基于离心与惯性作用的新型气固分离装置的结构

刘显成, 卢春喜, 时铭显

[中国石油大学(北京)重质油国家重点实验室,北京 102249]

摘 要:后置烧焦管出口的气固分离装置是实现后置烧焦管式组合再生工艺的关键设备之一.在对气固分离机理系统分析的基础上,开发了一种基于离心与惯性协同作用机理的新型气固分离装置.以滑石粉为物料,在相同实验条件下对9种不同结构尺寸的分离器的分离效率和压降进行了实验测定.结果表明,不加挡板、不加折边、开缝宽度相同、无因次排气管径在 0.50~0.55 范围内的结构比较合理.

文章编号: 1009-606X(2005)05-0504-05

关键词: 气固分离器; 分离效率; 压降

中图分类号: TQ028.2 文献标识码: A

1 前 言

针对催化裂化原料日益重质化的趋势,开发了一种 既能发挥管式烧焦的优点又能克服其不足的后置烧焦 管式组合再生工艺.后置烧焦管出口的气固分离装置是 实现这种工艺的关键设备之一.这种分离装置要求具有 结构简单、气固分离效率高、压降低、操作弹性大等优 点.

文献报道的气固分离装置多集中在催化裂化提升 管反应器上,如石油大学开发的FSC, VQS快分系统^[1,2], 已成功应用于催化裂化提升管反应器上.这些气固分离 装置的结构较为复杂且压降偏高,因而不适于这种新型 组合再生工艺.依据惯性分离原理和附壁效应开发的下 行床气固分离装置也有文献^[3-5]报道.这些装置的设计 思路为本装置的开发提供了有益借鉴.清华大学开发的 用于下行床的气固分离器^[3]气相通过中心管的一端排 出,而本研究所述的分离器气相沿切向经过排气管上的 窄缝时方向突然发生偏转而排出,可减少颗粒夹带,同 时取消了切割板,更便于实际应用.

为满足后置烧焦管式组合催化裂化再生工艺的要求,本实验设计了9种不同结构尺寸的气固分离装置,测定了不同操作条件下各结构的分离特性,根据其性能优劣优选出了适宜的结构.

2 分离原理

气固分离装置的主视图和左视图如图1所示.分离 装置外壳呈拱门状,中间为一开有2条窄缝的排气管. 操作过程中,气固混合物竖直向上从拱门状外壳一侧进 入分离器,在分离装置内由于两相流中固相惯性力远大 于气相,进入分离器的固体颗粒沿拱门状的外壳运动, 经过 180°的圆周运动,从拱门状外壳的另一侧排出;而 大部分气体流经窄缝时方向发生偏转,由排气管排出, 实现气固分离.

3 实验装置及测量方法

气固分离装置主 要结构参数包括气固 混合物入口面积 $l_i \times L$, 颗粒出口面积 $l_o \times L$,无 因次排气管径r/R,开 缝位置 α , β ,开缝宽度 d_1, d_2 等,如图2所示, 其中入口宽度 l_i =70 mm,长度L=300 mm. 实验以图2所示的分离 器为基本结构,考察了 无因次排气管径、开缝 宽度、折边及挡板对分 离效率及压降的影响.

图 2 分离器的标准型 Fig.2 Basic structure of separator

收稿日期: 2004-10-27, 修回日期: 2005-01-12

作者简介:刘显成(1971-),男,黑龙江省肇东市人,博士研究生,化学工程专业;卢春喜,通讯联系人.

实验装置如图3所示.所用气体为常温空气,颗粒 为 45 μm 滑石粉,颗粒密度 2700 kg/m³,中位粒径 d_m=13.1 μm, 粒度分布见表 1. 为便于操作, 采用离心 风机在系统出口引风操作. 分离器入口表观气速范围 14.8~26.6 m/s, 颗粒浓度范围 9.8~98.3 g/m³.

将准确称重的滑石粉通过加料斗均匀加入系统,由 空气携带进入分离器. 分离下来的滑石粉进入灰斗, 气 体由排气管排出. 分离器压降用 U 形管压差计测得. 每 一实验条件下取3组平行数据的平均值作为该条件下的 实测值. 分离效率η采用下式计算:

图 3 实验装置简图 Fig.3 Schematic diagram of experimental set-up

表1 滑石粉的粒度分布

Table 1 Particle diameter distribution of talcum powder														
Particle diameter (µm)	2	2.52	3.17	4	5.04	6.35	8	10.1	12.7	16	20.2	25.4	32	40.3
Cumulative weight (%)	0.111	2.29	5.15	8.83	13.45	19.42	26.9	36.69	48.42	62.11	77.39	91.67	97.67	99.68

结构优选步骤 4

先考察挡板的影响. 在保持标准型分离器其他结

构尺寸相同的情况下,考察3种结构:全封闭、半封闭、 全开放(无挡板)型式,结构如图4所示.

图 4 不同挡板型式分离器

Fig.4 Separators with different baffles

(c) No baffle

以分离效率和压降的综合特性为优化目标,优选出 一种理想结构后,进一步考察折边的影响.折边就是在 标准型分离器气流出口的开缝处加一与排气管切向成 30[°]角的挡板,其宽度为缝宽的一半,具体结构见图 5.

为了考察排气管径的影响,在标准型分离器基础上 将排气管径 D 分别扩大 10%, 33% 和缩小 20% (见图 6), 并与标准型分离器进行对比,选出最佳结构.最后,考 察开缝宽度对分离性能的影响,即将开缝分为两种情 况:一种开缝宽度都为 33 mm;另一种开缝一宽一窄, 靠近气固相入口处缝宽 33 mm,另一条缝宽 26 mm,如 图7所示.

图 5 带折边的分离器 Fig.5 Separator with hems at the slot

图 6 不同排气管径

Fig.6 Separators with different center pipe diameters

5 结果及分析

5.1 挡板的影响

图 8 和 9 为全封闭、半封闭、全开放(无挡板)3 种 不同结构的分离装置在不同操作条件下的分离效率和 压降的实验结果.由图可知,在相同条件下,全开放式 分离器的分离效率明显高于其他两种型式,而压降介于 其他两种型式之间.从压降和效率的实验结果可以推断, 这种新型分离装置的分离机理属离心与惯性协同分离 机理.全封闭式结构主要以惯性分离为主,离心分离所 占比例较小,因此其压降和效率最低;半封闭式的分离 机理中离心分离占一定比例,因此其效率和压降均比全 封闭式的要高,特别是其压降在 3 种结构中最高,主要 是由于挡板在离心分离时产生的阻力造成的;全开放 (无挡板)式的分离机理中离心分离占的比例最大,因此 其分离效率明显高于其他两种型式,而压降比半封闭式 的还要低.

5.2 折边的影响

加折边的目的是阻止固体颗粒进入排气管,然而从

图 7 不同缝宽示意图

Fig.7 Schematic diagram of separators with different slot widths

图 10 所示的实验结果看,折边不仅阻止了颗粒的进入,同时也增大了气体进入排气管的阻力,使分离效率降低,压降增加.因此,加折边并没有起到提高分离效率的作用.

5.3 排气管径的影响

将排气管半径 r 与分离器外壳圆弧段半径 R 之比 r/R 定义为无因次排气管径,其对压降和分离效率的影 响分别见图 11 和 12. 从图 11 可以看出,随无因次排气 管径的增大,压降先迅速下降,当无因次管径为 0.5~0.55 时,压降基本保持不变.进一步增大排气管径,压降又 开始降低.这是因为管径增大使排气管中的气速降低. 但从图 12 可以看出,排气管径并非越大越好,当无因

5.4 开缝宽度的影响

窄缝宽度不等的分离器减小了开缝的总面积,是为 了增加气体通过窄缝的速度,以期提高分离效率.但如 图 13 所示,分离器的压降略有增加,而分离效率几乎 没有变化.实验表明,单纯靠减小开缝宽度增加气流的 过缝速度,不能提高分离效率.

6 分离机理的定性分析

本研究所述的分离装置以惯性分离为主,并结合了 离心分离的作用.竖直向上运动的气固两相流由分离器 次管径超过0.55时,分离效率明显下降.这是由于管径 增大缩小了底部环形空间,使离心分离的效率降低.当 排气管径扩大33%时,底部环形空间已缩小为零,此时 相当于全封闭式分离器,由前面的讨论可知,分离效率 明显降低.

由以上的讨论可知,无因次排气管径在 0.5~0.55 内 既可保证压降不太高,同时又可保证分离效率不过低. 因此,可作为确定最佳排气管径的依据.

图 12 排气管径对分离效率的影响 Fig.12 Effect of diameter of center pipe on separation efficiency

进口进入后,由于固体颗粒的惯性远大于气体,因此有 沿弧形外壳作圆周运动的趋势, 而气体则在经过窄缝时 方向发生偏转而排出,因而分离过程以惯性分离为主. 经过 180°圆弧运动的颗粒大部分依惯性向下运动进入 灰斗,距离外壳较远的部分颗粒则被气体携带,绕过排 气管下方空间作圆周运动,此时离心分离起主要作用. 绕过中心管返回入口区的气体和固体颗粒对刚进入分 离器的混合物产生向外壳推动的作用,阻止固体颗粒走 短路而由窄缝排出.不同挡板型式的实验结果也证明了 这个观点,全封闭式分离器固体颗粒易走短路,压降最 低,分离效率也最低;半封闭式利用了离心分离,同时 也不可忽视挡板的阻力,因此效率提高的同时压降也有 所提高,而全开放式分离器更加充分地利用了离心分离 机理,同时减小了阻力,因此分离效率最高而压降也有 所降低. 排气管径的变化一方面影响惯性和离心分离的 分离空间,同时也显著影响排气管中的气速,因此对分 离效率和压降的影响都很大.实验表明,对于一定的分 离器外壳尺寸,最优排气管径的范围不大.通过改变窄 缝宽度以期提高分离效率的做法需综合考虑,缝宽减小 效率应增加,同时对气体的阻力也增大,压降升高,最 佳的开缝宽度还有待进一步研究. 折边的加入对固体颗 粒有碰撞作用,反弹回来的固体颗粒会扰乱整个流场, 使分离效率下降,同时对气体的阻碍作用使压降增加. 因此,折边不宜作为改进分离器性能的因素.

这种新的分离装置以快速、粗分为目的,要求结构 简单、压降低,分离平均粒径 60 µm 的固体物料效率大 于 96%即可满足工艺要求.本实验采用 45 µm 的滑石粉 作为考察不同结构效率的实验物料,主要是为了便于区 分各不同结构的差别.如果以分离较细颗粒(如平均粒 径 20 µm)为目标(如二级旋分),就不能采用以惯性分离 机理为主的分离装置.

将优选出的分离器应用于后置烧焦管式组合催化 裂化再生工艺的大型冷模实验(分离器入口宽度 *l*_i=70 mm,长度 *L*=300 mm),实验所用固体颗粒为平均粒径 68 μm 的 FCC 平衡剂,实验结果见图 14. 以分离器入 口截面积为基准,在颗粒循环强度 *G*_s=105.2 kg/(m²·s)、 表观气速 5.28~15.85 m/s 的条件下,分离效率大于 97%, 压降小于 2800 Pa.

Fig.14 Experimental result of large scale cold model

7 结论

基于离心与惯性协同作用机理,开发了一种用于 FCC组合再生工艺后置烧焦管出口的气固分离器.通过 加尘实验比较了不同结构对分离效率和压降的影响.结 果表明,适当的环形空间是气固有效分离的必要条件. 加折边及减小开缝面积只能增加分离器压降,分离效率 没有改善甚至降低.不加挡板、不加折边、无因次排气 管径在 0.50~0.55 内的分离器结构比较合理.

符号表:

C_{i}	分离器入口颗粒	D	排气管直径 (mm)
	浓度 (g/m³)	d_1, d_2	窄缝宽度 (mm)
d_{m}	颗粒中位粒径 (μm)	$G_{\rm s}$	分离器入口颗粒循环
L	分离器长度 (mm)		强度 [kg/(m ² ·s)]
$l_{\rm i}$	分离器入口宽度 (mm)	$l_{\rm o}$	分离器出口宽度 (mm)
Δp	分离器压降 (Pa)	r	中心排气管内径 (m)
R	拱门状外壳内径 (m)	$u_{\rm i}$	分离器入口表观气速 (m/s)
α, β	窄缝定位角 (°)		
下标			
i	进口	0	出口
s	颗粒		

参考文献:

- 曹占友,卢春喜,时铭显.新型汽提式粗旋风分离器系统的研究
 [J].石油炼制与化工,1997,22(3):47-51.
- [2] 卢春喜, 蔡智, 时铭显. 催化裂化提升管出口旋流快分(VQS)系统 的实验研究与工业应用 [J]. 石油学报(石油加工), 2004, 20(3): 24-29.
- [3] 杨艳辉, 钱震, 余皓, 等. 用于气固并流下行式反应器中的新型 气固分离装置 [J]. 石油炼制与化工, 2000, 31(12): 24-27.
- [4] 李松庚,林伟刚,姚建中.下行床弧面气固分离装置的分离效率 实验 [J]. 过程工程学报, 2002, 2(1): 12–16.
- [5] 都林,姚建中,林伟刚.下行床弧面气固快速分离器内的颗粒运动 [J].过程工程学报,2003,3(6):481-485.

Structural Optimization of a Novel Gas–Solid Separator Incorporating Inertial and Centrifugal Separation

LIU Xian-cheng, LU Chun-xi, SHI Ming-xian

[State Key Laboratory of Heavy Oil, China University of Petroleum (Beijing), Beijing 102249, China]

Abstract: As the feed stuffs of fluid catalytic cracking (FCC) become increasingly heavier, a new regeneration technology combining post coke-burning riser and conventional turbulent bed regenerator has been developed in this study. One of the key components of this technology is the gas–solid separator located at the outlet of the riser regenerator, having the advantages such as simple structure, high separation efficiency, low pressure drop and flexible operation. To meet these requirements a novel gas–solid separator incorporating inertial and centrifugal separation was investigated in detail. Talcum powder was employed as solid medium. Separation efficiency and pressure drop were experimentally tested in nine separator configurations under the same gas velocity and particle concentration at the separator inlet. The results show that a reasonable scheme is as follows: no baffle to block the solid circulation, no hem at the slots to obstruct gas entering the centre pipe, and dimensionless radius of centre pipe between 0.50 and 0.55. **Key words:** gas–solid separator; separation efficiency; pressure drop