高炉焦炭层区渣、铁滞留特性的冷态模拟

熊 玮, 毕学工, 周国凡

(武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,湖北 武汉 430081)

摘 要:为阐明高炉下部熔融物的滞留特性,对填料床内液体的滞留量进行了冷态模拟实验研究,考察了液体的粘度、密度和表面张力、填料的粒度和形状及液体的流速等影响因素.结果表明,液体的粘度越大、表面张力越大、密度越小,则静态滞留量 h_s越大.它们的影响程度为密度>表面张力>粘度.填料的粒度、形状系数和孔隙度越小,则 h_s 越大.液体流量增加时,h_s大的固液组合总滞留量 h_t仍然较大,因此影响 h_s的各种因素也是影响动态滞留量 h_d的主 要因素.得到了无气体流动条件下的 h_s和 h_d及气液逆流条件下载点至泛点间 h_t的计算式,计算结果与实验数据吻合 较好.对于实际过程,不考虑煤气流影响时,高炉内熔融物滞留量的大小由 h_s决定,焦炭粒度对 h_s的影响最大. 关键词:高炉;滞留量;气液两相流;数学模型

中图分类号: TF51 文献标识码: A 文章编号: 1009-606X(2006)03-0347-05

1 前 言

在高炉下部焦炭是唯一存在的固态物料,风口中产 生的煤气上升,而液态产物(液态生铁或半粘稠状态的 炉渣)要穿过焦层的孔隙下降,当液体流过焦层时会在 孔隙中产生滞留,滞留状况将影响高炉的运行过程.

近 30 年来,随着计算机技术和工艺研究的发展, 通过多相多维数学模型解析高炉内的流动现象来改进 高炉操作和控制已经成为可能.渣铁的滞留量是所有多 相流模型中的一个重要参数^[1,2],多相流模型的计算结果 表明滞留量大小对炉内的流体力学和传质传热都有很 大的影响^[3].由于测量技术上的困难,很少有实际冶炼 过程中滞留量大小的报道.虽然国外在这一领域已开展 了许多小规模的实验研究工作^[4-9],但至今还没有一个 结果能够得到肯定的评价.本工作以填料床模拟高炉下 部焦炭层,通过竖直管内液体流动的流体力学实验,讨 论了影响液体滞留量的诸多因素,建立了滞留量大小的 计算模型,并与前人的结果进行比较,这些研究对深入 认识高炉内渣铁的滞留特性具有重要意义.

2 实验

实验装置见图 1. 整套装置主要包括填料床称量系 统、液体循环系统、气体供给系统和测量信号采集系统. 填料床为内径 120 mm、外径 130 mm、高 1000 mm 的 有机玻璃竖直管,管底部装有用钢板制成的支承栅板, 可以支承填充料及所滞留液体的重量,整个填料床通过 支承架座落在电子天平上. 液体存放在循环水箱中,通 过水泵循环使用. 液体由上升管进入稳压水箱,水箱顶 部的溢流管能使液体液位高度恒定,从而保证液体流量 稳定,液体流量大小由液量调节阀调节.填料床顶部的 液体分配器包括分液槽和毛细管,从填料床流出的液体 通过排液管排入循环水箱.空气由叶氏风机供给,空气 调节阀用于调节空气流量(放空法),空气流经填料层与 液相逆流接触后由床顶放空.气体流量、液体流量及床 层内的液体滞留量分别由气体流量计、液体流量计及电 子天平测量,利用计算机数据采集系统在线同步记录并 显示各测量值.

4. Lower pressure tap	5. Differential pressure sensor	6. Electronic balance
7. Drain pipe 8. The	ermometer 9. Water pump	10. Water cycling tank
11. Rising pipe	12. Overflow pipe 13. Pr	essure maintaining tank
14. Liquid flowmeter	15. Liquid flow control valve	16. Separating tank
17. Capillary tube	18. Acryl glass tube	19. Supporting plate
20. Drain/air-in tank	21. Digital camera	22. Data collector
23. Computer 24.	Bearing frame 25. Upper pres	ssure tap 26. Air inlet

图 1 实验装置及流程图

Fig.1 Scheme of experimental apparatus and process

为得到性质范围广泛的结果,实验中采用了不同的

收稿日期: 2005-07-27, 修回日期: 2005-08-31

作者简介:熊玮(1975-),男,湖北省武汉市人,博士研究生,研究方向:冶金过程数学模型及计算机应用,Tel:027-63102866, E-mail: xiongweiw@21cn.com.

液体:常用的水(Wa)、高粘度的甘油(Gl)和密度较大的 ZnCl₂溶液(Zn).各种液体的物理性质见表 1.表 2 给出 了不同填料的物性参数,主要使用了不同粒径的球体: 玻璃球(Gs)、塑料球(Ps)和空心球(Hs).考虑到填料形状 的影响,还使用了裹蜡碎焦(Cc).

表1 液体的物理性质

Table 1 Physical properties of liquids used in experiments						
Liquid (symbol)	ρ_1 (kg/n	μ^{3}) $\mu_{l}($	Pa∙s)	$\sigma(\text{N/m})$		
Water (Wa)	998	0.	001	0.0705		
Glycerol (Gl)	1 3 3 8	0).1	0.0412		
ZnCl ₂ solution (Zn)	1 700	0.0	0175	0.0517		
表2 填料的物性参数 Table 2 Data on packings used in experiments						
Packing (symbol)	$d_{\rm p}({\rm mm})$	$\rho_{\rm p} ({\rm kg/m^3})$	ε	φ		
Glass spheres (Gs)	15.7	2 5 2 7	0.4091	1.000		
Crushed cokes (Cc)	11.0	1214	0.5096	0.606		
Plastic spheres (Ps)	21.6	896	0.4326	1.000		
Hollow spheres (Hs)	27.0	100	0 4652	1 000		

在一定操作条件下,当存留于填料层中的液体量稳 定后,电子天平测出的液体量为总滞留量.测定总滞留 量后,停止气液两相进料,待液体排放完后,电子天平 测出的液体量为静态滞留量.动态滞留量则为总滞留量 与静态滞留量之差.本工作中各滞留量的大小用单位体 积填料层内填料孔隙中所积存的液体体积量表示.

3 结果及讨论

静态滞留量 h_s 仅受静态力的影响,而动态滞留量 h_d还要考虑动态力的影响,因此对 h_s和 h_d分别进行了 讨论.

3.1 静态滞留量 / 約计算

对每种液体在填料中的静态滞留量 h_s测出 3 组数据,取平均值列于表 3.

表3 液体的静态滞留量加

			Table 3	Static liquid holdup h_s in packed beds (%)							
Wa/Gs	Wa/Cc	Wa/Ps	Wa/Hs	Gl/Gs	Gl/Cc	Gl/Ps	Gl/Hs	Zn/Gs	Zn/Cc	Zn/Ps	Zn/Hs
0.79	4.10	2.14	1.80	3.38	3.02	2.19	1.48	2.83	3.11	1.14	0.83

高炉内熔融物 h_s的大小一般由相似于研究对象的 实验得出的关联式计算(如福武刚等^[4]、杉山乔等^[7]和文 献[3]中所引 Niu 的研究),也有少数高炉解剖取样整理 出的实验式(如丹羽康夫等^[11]),这些计算式如下:

福武刚等:	$h_{\rm s} = (20.5 + 0.263 C_{\rm p,m})^{-1},$	(1)
杉山乔等:	$h_{\rm s}$ =0.0194 $Ga_{\rm m}^{0.0254}C_{\rm p,m}^{-0.0044}$,	(2)
Niu:	$h_{\rm s}=0.181Ga_{\rm m}^{-0.0218}C_{\rm p,m}^{-0.458},$	(3)
丹羽康夫等:	$h_{\rm s}=0.20Ga_{\rm m}^{-0.102}C_{\rm p,m}^{-0.387}$.	(4)

为了与以前研究使用的无因次数保持一致,将 h_s 表示成修正的伽利略数 { $Ga_m = \rho^2 gd_p^3 \varphi^3 / [\mu_l^2(1-\varepsilon)^3]$ } 和修 正的表面张力数 { $C_{p,m} = \rho_l gd_p^2 \varphi^2 / [\sigma(1-\varepsilon)^2]$ } 的函数:

$$h_{\rm s} = a G a_{\rm m}^{\ b} C_{\rm p,m}^{\ c}, \tag{5}$$

用最小二乘法得到常数 a, b 和 c,从而得出关系式:

$$h_{\rm s} = 0.2158 G a_{\rm m}^{-0.0548} C_{\rm p,m}^{-0.2951}$$
. (6)

式(1)~(4)及式(6)的预测值与实测值的相关系数分 别为0.677,0.344,0.727,0.709和0.744(12个数据点).用 数理统计中显著性检验法进行检验,当置信概率为95% 时,查表^[10]得相关系数的最小临界值为0.576.可以看 出,本研究与福武刚等、Niu、丹羽康夫等的研究结果 一致,适用于 h_s的计算,与杉山乔等的预测值偏差过大.

3.2 无气流条件下动态滞留量 ha的计算

由图2可见,在没有气流的情况下,随着ui的增加,

图 2 无气流时液体总滞留量 $h_t = u_1$ 的关系 Fig.2 Relation between h_t and u_1 in the absence of gas

*h*t增加,*h*t的增加实质上反映的是*h*d的增加.比较来看, *h*s小的固液组合,滞留量增加的比例更大,也就是说滞 留量受液体流速的影响更明显.虽然增加的幅度不同, 但*h*s大的固液组合,*h*t的值仍然较大,因此影响*h*s的各 种因素同样也是影响*h*d的主要因素.液体流量相同时, 塑料球的滞留量都大于空心球,因此,对于同一类型的 填料,尺寸越小,即比表面积越大时,滞留量越大.

文献中关于 h_d 的计算式大多只适用于少数特殊的 化工填料,而且常常仅由水-空气系统测量结果得到.而 本研究的流动条件在很多方面不同于以往的类型,即过 去的一些实验式不再有效.Billet^[12]从液膜厚度出发导 出了一个计算 h_d的半理论模型,考虑的因素较全面,而 且从多种两相系统中都得到了可信的结果:

$$u_{\rm d} = [12\mu_{\rm l}(1-\varepsilon)^2 \alpha^2 u_{\rm l}/(\rho_{\rm l}g)]^{1/3} S^{2/3},$$
 (7)

其中 $S=CRe_1^{0.15}Fr_1^{0.1}$, 而 $Re_1=u_1\rho_1/(1-\varepsilon)\alpha\mu_1$, $Fr_1=u_1^2\alpha(1-\varepsilon)/g$. 特性参数 C 是模型中的实验参数,只有知道 C 值,才 能确定相应条件下的 h_d . C 不仅与填料特性有关,而且 与液体性质,主要是液体的粘度和密度有关. 以水为参 考液体,将 C 表示为

$$C = [(\mu_{\rm l}/\mu_{\rm w})^{a}/(\rho_{\rm l}/\rho_{\rm w})^{b}]C_{\rm w}, \qquad (8)$$

其中 C_w为填料特性参数,当所用液体为水时,特性参数 C=C_w, a, b 为常数.根据实测数据,计算得到的特性 参数 C 和常数 a, b 值见表 4.由表可见,液体粘度越大, C 越大,液体密度越大,C 越小.液体密度对 h_d的影响 比粘度大得多.相对于其他几种填料床,碎焦床的 C 较小,而且受液体密度影响也最小,这可能是因为焦炭形 状系数比较小的缘故.

表4 特性参数C和常数a, b Table 4 Natural parameter C and constants a, bPacking Wa b Gl Zn а 3.571 Gs 0.842 1.161 0.295 0.296 0.147 Cc 0.337 0.434 0.237 1.456 1.393 1.166 0.433 0.153 3.026 Ps Hs 1.359 1.242 0.148 0.371 6.181

图 3 将 h_d 的实测值与计算值进行了比较,87%的计 算值在实测值的±20%范围内(60 个数据点),而且随着 h_d 值的增加,计算值的相对误差降低.当 $h_d>1%$ 时,计 算值的平均误差仅为 8.3%.

3.3 气液逆流条件下总滞留量 h 的计算式

实验结果表明,在不同的气液负荷下,h_t的变化都符合滞留量变化的一般规律,即 u_g较小时,h_t基本不变, 当 u_g增大到一定值后,h_t急剧增加.因此,可以将 h_t分 为载点以下和载点至泛点两个区域进行计算.载点气速

图 3 h_d 的实测值与模型计算结果的比较 Fig.3 Comparison of observed h_d with calculated h_d

以下,气液两相间的交互作用很弱,可以不考虑气体对 液体的影响,将 h_t看作是无气流时液体的 h_s与 h_d之和:

$$h_{t,s} = h_s + h_d. \tag{9}$$

h_s和 h_d可分别由式(6)和(7)计算.

载点到泛点之间液体的 ht用以下经验方程计算:

$$(h_{t})_{u_{g}>u_{g,S}} = h_{t,S} + (h_{t,F} - h_{t,S})(u_{g}/u_{g,F})^{n}.$$
 (10)

由于两相流动的复杂性及实验技术上的困难, 很难 准确得到气速刚刚达到泛点时的总滞留量 $h_{t,F}$. 从图 4 可以看出, 泛点滞留量 $h_{t,F}$ 近似等于 1.4 倍的载点滞留 量 $h_{t,S}$. 将实测数据代入式(10)反算, 可以确定指数 $n\approx 2$, 得到:

$$(h_{t})_{u_{g}>u_{g,F}} = h_{t,S} \left[1 + 0.4 \left(u_{g} / u_{g,F} \right) \right]^{2}.$$
 (11)

图 4 滞留量比 $h_t/h_{t,S}$ 与气速比 $u_g/u_{g,F}$ 的关系 Fig.4 Relation between $h_t/h_{t,S}$ and $u_g/u_{g,F}$

气速大于载点气速时,液体总滞留量的实测值与模型计算值的比较见图 5,约 90%的计算值在实测值的 ±30%范围内(85个数据点),计算值的平均误差为 11.6%. 式(9)和(11)联立可计算整个操作范围内的 h_i.

图 5 h_t 的实测值与模型计算结果的比较 Fig.5 Comparison of observed h_t with calculated h_t

3.4 高炉下部渣铁滞留量的计算与分析

无气流条件下,根据上述模型计算得到的高炉下部 渣铁的滞留量见表 5. 计算条件为高炉炉缸直径 14 m, 利用系数 2.0 t/(m³·d),活动焦炭区焦炭的平均粒度 30 mm,死料堆焦炭的平均粒度 20 mm.

表5 渣铁的滞留量 Table 5 Holdups of slag and hot metal in a blast furnace (%)

		Dropping zone	Dead zone
Slog	hs	2.96	4.45
Slag	$h_{\rm d}$	0.40	0.47
Hot motol	$h_{\rm s}$	1.67	2.50
Hot metal	$h_{\rm d}$	0.04	0.05

从表 5 可以看出,不论是炉渣还是铁水,由于它们的流量很小,与 h_s相比, h_d几乎可以忽略不计,所以不考虑煤气流影响时,h_t由 h_s决定.高炉冶炼中所谓的"静态"只是指渣铁相对于填充固体焦炭是不动的,与化工填料床中的"静态"是不同的,但渣铁的 h_s是确实存在的,它会随着焦炭缓慢向下移动,因此对相间传热传质等都会产生较大影响.如果将式(6)改写为式(12),则可以看出液体物性对 h_s的影响程度为密度>表面张力>粘度,由于炉渣密度小、粘度大,其滞留量比铁水约大 80%. 渣铁的物理性质见表 6.

表6 渣铁的物理性质

Table 6	Physical properties of slag and hot metal			
	$\rho_{\rm l} (\rm kg/m^3)$	$\mu_{\rm l}$ (Pa·s)	σ (N/m)	
Hot metal	6 600	0.005	1.10	
Slag	2600	0.400	0.47	

 $h_{\rm s} = 0.0971 \rho_{\rm l}^{-0.4047} \mu_{\rm l}^{0.1096} \sigma^{0.2951} [\varphi d_{\rm p} (1-\varepsilon)]^{-0.7546}.$ (12)

焦炭床的特性(包括焦炭粒度、形状系数和孔隙度) 对 h_s的影响比液体大,通过式(13)和(14)可以将焦炭的 形状系数和焦床的孔隙度表示成焦炭粒度的函数^[13],也 就是说焦炭的粒度大小决定了焦炭床的特性. $\varphi = 0.338 \log(1\,000d_{\rm p}) + 0.254.$ (14)

由图 6 可以看出, h_s随着焦炭粒度的减小而增大, 焦炭粒度每减小 5 mm, h_s大约增加 20%,增加的幅度 也随着焦炭粒度的减小而增大.将 h_s与焦炭粒度的关系 回归分析可以得出:

 $h_{\rm s} = C(30.7 - 943d_{\rm p} + 917 d_{\rm p}^{-2}) \quad (0.020 \text{ m} < d_{\rm p} < 0.050 \text{ m}), \quad (15)$ 式中 $C = 0.0971 \rho_{\rm l}^{-0.4047} \mu_{\rm l}^{0.1096} \sigma^{0.2951}.$

图 6 焦炭粒度与静态滞留量 h_s 的关系 Fig.6 Relation between d_p and h_s

炉渣密度小、粘度大、流动性差,因此高炉下部滞 留量先达到最大即泛点滞留量时的液相一般是渣相.死 料堆内炉渣的泛点滞留量可达到 7%,但由于死料堆内 煤气流速较低,这个值估计很难达到.活动焦炭区内炉 渣的泛点滞留量接近 5%,如果考虑到焦炭粒度的不均 匀分布,在风口水平或炉腹下部半径中心处炉渣的滞留 量可能会更大一些.

大喷煤时, 焦炭的滞留时间延长、荷重增加、溶损 率提高, 炉渣粘度增加等因素会使渣铁液滞留量增加, 从而使焦炭床的孔隙度减小. 计算表明, 孔隙度减小 0.04, 高炉最大利用系数下降 0.5^[14]. 因此大喷煤条件下 提高高炉生产率首先必须保证焦炭的质量, 特别是焦炭 的机械强度和反应性, 防止焦炭在炉内的过量粉化; 其 次要通过造渣制度合理控制渣的形成、渣组分的变化、 渣与铁水及焦炭间的界面性质等. 但目前对这一方向的 研究还不够深入, 希望能找出定量的规律用于指导制订 高炉的合理造渣制度.

4 结论

通过高炉下部焦炭层渣、铁滞留特性的冷态模拟研 究,得出如下结论:

第6卷

(1) 液体的粘度越大、表面张力越大、密度越小,则静态滞留量 h_s 越大. 它们的影响程度为密度>表面张力>粘度. 填料的粒度、形状系数和孔隙度越小,则 h_s 越大. 式(6)可计算不同物性的液体在不同填充料床内的 h_s.

(2) 当液体流量增加时, *h*_s大的固液组合, 其 *h*_t的 绝对值同样较大, 因此影响 *h*_s的各种因素也是影响 *h*_d 的主要因素.式(7)可计算液体在不同流量时的 *h*_d.

(3) 在载点以下, *h*_t 随液体流量的增加而增大, 与 气体流速无关. 在载点以上, *h*_t 随着气体流速的增加而 明显增加. *h*_{tF}近似等于 *h*_{tS}的 1.4 倍,式(11)可计算载点 至泛点范围内的 *h*_t.

(4) 炉渣在高炉活动焦炭区和死料堆的 *h*_{t,F} 分别可 达到 5%和 7%. 当高炉生产条件变化及焦炭粒度分布不 均匀时,炉渣的滞留量可能会更大.

(5) 不考虑煤气流影响时,渣铁的 h_t由 h_s决定,h_d 几乎可以忽略不计.降低高炉下部渣铁的滞留量最有效 的措施是提高下部焦炭的粒度,焦炭粒度减小 5 mm, h_s约增加 20%,而且粒度越小,h_s增加的幅度越大.

符号表:

С	特性参数	$C_{\rm p, m}$	修正表面张力数
d	直径 (m)	Fr	弗鲁德数
g	重力加速度 (9.81 m/s ²)	Ga _m	修正伽利略数
$h_{\rm d}$	动态滞留量 (%)	hs	静态滞留量 (%)
$h_{\rm t}$	总滞留量 (%)	Re	雷诺数
S	液膜厚度 (m)	и	表观速度 (mm/s)
α	比表面积 (m ⁻¹)	ρ	密度 (kg/m³)
ε	孔隙度	μ	粘度 (Pa·s)
σ	表面张力 (N/m)	φ	形状系数
下标			
F	泛点	g	气体
1	液体	р	填料
S	载点	w	水

参考文献:

- Yagi J. Mathematical Modelling of the Flow of Four Fluids in a Packed Bed [J]. ISIJ Int., 1993, 33(6): 619–639.
- [2] Chew S J, Zulli P, Yu A. Modelling of Liquid Flow in the Blast Furnace. Theoretical Analysis of the Effects of Gas, Liquid and Packing Properties [J]. ISIJ Int., 2001, 41(10): 1112–1121.
- [3] Austin P R, Nogami H, Yagi J. Analysis of Actual Blast Furnace Operations and Evaluation of Static Liquid Holdup Effects by the Four Fluid Model [J]. ISIJ Int., 1998, 38(3): 246–255.
- [4] 福武刚, Rajakumar V. 高炉の滴下帯に相似させた气-液向流充て ん层の液ホールドアツブと流れの异常現象 [J]. 铁と钢, 1980, 66(13): 1937-1946.
- [5] 田中胜博,照井敏胜,大森康男,等.ガス发生を伴う灌液充填 层の动的ホールドアツブの实验的检讨[J]. 铁と钢, 1984, 70: S773.
- [6] 佐夕豊. ユークス充填层内での溶融スラグの滴下举动 [J]. 铁と 钢, 1987, 73: \$842.
- [7] 杉山乔,中川朝之,芝池秀治,等.高炉滴下帯における液流れの解析 [J]. 铁と钢, 1987, 73: 2044-2051.
- [8] Usui T, Masamori K, Kawabata H, et al. Influence of Slow Descent of Solid upon the Fluids Flow Behavior in Packed Beds Irrigated by a Liquid Counter-current to an Up-rising Gas Stream [J]. ISIJ Int., 1993, 33(6): 687–696.
- [9] Husslage W M, Steeghs A G S, Heerema R H, et al. Flow Experiments of Slag and Metal at 1400~1600°C through a Packed Coke Bed [A]. Kanagy D L. 60th Ironmaking Conference Proc. [C]. Baltimore: Iron & Steel Society, 2001. 323–335.
- [10] 张惠连,张涛.误差理论与数据处理 [M].天津:天津大学出版 社,1992.107-112.
- [11] 丹羽康夫,炭龟隆志,牧章,等.高炉の炉芯,レースウェイ领域 における溶铁,スラグおよびコークスの举动调査 [J]. 铁と钢, 1990,76(3): 337-344.
- [12] Billet R. Packed Column Analysis and Design [M]. Bochum: Ruhr University, 1989. 36–40.
- [13] Bi X, Qiu J, Wang W, et al. Influences of Scaffold and Coal Injection on Gas and Liquid Flow Distributions in Blast Furnace: Mathematical Model [J]. I&S, 2001, 28(1): 27–32.
- [14] Zhang S, Bi X. Theoretical Consideration of Problems Relating to High Coal Rate Injection into Blast Furnaces [J]. I&S, 2003, 30(6): 467–474.

Simulation of Liquid Holdups in the Lower Coke Zone of Blast Furnace with a Packed Bed

XIONG Wei, BI Xue-gong, ZHOU Guo-fan

(Key Lab. for Ferrous Metall. & Resources Utilization, Ministry of Education, Wuhan Univ. Sci. & Technol., Wuhan, Hubei 430081, China)

Abstract: Holdup characteristics of liquid in a packed bed were experimentally examined for clarifying the holdup of molten materials in the lower coke zone of a blast furnace. The viscosity, density and surface tension of the liquid, size and shape of particles and liquid velocity were varied in the experiments. The results show that: increasing viscosity, surface tension and reducing density of liquid cause static liquid holdup h_s to increase. These factors in order of degree of influence are density, surface tension and viscosity of liquid, and reducing size, shape factor and porosity of packing causes h_s to increase. The bigger the static liquid holdup h_s , the bigger the total liquid holdup h_t when u_1 increases in all the combinations of liquids and packings, so those factors affecting h_s are also the main factors affecting dynamic liquid holdup h_d . Correlations for h_s , h_d without gas flow and for h_t in countercurrent gas–liquid two-phase flow were obtained. h_s is the determinant of the holdup of molten materials in the absence of gas flow, and the most important factor affecting h_s is the size of coke in a blast furnace.

Key words: blast furnace; holdup; gas-liquid two-phase flow; mathematical model