poorman ensemble” (ECNC). Most dif- ratios of the order of 10° (Fig. 14b). For the 50mm/12h

ferences are not significant at the 90% level. Significant dif-threshold, ECEPS seems better than ECNC for@hy, but

ferences indicate a superiority of ECEPS for smadlgii. no difference is statistically significant (Fig. 14c).
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4 Discussion
4.1 Morning precipitations vs. afternoon precipitations

The results presented in the previous section only concerig
afternoon precipitations. Although the number of observa—g
tions of intense precipitation is lower, the performance of en-%,
sembles and single model runs has been investigated with re—%
spect to the 00:00-12:00 UTC precipitations. Although moste
results are similar to those obtained for afternoon forecasts
some results differ with respect to comparisons between sin
gle models and EPSs.

Figure 15 shows the relative value of the ECMWF EPS
(ECEPS) and the higher resolution (T319) ECMWF model
forecast (ECH) for morning precipitationg-84 h to+96 h
forecasts). In contrast with Fig. 11 (afternoon precipitations),
ECEPS performs significantly better than ECH (at the 90%
level) for a wide range o€ /L ratios, especially for higher
thresholds (20mm/12h and 50 mm/12h). Similarly, the
NCEP EPS running at 12:00 UTC (NCEPS12) performs as
well as or even slightly better than NC12 (90% level signifi-
cance for lowerC/L ratios and for 50 mm/12 h), despite the
higher resolution of the latter (T126) (not shown). As a con-
sequence, ECEPS performs significantly better than the
member “poorman ensemble”, consisting of the control fore-
casts of ECMWF and NCEP ensembles (ECNC), especially
for lower C/L ratios and higher thresholds (not shown).

The difference in performance between morning and af-
ternoon precipitations might come from the fact that oper-
ational ensembles are more likely to overperform a single
run at longer lead-times (for a model running at 12:00 UTC:
+96 h for morning precipitations+84 h for afternoon pre-
cipitations). However, this hypothesis is not supported by the
performance of the NCEP ensemble running at 00:00 UTCg,
(NCEPSO0), mentioned in Sect. 3.1.2, #6986 h forecasts of
afternoon precipitations. For longer lead-times, the relativ
value of probabilistic forecasts of intense precipitation de-.
creases and becomes close to zero for iyt ratios, so
that the performance of the ensembles over single runs car™
not be demonstrated with confidence. This is the main reaso
for the choice of the 72—96 h range for the results presente:
in the previous section, although operational ensembles hav
been designed for use from day 3 to day 10 (ECMWF), and
beyond (NCEP).

One intrinsic difference between the morning and after-
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noon precipitations is the frequency of convective activity. Fig. 15. Same as Fig. 11, but for morning precipitation84 h to
In France, during the winter season (as considered in this-96 h).

study), convective precipitations occur most frequently dur-
ing the afternoon. Important precipitations occurring before

12:00UTC are likely to originate from large-scale systems,ations in large-scale dynamics predictability. Probabilistic
while they are often a consequence of small-scale, convecforecasts based on an EPS are thus likely to perform bet-
tive activity when they occur after 12:00 UTC. The pdf of ter for morning (large-scale) precipitations than afternoon
the morning precipitations is, therefore, primarily associated(small-scale) precipitations. On the other hand, probabilistic
with large-scale dynamics uncertainty, while the intensity forecasts based only on a single run take into account local
and location of the afternoon precipitations is more oftenuncertainties related to the location and intensity of the pre-
largely unpredictable with operational global models. Op- cipitation. Therefore, it is not surprising that they are more
erational ensembles have been designed for estimating varefficient with respect to the afternoon (small-scale) precipita-
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Fig. 16. Same as Fig. 11, but after halving the data in order to sep-Fig. 17. Hit Rate (H R, solid line) and Correct Alarm Rate (CAR,
arate the sub-sample used for the derivation of the optimal forecagproportion of forecasts of the event that are justified, dashed line)
category for a giver€'/L, and the sub-sample used for verification. computed from spatial multi-event contingency tables based on the
ECMWF EPS (ECEPS). For evely/L ratio, the HR and CAR
are those obtained from the forecast category leading to the max-

tions, while uncertainties associated with large-scale systemi§um value. Afternoon precipitation onlyt{2h to+84h). (a)
are poorly estimated 5mm/12 h observed thresholth) 20 mm/12 h observed threshold.

(c) 50 mm/12 h observed threshold.
4.2 Computation of value from an independent sample
The results presented in the previous section have been obmost studies (e.g. Richardson 2000), the computation of the

tained through an evaluation of probabilistic forecasts basedralse Alarm Rate and Hit Rate, leading to the relative eco-
on spatial multi-event contingency tables. As performed innomic value of the forecast, has been performed under a
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strong assumption: the forecast user is supposed to protethat oblige them to protect (or take action, in a more general
when the category forecast by the system leads to the maxsense) as soon as the risk of potential damage exists, even if
imum value that can be expected. For example, in the casé is almost nil. This may be the case, for instance, of a moun-
of an EPS forecast evaluated from a standard contingency taaineer who requires a 99% probability of quiet weather, be-
ble, the user protects at least a certain number of ensembli@re deciding to go for a 3 day expedition in a remote area
members every time, with a forecast more than the considduring winter.
ered threshold. The user can only know this certain number When forecasting extreme events, the problem may just
from the past. Proper evaluation should thus require an indeeome from false alarms. The high maximum value obtained
pendent, representative sample, from which the optimal foreby operational forecasting systems for the prediction of rare
cast category would be derived for evefy L. In practice, precipitation events reflects the fact that high hit rates can be
the available sample is generally small, so that it is used forachieved provided that the frequency of false alarms is high.
both the evaluation and the determination of the optimal cat4n practical terms, only well informed, professional users can
egories. One may qualify the result of this computation as aolerate a high frequency of false alarms. This is equivalent to
potential value (Richardson, 2000), i.e. the maximum valuesaying that the” /L ratio of these users is small. By contrast,
that is attainable in real conditions. the majority of the users, especially among the public, hardly
In order to evaluate the difference between the potentiatolerate false alarms. Th&/L ratio of these users is large,
value and the actual value, the data have been randomlgctually much larger than the climatological frequency of the
halved into 2 sub-samples. The first sub-sample is used foconsidered event.
the derivation of the forecast category that leads to a maxi- Figure 17 shows the hit rate and the Correct Alarm Rate
mum value for everyC/L. The relative value is computed (CAR, proportion of forecasts of the event that are justi-
from the second sub-sample for the forecast category deteffied) computed from spatial multi-event contingency tables
mined from the first sub-sample. Figure 16 shows the relativebased on the ECMWF EPS. For evafyL ratio, the HR
value of the ECMWF EPS (ECEPS) and the higher resolutionand CAR correspond to the forecast category leading to the
(T319) ECMWF model forecast (ECH) when this procedure maximum value. Assuming that most users would require at
is followed. Most differences are not significant at the 90% least 30-50% of correct alarms, they could expect a 10-30%
level, except for the 5mm/12 h threshold. The curves lookhit rate for 5mm/12 h, but virtually no detection for 20 and
rather noisy, with discontinuities reflecting the variability of 50 mm/12h. This indicates that intense precipitation fore-
the maximum value attained for a givély L. This indicates  casts based on operational forecasting systems, although ex-
that both sub-samples are too small (45 days each) to obhibiting high levels of maximum potential value, are only
tain conclusive results with respect to the actual value of theuseful for a restricted category of users.
probabilistic forecasts of intense precipitations. When differ-
ences are significant, the actual value of the single forecast is
higher. EPS forecasts probably suffer more than single fore5 Summary
casts, given the fact that the sample is small when compared
to the number of forecast categoriesx 20 x 51=5100 cat-  The performance of single models and ensemble prediction
egories in the case of the EPS, bu520=100 categories Systems has been investigated with respect to quantitative
for the single forecast. In other words, ensemble forecastprecipitation forecasts, with a special emphasis on intense
would have the potential to overperform single forecasts forprecipitation. Evaluation has been based on the relative eco-
the prediction of intense precipitations, but a larger samplenomic value of the forecasts, computed from spatial multi-
would be needed in order to identify from past statistics theevent contingency tables. A probabilistic forecast from an
forecast category that leads, in effect, to the maximum valueEPS can thus be compared to a probabilistic forecast based
on a single model run. The latter is designed to represent
4.3 The meaning of very small/L ratios the probabilistic judgment of an operational forecaster, from
which any probabilistic or deterministic statement originates.
One of the aims of this study is to evaluate the usefulness off he statistical significance of the comparisons between vari-
operational forecasting systems for the prediction of intensepus forecasting systems has been estimated through a resam-
precipitations. The results presented in the previous sectionpling procedure.
show that the maximum potential value increases with the The relative value increases with the precipitation thresh-
precipitation threshold. Impressively high levels of the po- old. Impressively high levels of relative value (60—-80% of
tential value (80% of that attainable with a perfect forecast)that attainable with a perfect forecast) are reached for the
are obtained for the 50 mm/12 h threshold. However, the20 mm/12h and 50 mm/12 h thresholds. These numbers re-
range of users who benefit from intense precipitation fore-flect high hit rates that are obtained at the expense of a dra-
casts is limited to very small'/L ratios. By construction, matic increase in the frequency of false alarms. The ECMWF
the maximum potential value is obtained 10y L ratios that =~ EPS performs better overall than a single forecast based on
are close to the frequency of occurrence of the event. Thehe same model, even when the resolution of the ensemble
prediction of rare events thus is a benefit primarily to loweris lower (T,159 vs. T,319). The difference is important
C/L users: those users facing a decision making situatiorfor morning precipitation, especially for higher precipitation



F. Atger: Verification of intense precipitation forecasts 417

thresholds and lowar' /L ratios. On the other hand, the per- Hamill, T. M.: Hypothesis tests for evaluating numerical precipita-
formance of the ECMWF EPS and single forecasts is rather tion forecasts, Wea. Forecasting, 14, 155-167, 1999.
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