醋酸液相氧化燃烧反应动力学

李达仁¹, 靳海波², 史高峰¹

(1. 兰州理工大学石油化工学院, 甘肃 兰州 730050; 2. 北京石油化工学院化工系, 北京 102617)

摘 要:以醋酸钴、醋酸锰为主催化剂,溴化钾为促进剂,乙酸钾为助催化剂,在半连续搅拌釜式钛材反应器中通过测定尾气中 CO₂和 CO 的生成量,对醋酸的液相催化氧化动力学进行了研究.分别考察了空气流量、温度、催化剂总浓度、[Co]/[Mn]比、溴离子浓度、水含量等因素对醋酸燃烧损失速率的影响.实验结果表明,增加催化剂总浓度和 [Co]/[Mn]比能明显加快 CO₂和 CO 的生成速率常数,提高溴离子浓度和降低反应温度可显著抑制醋酸的燃烧损失, 同时根据实验结果得出 CO₂和 CO 的反应活化能分别为 88.11 和 127.31 kJ/mol.

关键词: 醋酸; 燃烧反应; 反应速率常数; 动力学; 烷基萘

中图分类号: TQ031.7; TQ245.13 文献标识码: A

1 前 言

萘二羧酸是合成聚酯、聚胺酯的重要单体,尤其是 2,6 位的萘二羧酸与乙二醇聚合后,生成的萘二甲酸乙 二醇酯(PEN)是许多性能都优于对苯二甲酸乙二醇酯 (PET)的新一代聚酯材料,如优良的耐热性能及光学和 电子性能,因此具有非常广阔的应用前景.

烷基萘(2,6-二甲基萘、2,6-二乙基萘、2,6-二异丙基 萘)液相空气氧化制备 2,6-萘二甲酸(2,6-NDCA)采用 Co-Mn-Br 为催化体系,大多是在溶剂醋酸中进行的. 随着主反应物烷基萘的氧化,部分醋酸也会同时被氧化 成CO₂,CO和H₂O而损失掉.这一损失不仅降低了反应 产品在溶剂中的分散性,而且降低了主反应的效率,提 高了反应过程中副产物的含量,从而影响产品的色泽和 纯度,增加了氧化反应过程的原料消耗和生产成本.

2,6-二烷基萘的催化氧化过程基本类似于对二甲苯 (PX)液相氧化过程.目前,对于对二甲苯氧化过程中醋 酸燃烧副反应动力学的研究较多,已经提出了相关的醋 酸燃烧动力学方程及伴随 PX 氧化过程中溶剂醋酸燃烧 文章编号: 1009-606X(2006)04-0539-05

的副反应动力学模型和反应机理^[1-4]. 然而二烷基萘与 对二甲苯的氧化过程的操作条件和催化剂浓度不尽相 同,同时由于二烷基萘的氧化机理极为复杂,针对烷基 萘液相氧化催化剂体系的醋酸燃烧副反应动力学方面 的研究极少,如日本 NKK 研究所^[5]仅研究了该体系的 简单主反应动力学和催化浓度对醋酸燃烧副反应的影 响. 因此,为了更好地了解 2,6–NDCA 氧化反应过程机 理和进一步的调优降耗实验,有必要对影响醋酸燃烧损 失速率的主要因素进行较系统的研究,为烷基萘液相氧 化过程的实验和放大提供一定的基础数据.

2 实验

2.1 实验原料

冰醋酸,纯度>99.5%,北京化工厂;醋酸钴四水化 合物,纯度 99.5%,中国医药(集团)上海化学试剂公司; 醋酸锰四水化合物,纯度 99.0%,北京化工厂;溴化钾 与乙酸钾,纯度 99.0%,北京化学试剂公司.

2.2 实验流程

实验装置流程图如图1所示. 空气由空压机打入1

收稿日期: 2005-08-10, 修回日期: 2005-09-27

作者简介: 李达仁(1977-), 男, 甘肃省民勤县人, 硕士研究生, 化学工艺专业; 靳海波, 通讯联系人, Tel: 010-81292074.

基金项目:中国石化股份有限公司科技开发部资助项目(编号: 201069)

m³的储气罐中,冰醋酸和催化剂按一定比例装入1.0 L 的钛材反应釜中.首先由氮气钢瓶向反应釜通入氮气, 将空气全部置换,用磁氧分析仪检测氧是否已彻底排 尽,以避免升温过程中的氧化损失.然后在不断用氮气 充压的过程中强烈搅拌(800 r/min),并升温至指定实验 温度,调节好实验压力,随后开始切换压缩空气,燃烧 反应开始.反应尾气经过冷凝器回流醋酸,尾气流量由 湿式流量计读取.反应后每 30 s 读取 CO₂和 CO 的浓度 值,以及气体的瞬时与累计流量值.

2.3 分析方法

尾气经洗涤干燥后进入 O₂, CO, CO₂气体分析仪, 随后排空. 尾气氧浓度采用磁氧分析仪在线分析,尾气 CO 和 CO₂浓度采用红外在线分析仪检测.

3 醋酸燃烧反应机理

醋酸在 Co-Mn-Br 催化体系中会受到活泼自由基 或高价态金属离子的攻击而失去氢,从而生成 CH₃COO· 或 CH₂·COOH,前者脱羧基生成 CO₂,后者在氧和高价 金属的作用下脱羰基生成 CO.

$$CH_{3}COOH \rightarrow CH_{3} + CO_{2}, \qquad (1)$$

$$CH_3CO \rightarrow CH_3 + CO$$
. (2)

醋酸的燃烧反应机理可能要经历以下步骤:

 $Co(II)(CH_3COO)_2 + O_2 \rightarrow Co(III)(CH_3COO)_3,$ (3)

 $Co(III)(CH_3COO)_3 \rightarrow CH_3COO \cdot + Co(II)(CH_3COO)_2,$ (4)

 $CH_3COO \rightarrow CH_3 + CO_2$, (5)

 $CH_3COO \cdot + CH_3COOH \rightarrow CH_3COOH + CH_3COO \cdot$, (6)

 $Co(III)(CH_{3}COO)_{3} \rightarrow Co(II)(CH_{3} \cdot COO)_{2} + CH_{2} \cdot COOH, (7)$

 $CH_2 \cdot COOH + O_2 \rightarrow CH_2 COO \cdot COOH$, (8)

 $CH_{2}COO \cdot COOH + Co(II) \rightarrow CHOCOOH + [Co(III)(OH)], \quad (9)$

 $CHOCOOH+[O] \rightarrow CO+CO_2+H_2O, \qquad (10)$

$$\mathrm{CH}_3 \cdot + [\mathrm{H}] \to \mathrm{CH}_4 \,. \tag{11}$$

式(3)~(11)及文中的 Co(II)和 Co(III)分别代表以醋酸、水 的络合离子团形式存在的单核或多核络合物^[6,7].式(5) 和(6)是一个平行反应过程,但按式(6)进行的可能性比 按式(5)大^[4].式(8)~(10)中,式(8)为控制步骤,式(10)中 [O]是指具有氧化活性的过氧化物或高价金属离子.

催化剂中金属 Co 的价态由 Co(III)到 Co(II)再到 Co(III)快速循环^[8],如果进气中不含氧,液相中的 Co(III)

就会逐步被还原成 Co(II)而失去活性;相反,进气中有 氧存在时,催化剂中 Co(II)又会被氧化成 Co(III)而有了 活性,使反应顺利进行.因此,空气中氧在醋酸燃烧过 程中不仅参与了醋酸的脱羧反应,同时也参与了醋酸的 深度脱羰反应.

4 结果与讨论

醋酸的燃烧损失主要是由于醋酸完全氧化生成 CO₂及其深度氧化脱羧后生成 CO 造成的^[2-4],由此通过 测定尾气 CO₂及 CO 的生成速率即可确定醋酸的燃烧损 失速率.目前所知影响醋酸燃烧损失的因素较多,主要 有醋酸用量、空气流量、催化剂浓度、催化剂组成、促 进剂浓度、液相水含量和反应温度等.在烷基萘液相氧 化过程中,虽然催化剂用量较烷基苯烃氧化时浓度高, 但溶剂醋酸的用量相对于体系中其他催化剂组分大大 过量,且在反应过程中要不断补加,所以其浓度基本保 持不变,因此本实验只对影响冰醋酸燃烧损失的其他几 个因素进行考察.

4.1 气体流量对醋酸燃烧损失的影响

增大空气流量,即提高了空气在氧化反应器中的表观气速,同时也增加了气液传质面积,提高了氧的传递量,在一定程度上增加了醋酸燃烧的损失量.从图2可以看出,在小气速时醋酸的燃烧损失变化较大,当气速大于 0.010 m/s(对应标准状态下气体流量为 4 L/min)时,空气中氧与醋酸的传质面积随气速的增加而缓慢增加,氧在液相的溶解和传质不再是该反应的控制步骤,CO₂和 CO 的生成速率常数变化较为平缓,因而受空气流量的影响很小.

rate constants (k) of CO₂ and CO

通过对烷基萘液相氧化的实验结果可以得出,空气流量一般在 3.0 L/min(表观气速为 7.86×10⁻³ m/s)左右比

较合适^[9],本研究以后的实验过程中气相进料均为 3.0 L/min,其大小不影响 CO₂和 CO 的生成速率常数.

4.2 温度对醋酸燃烧损失的影响

反应温度是影响醋酸燃烧损失的主要因素之一,在 烷基萘液相氧化制备 2,6-萘二甲酸的工艺条件中,温度 一般为 180~220 ℃^[9].本实验有针对性地考察了 4 个温 度点,如图 3 所示,醋酸的燃烧速率常数 k 呈指数上升 趋势.由醋酸完全氧化脱羧基或深度氧化脱羰基后生成 CO₂或 CO 所造成的 k_{CO}, k_{CO} 与温度的关系基本符合阿 累尼乌斯方程,通过对实验数据进行拟合,得出下列表 达式:

> $k_{\rm CO_2} = 1.698 \times 10^4 \exp[-88110/(RT)],$ $k_{\rm CO} = 9.668 \times 10^{13} \exp[-127310/(RT)].$

由于生成 CO₂ 及 CO 的反应活化能分别为 88.11 和 127.31 kJ/mol,因此 CO 的生成速率常数主要受温度的 影响较大,提高温度更有利于醋酸的深度脱羰基反应.

4.3 催化剂总浓度对醋酸燃烧损失的影响

催化剂中各组分比例不变,而改变催化剂的总浓度

进行实验,结果如图 4(a)所示.从图可以看出,当 (Co+Mn)/CH₃COOH(摩尔比)小于 0.01 时,低温下 k_{CO2}, k_{CO}在催化剂浓度为 0~0.01 时出现一个极大值,与文献 [5]结果相似,低温下在此范围内氧化会使醋酸损失较 大,故不可取.当(Co+Mn)/CH₃COOH 大于 0.01 时,低 温下醋酸的燃烧速度受催化剂总浓度的影响较小,适当 加大催化剂用量对醋酸的燃烧损失影响不大,同时还可 提高烷基萘液相氧化目标产物的产率;当 (Co+Mn)/CH₃COOH 大于 0.01 时,高温下醋酸的燃烧速 度受催化剂总浓度的影响较大,如图 4(b)所示,增加催 化剂总浓度明显加速了醋酸的燃烧损失.

4.4 钴锰比对醋酸燃烧损失的影响

催化剂体系中其他组分浓度不变,而改变[Co]/[Mn] 的配比进行实验,结果如图 5 所示.从图可以看出,Co 是醋酸燃烧的主要原因,加入 Mn 盐可抑制醋酸的燃烧 速度,这与Partenheimer^[6]和 Matus 等^[8]得出的结论相似, 可解释为 Co(III)的氧化脱羧能力强,Mn(III)的氧化脱羧 能力弱,Co(III)浓度的升高加速了醋酸的燃烧速度.

4.5 溴离子浓度对醋酸燃烧损失的影响

溴化钾是烷基萘液相氧化常用的促进剂之一,它既可提供溴离子,同时还可提供对反应有利的碱金属钾离子.为了单独考察它对醋酸氧化的影响,需固定重金属催化剂的组成和总浓度,再用醋酸钾调整钾离子在催化体系中的配比不变,达到只改变溴离子浓度的目的,实验结果见图 6.结果表明,随溴离子浓度的增加,醋酸燃烧损失在[Br]/[Co]<2.0时下降很快,尤其是[Br]/[Co]<1.5时溴的浓度对醋酸燃烧损失影响较大;当[Br]/[Co]>2.0时,增加溴离子浓度不再影响醋酸的燃烧损失,这主要是因为一定量促进剂溴化钾的引入,Co(III)易与溴离子形成络合物,并在此络合物内迅速发生电子转移,溴取代了醋酸根与Co(III)络合,降低了醋酸根被氧化脱

Fig.4 Influence of catalyst concentration on the formation rate constants of CO₂ and CO

羧的可能性. Matus 等^[8]通过实验计算得出,当 [Br]/[cat]<1.0时,反应 90 min 后醋酸的损失最高可达 10%,而当[Br]/[cat]≥1.0时,反应 90 min 后醋酸的损失 小于 1%,且变化缓慢.因此[Br]/[Co]比在醋酸氧化脱羧 过程中起重要作用,添加一定量的溴离子可明显抑制醋 酸的燃烧损失.

4.6 水含量对醋酸燃烧损失的影响

催化剂各组分的浓度比例不变,而改变体系中水的 含量,考察其对醋酸燃烧速率的影响,实验结果如图 7 所示.随反应体系中水含量的增加,醋酸的燃烧速度先 增加,后减小.其原因可能是,当水含量小于 20%时, 在稀的醋酸水溶液中,金属钴离子易与醋酸根离子紧密 地结合在一起,大大增加了醋酸根离子争夺活性 Co(III) 的能力,因此在一定程度上加速了醋酸的氧化脱羧能 力;相反,当水含量大于 20%时,过量的水又会取代醋 酸与金属离子的配位,同时增加了水合钴离子的浓度^[7], 从而降低了金属离子的反应活性,由此也抑制了醋酸的 氧化脱羧燃烧反应.

of CO₂ and CO

图 6 溴离子浓度对 CO₂和 CO 生成速率常数的影响 Fig.6 Influence of Br⁻ concentration on the formation rate constants of CO₂ and CO

5 结论

考察了烷基萘氧化条件下空气流量、温度、催化剂 总浓度、[Co]/[Mn]比、溴离子浓度、水含量等因素对醋 酸燃烧损失速率的影响,得出了以下主要结论:

(1) 空气流量大于 4 L/min(表观气速为 0.01 m/s) 时,其大小不再影响醋酸的燃烧损失速率. 很明显,空 气中的氧既参与了醋酸的脱羧反应,也参与了醋酸的深 度脱羰反应.

(2) 降低温度可在很大程度上降低醋酸的燃烧损失 速率. 在较高的 Co-Mn-Br 催化体系中, 醋酸的深度脱 羧反应比完全氧化反应受温度的影响更显著.

(3) 适当减少催化剂的用量能降低醋酸的燃烧损失 速率. 催化剂中钴离子对燃烧反应速率最为敏感, 锰离 子次之, 溴离子浓度在[Br]/[Co]>2.0 不再影响醋酸的燃 烧反应速度.

(4) 少量的水可加速醋酸的燃烧反应速度,但当其 含量超过 20%时又对燃烧反应有较强的抑制作用.

符号表:

[Br]	溴离子的摩尔浓度 (mol/L)
[Co]	醋酸钴的摩尔浓度 (mol/L)
[cat]	催化剂的总摩尔浓度 (mol/L)
(Co+Mn)	醋酸钴和醋酸锰的摩尔数 (mol)
$[H_2O]$	液相水含量 (%, <i>0</i>)
[K]	钾离子的摩尔浓度 (mol/L)
$k_{\rm CO_2}$	CO2的生成速率常数 (s ⁻¹)
k _{CO}	CO 的生成速率常数 (s ⁻¹)
[Mn]	醋酸锰的摩尔浓度 (mol/L)
р	系统压力 (MPa)
R	摩尔气体常数 [J/(mol·K)]
Т	温度 (℃)

参考文献:

- [1] 盖旭东.乙酸液相催化氧化动力学的研究 [J]. 化学反应工程与工艺, 1994, 10(2): 132–138.
- [2] 成有为,李希,司马坚.对二甲苯液相催化氧化动力学研究(IV)

燃烧副反应动力学 [J]. 化工学报, 2004, 55(11): 1894-1899.

- [3] Kenigsberg T P, Ariko N G, Agabekov V. Effect of Catalyst Composition on Decreasing of CO₂ and CO Formation in Synthesis of Aromatic Acids [J]. Energy Convers. Manage., 1995, 36: 677–680.
- [4] Ariko N G. Effect of Deuteration of Solvent on Process of Catalytic Oxidation of *p*-Xylene and Associated Decarboxylation of Acetic Acid [J]. Kinet. Catal., 1992, 32: 757–761.
- [5] Yasuhara M, Takei N, Yamamoto T, et al. Air Oxidation of 2,6-Diisopropylnaphthalene (DIPN) with Co–Mn–Br Catalysts [J]. Aromatikkusu, 1996, 48(1/2): 18–29.
- [6] Partenheimer W. Methodology and Scope of Metal/Bromide Autoxidation of Hydrocarbons [J]. Catal. Today, 1995, 23: 69–158.
- [7] Partenheimer W. The Structure of Metal/Bromide Catalysts in Acetic Acid/Water Mixtures and Its Significance in Autoxidation [J]. J. Mol. Catal. A: Chem., 2001, 174: 29–33.
- [8] Matus I, Putyrskaya G V. On the Decarboxylation of Acetic Acid during the Catalytic Oxidation of *p*-Xylene [J]. Oxid. Commun., 1983, 5(3/4): 349–366.
- [9] 吴志强,靳海波,韩占生,等.2,6-二异丙基萘液相氧化制2,6-萘 二甲酸催化条件的研究 [J]. 石油化工,2004,33(7):647-650.

Oxidation Burning Reaction Kinetics of Acetic Acid in a Liquid Phase Catalytic Process

LI Da-ren¹, JIN Hai-bo², SHI Gao-feng¹

(1. College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China;

2. Department of Chemical Engineering, Beijing Institute of Petro-chemical Technology, Beijing 102617, China)

Abstract: The kinetics of oxidation burning reaction of acetic acid in liquid-phase catalytic processes is studied in a semi-batch stirred titanium reactor by measuring the formation concentrations of CO_2 and CO with cobalt acetate and manganese acetate as main catalyst, potassium bromide as promoter, and potassium acetate as assistant catalyst. The effects of air flow, temperature, total catalyst concentration, [Co]/[Mn] ratio, bromide concentration, water content on the catalytic burning loss rate of acetic acid are discussed. The experimental results show that the formation rate constants of CO_2 and CO increase remarkably with increasing [Co]/[Mn] ratio and total catalyst concentration. The loss of acetic acid in oxidation processes is restrained by increasing [Br]/[Co] ratio and decreasing the reaction temperature. Meanwhile, the reaction activation energy values of CO_2 and CO are obtained as 88.11 and 127.31 kJ/mol respectively.

Key words: acetic acid; burning reaction; reaction rate constant; kinetics; alkyl-naphthalene