利用¹³C标记葡萄糖分析γ-聚谷氨酸的代谢途径

石宁宁, 徐虹, 姚俊, 王军

(南京工业大学制药与生命科学学院, 江苏 南京 210009)

摘 要:本实验室筛选的菌株 Bacillus subtilis NX-2 以葡萄糖和谷氨酸共同作为碳源生产γ-聚谷氨酸(γ-PGA).为探讨 这 2 种碳源在γ-PGA 合成中的作用,在培养基中加入标记的[U-¹³C]-葡萄糖,检测产物γ-聚谷氨酸的核磁共振碳谱信号 强度,从而计算葡萄糖代谢进入产物的量.在培养基中葡萄糖浓度为 4%时,γ-PGA 的碳骨架中由葡萄糖进入的比例 为 9%左右.当葡萄糖浓度为 3%时,由葡萄糖进入γ-PGA 的比例降至 6%.证明葡萄糖主要用于能量代谢和菌体合成,只有少量参与γ-PGA 合成,而谷氨酸为γ-PGA 单体的主要来源.

关键词: γ-聚谷氨酸; 代谢途径; 核磁共振

中图分类号: Q935; Q936 文献标识码: A

文章编号: 1009-606X(2007)01-0145-04

1 前言

微生物合成γ-聚谷氨酸[γ-PGA, γ-Poly(glutamic acid)]时,其培养基碳源形式一般有两种,一种是单一 碳源,合成的γ-PGA单体由葡萄糖或果糖等非谷氨酸碳 源经代谢生成,称为全程合成(*de novo*)^[1],典型菌株有 *B. licheniformis* A35 和 *B. subtilis* TAM-4等^[2],这类菌株 被称为非谷氨酸依赖型的γ-PGA 生产菌株;另一种为多 碳源形式,其中最常用的为培养基 E,碳源包括柠檬酸、 谷氨酸和甘油,典型菌株有 *B. subtilis* IFO 3335 和 F-2-01 及 *B. licheniformis* 9945,这类菌株在培养基不含谷氨酸 时不合成γ-PGA,称为谷氨酸依赖型的γ-PGA 生产菌.

已有的文献表明,不同菌株在各种多碳源的培养基 中合成γ-PGA 的途径存在较大差异. *B. subtilis* IFO 3335 在含柠檬酸和谷氨酸的培养基 E 上发酵合成γ-PGA,但 实验发现外源谷氨酸并没有被吸收,γ-PGA 单体主要由 柠檬酸代谢产生^[3]; *B. licheniformis* 9945 用同样的培养 基 E 培养生产γ-PGA,柠檬酸和谷氨酸都参加了γ-PGA 合成^[4,5],柠檬酸通过三羧酸循环转化为谷氨酸进入 γ-PGA.

B. subtilis NX-2 是本实验室自主筛选获得的一株 γ-PGA 生产菌^[6],它利用葡萄糖和谷氨酸高效合成 γ-PGA,但这 2 种碳源在γ-PGA 合成过程中的作用机理 并不清楚.

此外,探讨微生物对多碳源的代谢机理目前仍有一 定困难,同位素示踪法是研究代谢途径的有效手段,但 放射性同位素在操作时相当不便,且定量不够准确.本 研究采用¹³C均一标记葡萄糖,通过检测产物的 ¹³C-NMR 信号强度,方便地计算出由葡萄糖代谢而生成 的产物比例,从而推测γ-PGA 的合成途径.

2 实验

2.1 菌种及主要试剂

菌株枯草芽孢杆菌(B. subtilis NX-2)由本实验筛选 并保存^[7,8].标记物为[U-¹³C]-葡萄糖(同位素纯度 99.0%, Cambridge Isotope Laboratories, Inc.)

2.2 培养基及培养方法

基础培养基(g/L): 葡萄糖 40, 谷氨酸 40, (NH₄)SO₄ 8, K₂HPO₄·3H₂O 20, MgSO₄ 0.25, MnSO₄·H₂O 0.05, pH 7.0.

改变基础培养基中葡萄糖浓度从 20 到 50 g/L,考 察葡萄糖浓度变化对菌体生长及γ-PGA 产量等的影响; 改变基础培养基中谷氨酸浓度从 20 到 50 g/L,考察谷 氨酸浓度变化对γ-PGA 发酵的影响;用¹³C 标记葡萄糖 分析γ-PGA 的代谢途径,培养基葡萄糖浓度分别取 40 和 30 g/L,其中含 5%和 10% [U-¹³C]-葡萄糖标记.不同 葡萄糖浓度和标记物含量的培养基合成的γ-PGA 产物 分别记为 A, B, C, D(如表 1 所示).其余成分与基础培养 基相同.

表 1	培养基的葡萄糖浓度及[U─¹³C]−D 葡萄糖含量
Table 1	Different glucose concentrations and percentages by

	weight of hubered [0	C] D glueobe
Product	Glucose concentration (g/L)	Percentage by weight of labeled $[U^{-13}C]$ -D-glucose (%, ω)
А	40	0
В	40	5
С	40	10
D	30	10

收稿日期: 2006-03-09, 修回日期: 2006-05-09

基金项目:国家自然科学基金资助项目(编号:20674038);江苏省高技术项目资助(编号:BG2005042);江苏省自然科学基金资助(编号:BK2004122); 高等学校博士学科点专项科研基金资助项目(编号:20050291001);教育部优秀青年教师资助计划项目

作者简介: 石宁宁(1982-), 女, 江苏省南京市人, 硕士研究生, 生物化工专业; 徐虹, 通讯联系人, Tel: 025-83587332, E-mail: xuh@njut.edu.cn.

培养方法:培养基灭菌后分别接入一环斜面菌苔, 32.5℃, 220 r/min 培养 48 h.

2.3 分析方法

菌体含量采用紫外可见分光光度仪 660 nm 下检测 OD 值. 葡萄糖及L-谷氨酸使用 SBA-40C 生物传感分析 仪检测. γ-PGA 含量测定采用凝胶渗透色谱法.

2.4 样品的分离纯化

将发酵液 pH 调至 3.0, 于 4 ℃, 10000 r/min 离心 30 min,取上清液,加入 7 倍体积的酒精,搅拌得到丝状 沉淀,即γ-PGA 粗品.

将粗品溶于去离子水(0.05 g/mL), 0.45 μm 滤膜过 滤去除菌体碎片, 于透析袋中流水透析过夜, 然后置于 0.2 g/mL 的聚乙二醇中浓缩, 再用 10 mol/L HCl 将浓缩 液 pH 调至 1.5,并迅速加入 8 倍体积的 1:1 的丙醇/乙醚 溶液(防止时间过长导致γ-PGA 降解), 得到酸型的γ-PGA 纯品, 经真空干燥箱去除多余溶剂, 得固体样品.

2.5 HR/MAS 核磁共振实验

将样品溶于 D₂O (0.05 g/mL), 加入定量二甲基亚砜

(DMSO)作为内标. 采用 BRUKER AVANCE 400 (SB)核 磁共振谱仪,工作频率 400.13 MHz,在 300 K 测量. HR/MAS(高分辨魔角旋转)实验中采用 BRUKER 标准 腔,4 mm/15 kHz HR/MAS 探头,转子转速 4000 Hz, ¹³C-NMR 测试时采用宽度 10.00 μs 的脉冲,累计扫描 2000 次^[9].信号强度(Peak Intensity, PI)由谱图积分得到.

3 结果与讨论

3.1 葡萄糖浓度对 B. subtilis NX-2 发酵合成γ-PGA 的 影响

不同初始葡萄糖浓度下, γ-PGA 发酵 48 h 时的底 物及产物含量如表 2 所示.葡萄糖浓度的增加有利于促 进细胞的生长和提高γ-PGA 的产量.另外,由表中数据 可以看出,当葡萄糖浓度大于 30 g/L,发酵体系中的总 谷氨酸含量(即γ-PGA 含量×147/129+培养基中残余谷氨 酸量)大于培养基中初始的谷氨酸含量.由于只有葡萄 糖和谷氨酸 2 种碳源,说明葡萄糖必定通过某种代谢途 径转化成了谷氨酸,参与了γ-PGA 的合成.

Table 2 Effect of glucose on γ -PGA synthesis					
Glucose added (g/L)	Cell growth, A ₆₆₀	Residual glucose (g/L)	Residual glutamate (g/L)	γ-PGA (g/L)	Total glutamate (g/L)
20	0.194	0.55	15.45	17.26	35.59
30	0.234	0	19.78	19.37	42.37
40	0.275	0	19.32	23.18	45.72
50	0.287	0	18.45	23.86	45.64
New Test 1, 1, 4 and 4 and 5 DCA, 147/120, 1, and 1, 1, 1, 1, 4 and 4 and 147/120 and 50 and					

表 2 葡萄糖对γ-PGA 合成的影响

Note: Total glutamate was the amount of γ -PGA×147/129 plus residual glutamate in the culture broth, and 147/129 was coefficient.

表 3 谷氨酸对γ-PGA 合成的影响

Table 3 Effect of L-glutamate on γ -PGA synthesis					
L-Glutamate added (g/L)	Cell growth, A ₆₆₀	Residual glucose (g/L)	Residual glutamate (g/L)	γ-PGA (g/L)	Total glutamate (g/L)
0	0.132	15.23	0.00	0.00	0.00
10	0.348	8.21	0.72	4.23	5.54
20	0.289	1.54	6.43	9.76	17.55
30	0.242	0.55	13.46	19.35	35.41
40	0.264	0.00	18.51	22.96	44.67
50	0.275	0.00	25.72	23.10	52.04
60	0.271	0.00	36.13	21.32	60.42

3.2 谷氨酸对 B. Subtilis NX-2 发酵合成γ-PGA 的影响

谷氨酸对γ-PGA 合成的影响见表 3. 由于 B. subtilis NX-2 为谷氨酸依赖型的产γ-PGA 菌,在培养基中不加 谷氨酸时,没有γ-PGA 合成. 伴随培养基初始谷氨酸浓 度的上升,γ-PGA 的产量也增长,表明谷氨酸可能与 γ-PGA 的单体来源有所关联,从而影响γ-PGA 的合成.

3.3 γ-PGA 代谢途径分析

综合上述结果, 推测 *B. subtilis* NX-2 发酵合成 γ-PGA 的代谢途径如图 1, γ-PGA 的碳骨架分别来自于 外源 L-谷氨酸和葡萄糖转化两个途径,即图中 X₁和 X₂, 葡萄糖由 EMP 途径和 TCA 循环通过α-酮戊二酸转化为 L-谷氨酸,与外源谷氨酸一同合成γ-PGA. 但两条途径 的比例还需进一步分析.

图 1 γ-PGA 的代谢途径 Fig.1 Metabolic routes of γ-PGA

 X_2

3.4 用¹³C标记葡萄糖分析γ-PGA的代谢途径

分别按表 1 所列实验条件,在培养基中添加一定量 [U-¹³C]-葡萄糖,并与不添加标记葡萄糖的对照同时进 行发酵生产,纯化后的γ-PGA 分别加入同浓度的 DMSO 进行 ¹³C-NMR 检测. γ-PGA 的分子结构见图 2,核磁共 振 ¹³C 谱图如图 3 所示. 以内标 DMSO 的峰面积为积分 标准,对其他各峰积分,得到相应的信号强度.

图 2 γ–PGA 的分子结构 Fig.2 Molecular structure of γ-PGA

图 3 样品的 ¹³C-NMR 谱图及信号强度 Fig.3 ¹³C-NMR peak intensity of different products

图 3 列出了各样品处于高场且信号较强的 3 个基团 的碳原子信号强度.与对照 A 相比,标记后的样品 γ-PGA 各峰强度均有所增强,并且γ-CH₂发生了裂分, 证明葡萄糖确实参与了γ-PGA 的合成.

不同样品的碳源中葡萄糖的 13 C 丰度为 99% P_{f} +(1– P_{f}) P_{n} ,其中 P_{f} 为标记物在总葡萄糖中的比例, 99%为[U- 13 C]-葡萄糖的纯度, P_{n} 为 13 C的天然丰度1.1%. 因此样品 B 的葡萄糖 13 C 丰度为 6.00%,样品 C, D 为 10.89%,样品 A 中 13 C 的含量为 1.1%.

因为 NX-2 菌株仅以葡萄糖和谷氨酸作为碳源,因此合成的 γ -PGA 的碳骨架分别来自这两种物质. 定义 GEF(Glucose Enrichment Factor)为 γ -PGA 碳骨架来自葡 萄糖的比例,即图 1 中的 X₁支路,则来自谷氨酸的比 例即 X₂支路为 1–GEF.

不同样品中同一基团的信号强度与样品中该位置的¹³C含量成正比,因此,样品 B 与 A 的信号强度 PI 之比满足:

 $PI_{B}/PI_{A} = [0.0600GEF + 0.011 \times (1 - GEF)]/0.011,$ (1)

其中 0.0600 为样品 B 的培养基中葡萄糖的 13 C 丰度, 0.011 为 13 C 的天然丰度. 0.0600GEF 为产物 γ -PGA 中来 自葡萄糖的 13 C 丰度, 0.011×(1–GEF)为来自谷氨酸的 13 C 丰度.

同理样品 C 和 D 满足:

 $PI_{C}/PI_{A} = [0.1089GEF + 0.011 \times (1 - GEF)]/0.011,$ (2)

 $PI_D/PI_A = [0.1089GEF + 0.011 \times (1 - GEF)]/0.011.$ (3)

因为采用的是均一标记的葡萄糖,因此以¹³C 谱中 任意碳原子基团的峰强计算的结果应当是一致的.以图 2 所示基团的信号强度为标准,分别由式(1)~(3)计算得 到的各样品的 GEF 值见表 4.

表 4 根据不同基团计算的各样品的 GEF 值 Table 4 GEF of different products calculated by different groups (%)

Product	α-CH	β -CH ₂	γ -CH ₂	Average
В	8.63	9.15	9.09	8.96
С	9.14	9.92	9.72	9.59
D	5.99	6.56	5.90	6.15

样品 B 和 C 的培养基葡萄糖浓度相同,仅标记物浓度有差异,因此计算的 GEF 值也比较接近,与实际情况相符,相对偏差为 3.4%,不超过核磁定量分析的系统误差.即培养基葡萄糖浓度为 40 g/L 时,由葡萄糖进入产物γ-PGA 的比例(GEF)约为 PGA 总量的 9%左右.样品 D 的培养基葡萄糖浓度为 30 g/L,其 GEF 值约为 6%.

4 结论

采用¹³C标记葡萄糖,并检测产物的¹³C-NMR信 号强度,表明 *Bacillus subtilis* NX-2在合成γ-PGA过程 中以葡萄糖和谷氨酸作为碳源.在培养基中葡萄糖浓度 为 4%时,γ-PGA 碳骨架中由葡萄糖进入的比例约为 9% 左右,葡萄糖浓度为 3%时,由葡萄糖进入γ-PGA 的比 例降至约 6%.因此葡萄糖作为碳源大部分用于能量代 谢和菌体合成,只有少部分参与γ-PGA 的合成,而谷氨 酸为γ-PGA 单体的主要来源.

参考文献:

- Margarita K, Martin T, Fergus G P. Regulation of Polyglutamic Acid Synthesis by Glutamate in *Bacillus licheniformis* and *Bacillus subtilis* [J]. Appl. Environ. Microbiol., 2000, 67: 1004–1007.
- [2] Shih I L, Van Y T. The Production of Poly(γ-glutamic acid) from Microorganisms and Its Various Applications [J]. Bioresour. Technol., 2001, 79: 207–225.
- [3] Kunioka M, Goto A. Biosynthesis of Poly(γ-glutamic acid) from L-Glutamic Acid, Citric Acid and Ammonium Sulfate in *Bacillus* subtilis IFO3335 [J]. Appl. Microbiol. Biotechnol., 1995, 44: 501–506.

- [4] Thorne C B, Gomez C G, Noyes H E, et al. Production of Glutamyl Polypeptide by *Bacillus subtilis* [J]. J. Bacteriol., 1954, 68: 307–315.
- [5] Cromwick A M, Gross R A. Investigation by NMR of Metabolic Routes to Bacterial G-Poly(glutamic acid) Using ¹³C-labeled Citrate and Glutamate as Media Carbon Sources [J]. Can. J. Microbiol., 1995, 41(10): 902–909.
- [6] 徐虹,欧阳平凯,李霜.利用枯草芽孢杆菌 NX-2 生产γ-聚谷氨酸 及其盐和谷胱甘肽及其前体物 [P].中国专利: CN02151746.0, 2003-06-25.
- [7] Xu H, Jiang M, Li H, et al. Efficient Production of Poly(γ-glutamic acid) by Newly Isolated *Bacillus subtilis* NX-2 [J]. Process Biochem., 2005, 40: 519–523.
- [8] 桑莉,徐虹,李晖,等.γ-聚谷氨酸产生菌的筛选及发酵条件 [J]. 过 程工程学报, 2004, 4(5): 462–466.
- [9] 万红贵,何小兵,王庭慰,等. 生物合成聚γ-谷氨酸的结构表征 [J]. 精细化工,2004,21(7):492-495.

Investigation of Metabolic Routes to γ-Poly(glutamic acid) by ¹³C-labeled Glucose as Medium Carbon Source

SHI Ning-ning, XU Hong, YAO Jun, WANG Jun

(College of Life Science and Pharmacy, Nanjing University of Technology, Nanjing, Jiangsu 210009, China)

Abstract: *Bacillus subtilis* NX-2 produce was used to γ -poly(glutamic acid) (γ -PGA) with glucose and glutamic acid as medium carbon sources. To clarify the role of these carbon sources in γ -PGA synthesis, metabolic routes to γ -poly glutamic acid were investigated using ¹³C-labeled glucose as medium carbon source by detecting ¹³C-NMR peak intensity. When the medium glucose concentration was 4%, the repeat units of γ -PGA formed from glucose were approximately 9%. While the medium glucose concentration was 3%, the repeat units formed from glucose fell to 6%. Glucose was mainly used to form biomass and provide adenosine tri-phosphate (ATP) for γ -PGA synthesis, while glutamic acid was the main source of γ -PGA repeat units.

Key words: γ-poly(glutamic acid); metabolic routes; NMR