煤炭在超临界水中氧化的初步实验

朱小峰, 王涛

(清华大学化工系,北京100084)

摘 要:研究了煤炭在超临界水中氧化的基本规律,实验表明在以超临界水为介质的情况下,煤炭氧化过程产生的溶液冷却减压后产生的气相中无有害气体;其中所含的硫、氮逐步转化为 SO4²⁻和 N₂;煤炭氧化的程度随温度、H₂O₂水溶液的浓度增加而加快,反应温度的影响尤其显著. 关键词:煤炭;超临界水;氧化

中图分类号:TQ 028.3 文献标识码:A 文章编号:1009-606X(2002)02-0177-06

1 前 言

超临界水氧化法是指以超临界水为介质进行有机物氧化的过程.有机物和氧气在超临界水中 完全混溶,在短时间内,使对环境有害的物质发生氧化反应,几乎完全转变为氮气、水、二氧化 碳等对环境无害的物质,杂原子如磷、硫转变为磷酸盐和硫酸根离子,或者作为盐沉淀析出.超 临界水氧化法具有反应速度快、反应完全等特点,是一种新型废物处理方法^[1-4].本文进行了煤炭 超临界水氧化的初步研究,用超临界水作为反应介质,使煤炭和溶于超临界水中的氧发生氧化反 应.超临界水氧化反应可采用压缩空气作为氧化剂,在有氧气富余的场合,如某些钢铁厂,也可 以用氧气作为氧化剂.在本研究工作中,从实验条件和便于实验出发,用高压过氧化氢(H₂O₂)水溶 液热分解产生的高压氧气作氧化剂,用半连续反应器系统,对恒温恒压下煤炭在超临界水中氧化 的基本规律进行了研究.重点考察了污染源硫和氮的变化规律,探讨了利用超临界水氧化的优势, 使煤炭在超临界水中氧化,以实现其高效清洁燃烧的技术可能性.

- 2 实验
- 2.1 实验装置

实验装置是自行设计建造的超临界水反应系统,其流程如图1所示.

Fig.1 Experimental apparatus of the coal oxidation in supercritical water

实验装置中, H_2O_2 水溶液由高压计量泵(2)打入,经预热器(3、4)预热, H_2O_2 分解放出 O_2 ,与反应器(5)中的煤炭发生反应,气液产物经过滤器(6)、冷却器(7)、经背压阀(8)减压后,在气液分离

收稿日期:2001-11-06,修回日期:2002-02-27

作者简介:朱小峰(1969--),男,陕西咸阳市人,硕士研究生,化学工程专业;王涛,通讯联系人.

器(9)中分离成气体和液体. 反应器内径为4 mm、有效长度为 230 mm, 且水平放置, 以利于煤炭 固体和超临界流体充分接触.

2.2 实验材料

煤炭:将原料煤捣碎,再经筛子过筛,以保持0.5~1 mm的粒径;原料煤样为山西产肥煤,其 性质如表1所示.

衣 1 爆件分析结果

	Table 1	1 Analysis of the coal sample (%, ω)				
Water	Ash	Volatile	Nitrogen	Sulfur		
3.998	7.32	29.24	0.81	0.31		

H₂O₂水溶液:将 30%过氧化氢(分析纯)按体积比与蒸馏水进行配比.

2.3 实验方法

取 1.5 g 煤放入反应器,密封后,启动高压计量泵,打入去离子水,同时调节背压阀,升压至 25 MPa. 当反应器加热到设定温度时,改为通入 H₂O₂ 水溶液,并开始计时.H₂O₂ 在预热器中分解 放出 O₂,进入反应器中与煤发生反应.反应器出口物料先经过冷却后再减压,进入气液分离器; 经气液分离后,分别用试管和 100 ml 的 0.1 mol/L NaOH 溶液收集不同时间的液体和气体.对不同 反应时间段内气体吸收液进行 N,S分析,对液体进行 N,S,化学需氧量(COD)的测定.反应结束后, 立即停止供热并关闭高压计量泵,通过背压阀快速降压,并迅速去掉反应器的保温层,取出反应 器放于冷水中,冷却至室温.取出反应器和管线内的残渣,干燥后进行称重. 2.4 分析方法

用 100 ml 0.1 mol/L NaOH 吸收不同反应时间段的气体.再用碘-淀粉分光光度法测定吸收液中的 S²⁻, SO₃^{2-[5]},用铬酸钡比色法测定吸收液中的 SO₄^{2-[5]},用过硫酸钾氧化-紫外分光光度法测定 吸收液中的总氮^[6].用试管收集不同时间段从气液分离器中流出的液相,其中的 S²⁻, SO₃²⁻, SO₄²⁻, 总氮的测定方法与气体吸收液相同,用化学需氧量速测仪(CTL-12) 测定 COD.反应完毕取出反应 器和管线中的残渣,干燥称重.

3 结果及讨论

3.1 煤炭超临界水氧化的气相产物

不同时间段的气体用 NaOH 溶液吸收进行分析. 在压力为 25 MPa、温度为 400°C 的条件下, 用流速 5 ml/min 的 5% H₂O₂ 水溶液进行实验. 分析结果表明,在 2.5~17 min 间的气体吸收液中不 存在 S²⁻, SO₃²⁻, SO₄²⁻且总氮为零,因此在该实验条件下,煤炭在超临界水中燃烧过程所产生的超 临界水溶液在减压冷却后,相分离产生的气相不存在 H₂S, SO₂, SO₃, NO_x 有害气体. 在实验的温度 范围(360~420°C)及 H₂O₂ 浓度范围(3%~7%)内都得出了相同结果. 这是由于超临界水能够溶解常温 常压水不溶的气体,使得 H₂S, SO₂, SO₃, NO_x等气体溶于水中,未完全氧化的成份在超临界水中进 一步氧化;并在降压、降温后就形成了存在于液相中的酸根离子,因此,煤炭在超临界水中燃烧 放出的气体是无害的,成份为 N₂, O₂, CO₂ 和少量的水蒸气.

3.2 煤炭超临界水氧化的液相

在不同的实验条件下,收集不同反应时间段的液体产物进行分析,以考察反应温度和 H₂O₂ 浓度等实验条件对反应程度的影响.

表 2 给出了其中的 400°C, 25 MPa, 5% H₂O₂的流速为 5 ml/min 条件下的结果. 其中 COD 值从 383.16 mg/L 到 122.06 mg/L, 这说明液相产物中含有未被完全氧化的成份,且逐步减少;从含硫组

份的含量看,还存在未被完全氧化的S²⁻,S₂O₃²⁻,SO₃²⁻,其中S²⁻逐步减小,从6.19 mg/L到0.98 mg/L, S₂O₃²⁻,SO₄²⁻分别从15.98,1.29,17.4 mg/L到53.84,6.24,62.67 mg/L逐步增加;从总氮含量 看还有部分氮未被转化成 N₂. 总之,在此实验条件下,煤炭超临界水氧化过程中产生的液体尚未 被完全氧化. 由表 2 可知,在该实验条件下,以超临界水为介质煤炭进行燃烧时,液相产物中硫 以S²⁻,S₂O₃²⁻,SO₃²⁻和SO₄²⁻的状态存在,其中S₂O₃²⁻为主要存在形态,S²⁻,SO₃²⁻较少,并且S²⁻ 所占的百分比逐步减少,SO₃²⁻,S₂O₃²⁻所占的百分比随反应的进行先是升高,然后逐步减少;而 SO₄²⁻所占的百分比随反应的进行不断增加. 这是由于在超临界水中,硫的转化途径为S² S₂O₃²⁻ SO₄²⁻,且S²⁻ S₂O₃²⁻和SO₃²⁻和SO₃²⁻ SO₄²⁻的速度都较快,而S₂O₃²⁻ SO₄²⁻的速度较慢,为反

应控制步骤[7].

表 2 400°C 液相中不同时间段的含硫、氮元素的离子浓度和 COD Table 2 The contents of ions containing sulfur, total nitrogen and COD in the liquid effluent at

different time intervals at 400°C (25 MPa, flow rate of 5% H ₂ O ₂ : 5 ml/min)									
No.	Time	Total sulfur	$[S^{2-}]$	$[S_2O_3^{2-}]^{1)}$	[SO ₃ ^{2–}] ¹⁾	[SO4 ²⁻] ¹⁾	$SO_4^{2-1)}$	Total nitrogen	COD
	(min)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(%)	(mg/L)	(mg/L)
1	2.50~5.00	21.67	6.19	9.13	0.52	5.83	26.90	10.69	383.16
2	6.50~9.00	36.31	2.35	22.13	1.27	10.56	29.29	11.91	325.14
3	10.50~13.00	45.54	1.31	24.90	2.27	16.61	36.47	23.24	267.11
4	14.50~17.00	55.13	0.98	30.76	2.50	20.89	37.87	40.24	122.06
Note: 1) Colouisted on cultur basis									

Note: 1) Calculated on sulfur basis.

图 2 为煤炭在 25 MPa 和流速 5 ml/min 的 5% H₂O₂时, 360, 380, 400, 420 °C 条件下, S²⁻, S₂O₃²⁻, SO₃²⁻和 SO₄²⁻浓度随反应时间的变化曲线.

国 2 不同血度液相中的 5 , S_2O_3 , SO_3 , SO_4 冰度与反应时间的关东 Fig.2 The contents of S^2 -, $S_2O_3^{2-}$, SO_3^{2-} and SO_4^{2-} in liquid effluent vs. the reaction time at different reaction temperatures

由图 2 可以看出,在反应起始时,温度越高,S²⁻,S₂O₃²⁻,SO₃²⁻和 SO₄²⁻浓度越高,这是由于 温度越高,煤炭固体中的硫化物被反应成 S²⁻的速度越快,S²⁻被氧化成 S₂O₃²⁻,SO₃²⁻和 SO₄²⁻的速 度也越高.随反应的进行,S²⁻浓度逐渐减少,S₂O₃²⁻,SO₃²⁻和 SO₄²⁻浓度逐渐增加;温度越高,S²⁻ 浓度减少得越快,S₂O₃²⁻,SO₃²⁻和 SO₄²⁻浓度增加得越快.420 °C 时,反应初始阶段的 S²⁻浓度最高, 到最后,S²⁻浓度最低.反应温度为 360,380 °C 时,SO₃²⁻浓度逐步增加,而反应温度为 400 °C,420 °C 时,SO₃²⁻浓度开始时增加,然后逐步降低,这是因为 SO₃²⁻是中间产物.

图 3 为用不同浓度的 H_2O_2 水溶液提供 O_2 时, S^{2-} , $S_2O_3^{2-}$, SO_4^{2-} 浓度与反应时间的关系. 由于 H_2O_2 浓度越大,煤炭固体中的硫化物被转化成 S^2 的速度越快, S^2 被氧化成 $S_2O_3^{2-}$, SO_4^{2-} 的速度也越高.

图 3 不同浓度 H₂O₂液相中的 S²⁻, S₂O₃²⁻, SO₃²⁻, SO₄²⁻浓度与反应时间的关系 Fig.3 The contents of S²⁻, S₂O₃²⁻, SO₃²⁻ and SO₄²⁻ in liquid effluent vs. the reaction time at different H₂O₂ concentrations

Fig.4 The contents of total nitrogen in liquid effluent vs the reaction time at different reaction temperatures

由图 3 可见, H_2O_2 水溶液浓度越大, 在反 应起始阶段 S²⁻, $S_2O_3^{2-}$, SO_3^{2-} , SO_4^{2-} 浓度越高. H_2O_2 浓度高时, 随反应进行, S²⁻浓度下降的速 度快. 随反应的进行, $S_2O_3^{2-}$, SO_3^{2-} , SO_4^{2-} 浓度也 随之增加. 因此,煤炭在超临界水中氧化的过程 中,其所含硫先转化成 S²⁻, 然后很快转化成不 稳定的中间状态 $S_2O_3^{2-}$, 再成为 SO_3^{2-} , SO_3^{2-} 很 快被氧化成 SO_4^{2-} . 如果有足够长的反应时间、 足够高的反应温度和 H_2O_2 水溶液浓度,就可以 将硫完全氧化成硫酸根.

图4为煤炭在25 MPa和流速5 ml/min的5%

H₂O₂时,360,380,400,420°C条件下,液相中的总氮与反应时间的关系.由图可见,温度对液 相中总氮变化有显著的影响.在反应初始阶段,温度越高,液体产物中总氮含量越高.这是因为温 度越高,煤炭固体中的氮化物越容易被转化而溶入超临界水中,在 360、380、400°C 进行反应时, 液相总氮随反应时间延长逐步增加,而在 420°C 时,随反应的进行,液相总氮含量逐步减少. 这 说明温度低于 400°C 时,在超临界水中的含氮化合物被转化成氮气的程度很低,而温度为 420°C 时,超临界水中的含氮化合物中的氮转化成为氮气的转化程度要高得多.这与文献^[8]中的结论是一 致的.

4 煤炭超临界水氢化的固体残渣

除 S, N 以外, 在超临界水氧化过程中, 煤炭中的其余可燃部分也发生氧化反应.

煤炭在压力为 25 MPa、温度为 400°C 的条件下,用流速 5 ml/min 的 5% H2O2 水溶液提供氧气, 反应 17 min 后所得固体残渣的性质如表 3 所示.

国体球体八折体用

衣 5 回冲戏追力们结未					
	Table 3 Analysis of the coal residue (%, ω)				
Water	Ash	Volatile	Nitrogen	Sulfur	
1.90	12.18	17.11	0.17	0.10	

表 4 是煤炭样品和固体残渣的脱水基的成份含量的对比. 从表中的数据可知,煤炭的超临界 水氧化过程中,其所含可挥发成份、氮和硫被氧化.挥发成份的氧化占了主要份额.

表 4 煤炭和固体残渣分析结果对比

Table 4	Comparson of the analysis of the coal and residue (%, <i>w</i> , water-free based)				
Sample	Ash	Volatile	Nitrogen	Sulfur	
Coal	7.62	30.46	0.84	0.32	
Residue	12.42	17.44	0.17	0.10	

减失率 = 初始煤量 - 剩余固体量 ×100%.

图 5 和 6 为 1.5 g 煤炭在不同温度、不同 H₂O₂ 浓度、反应时间 17 min 的条件下,煤炭减失率

反应后的剩余固体量小于初始煤炭固体量,这可以用煤炭的减失率来讨论:

的变化规律.

Fig.5 The loss fraction vs. reaction temperature

7 图 6 减失率与 H₂O₂ 浓度的关系

Fig.6 The loss fraction vs. concentration of H₂O₂

由图 5 可见,在其它条件相同的情况下,减失率随反应温度有显著的变化,特别是温度高于

380°C 时,由于反应速率迅速增加,减失率迅速上升.在420°C 时,煤炭的减失率达到了78.67%,即78.67%的煤炭固体被氧化而减失.由图6可见,在其它条件相同的情况下,由于H₂O₂浓度越大,反应速率越快,减失率随H₂O₂浓度提高而提高.

5 结论

(1) 煤炭在超临界水中燃烧过程所产生的超临界水溶液在减压冷却后,产生的气相不存在 H₂S,SO₂,SO₃,NO_x有害气体,因此,煤炭在超临界水中燃烧放出的气体是无害的.

(2) 随着反应过程的进行, 液体产物中硫主要以 $S_2O_3^{2-}$ 的形式存在, 并逐步转化成 SO_4^{2-} , 且随 温度、 H_2O_2 浓度的升高, SO_4^{2-} 产率不断增加; 氮转化成 N_2 需要较高的温度.

(3) 在超临界水氧化过程中,主要是煤炭所含的可挥发份被氧化,其所含的氮和硫也被氧化.

(4) 煤炭氧化的速率随反应温度和 H₂O₂ 浓度的增加而加快;反应温度的影响尤其显著.

参考文献:

[1] Schmoieder H, Abeln J. Supercritical Water Oxidation: State and Art [J]. Chem. Eng. Technol., 1999, 22(11): 903–908.

- [2] Aki S N V K, Abraham M A. An Economic Evaluation of Catalytic Supercritical Water Oxidation [J]. Environmental Progress, 1998, 117(4): 246–254.
- [3] Aymonier C, Beslin P, Jolivalt C, et al. Hydrothermal Oxidation of a Nitrogen-containing Compound: the Fenuron [J]. J. Supercrit. Fluid, 2000,17: 45–54.
- [4] 庄源益,李辉,袁有才,等. 废水处理技术中的超临界水氧化法 [J]. 城市环境与城市生态, 1998, 11(3): 8-10.
- [5] 向波涛. 超临界水氧化反应处理硫污染体系的研究 [D]. 北京:清华大学, 1999. 附录 2, 3.
- [6] 魏复盛, 寇洪茹, 洪水皆, 等. 水和废水监测分析方法 [M]. 北京: 中国环境科学出版社, 1993. 272-274.
- [7] 向波涛, 王涛, 刘军, 等. 超临界水氧化法处理含硫废水研究 [J]. 化工环保, 1999, 19(2): 75-79.
- [8] 王涛,杨明,向波涛,等. 超临界水氧化法去除废水有机氮的工艺和动力学研究 [J]. 化工学报, 1997, 48(5): 639-644.

Preliminary Exploration of Coal Oxidation in Supercritical Water

ZHU Xiao-feng, WANG Tao

(Department of Chemical Engineering, Tsinghua University, Beijing 100084, China)

Abstract: The oxidation of coal in supercritical water was investigated by using O_2 decomposed in situ from H_2O_2 as the oxidant. The results indicated that the sulfur and nitrogen contained in coal were gradually converted into SO_4^{2-} and N_2 respectively by oxidation in the supercritical water medium. The coal oxidation became faster with higher reaction temperature and higher concentration of H_2O_2 .

Key words : coal; supercritical water; oxidation