纳米 CaCO₃ 合成条件的正交实验

林荣毅^{1,2},张家芸²,张培新¹

(1. 广西大学化学化工学院, 广西 南宁 530004; 2. 北京科技大学理化系, 北京 100083)

摘 要:采用正交实验设计方法,通过 SEM 分析,研究了反应温度、Ca(OH)₂ 浓度、不同添加剂 及其加入量等因素对 CaCO₃ 的结晶形态和粒径的影响,得出合成立方晶形纳米 CaCO₃ 的优化反应 条件为:反应温度 10°C、碳化液 Ca(OH)₂ 浓度 0.25 mol/L、以 EDTA-2Na 为添加剂、 添加量为 EDTA-2Na:CaO = 3:1000.添加剂的加入量少,不足以抑制 CaCO₃的生长;而加入量过多,则容易 产生凝聚.随着反应温度升高,CaCO₃的结晶呈现高面网密度的晶体形态. 关键词:纳米 CaCO₃;立方晶形;正交实验设计

中图分类号:TQ132.32 文献标识码:A 文章编号:1009-606X(2001)03-0297-04

1 前言

纳米 CaCO₃粒子在橡胶、塑料、油墨等工业中作为填充剂和补强剂,使基质表现出良好的体积和表面硬度、弹性、粘滞性、润湿性和可加工性^[1,2].纳米 CaCO₃的功能对产品的附加值有显著 影响^[3].作为一种新型的结构材料,其功能的优劣不仅取决于纳米 CaCO₃的化学组成,而且取决 于纳米 CaCO₃的形态、 粒度及其分布等特征^[4,5].本文不仅以 CaCO₃的粒径,而且以 CaCO₃的形 态为考察目标,采用正交实验方法和扫描电子显微技术(SEM),研究在 Ca(OH)₂的非稳态碳化体系 中,反应温度、Ca(OH)₂ 浓度、添加剂种类及加入量对 CaCO₃结晶形态和特征粒径的影响,探讨 合成纳米 CaCO₃的最优反应条件.

2 实验

2.1 CaCO3颗粒的制备

在 5 L 烧杯中加入实验所需 CaO(A.R.级),用 95~100°C 的蒸馏水进行消化,所得 Ca(OH)₂ 悬 浮液冷却后滤去没有完全消化的 CaO 大颗粒. 经 EDTA–2Na(A.R.级)定量分析配制成所需浓度(参 见表 1, 3),陈化 12 h 后装入 1 L 的恒温间歇反应器中,加入定量的添加剂,在充分搅拌条件下通 入 CO₂ 含量为 25%的 N₂-CO₂混合气进行碳化反应,用电导率仪和 pH 计跟踪 Ca(OH)₂的碳化过 程.反应终点时取 1 ml 试样进行 SEM 分析.

2.2 样品的电镜测试与表征

将试样稀释,经超声波处理(SY2000型,上海声源超声波仪器厂),制成高分散的悬浮液,随 机取一滴在载玻片上自然晾干,待水份挥发后将试样移至离子溅射仪内真空镀金,用日立 S-570 型扫描电子显微镜(SEM)观察,随机选取 3~4 个视域,在(1~10)×10⁴倍率拍摄 CaCO₃的形貌.

粉体工程一般采用几何表观粒径表示粒子的大小.表观粒径主要有三轴向粒径、当量粒径和 定向粒径.根据全国 CaCO₃行业科学技术顾问组规定的 CaCO₃粒径表征方法^[6],以 CaCO₃颗粒最 小方向上的长度作为 CaCO₃的粒径 *R* (Feret 直径).实验中,首先用 SEM 测定 CaCO₃的 Feret 直径

收稿日期:2000-05-16, 修回日期:2000-10-28

基金项目:国家自然科学基金(编号:59864001)和广西自然科学基金匹配资助项目(编号:桂科配 9912006)

作者简介:林荣毅(1965-),男,壮族,广西宾阳县人,博士,讲师,冶金物理化学专业.

R. 根据 Rosin–Ramule 概率和统计理论,通过分析 CaCO₃ 的粒径分布(CSD) 取积分分布概率 $R(D_p)$ 为 36.8%时的 Feret 直径 R 为 CaCO₃ 的特征粒径 R_i . 文中在表征 CaCO₃ 的粒度时忽略 CaCO₃ 形态 的差异,统称为"特征粒径 R_i ".

2.3 正交实验方案的确定

Ca(OH)₂ 碳化反应条件的不同,决定着 CaCO₃ 的形态和特征粒径.根据探索实验,碳化反应 温度、Ca(OH)₂ 浓度、添加剂及其加入量是影响 CaCO₃ 结晶形态的主要因素.因此,选用 4 因素 3 水平的正交表 L₉(3⁴)安排实验.表1是正交实验的因素与水平,实验方案如表 3 所示.

表1	合成纳米	CaCO3 正交实验的因素和水	平
----	------	-----------------	---

Table 1	The factors and	levels of orthogonal	test in synthesizing	nanometer CaCO ₃
---------	-----------------	----------------------	----------------------	-----------------------------

Laval	Factor						
Level -	$T(^{\circ}C)(A)$	$Ca(OH)_2$ concentration (mol/L) (B)	Additive species (C)	Mass ratio of additive to CaO (D)			
1	10	0.25	STPP	1:1000			
2	25	0.50	Na ₂ SiO ₃	2:1000			
3	40	0.75	EDTA-2Na	3:1000			

3 结果与讨论

3.1 纳米 CaCO3 合成条件的综合分析

CaCO3特征粒径 Ri和晶形两个指标无量纲化与归一化综合评分公式为

$$y_i = \omega_1 \left(\frac{R_i}{R_0}\right) + \omega_2 \left(\frac{\psi_i}{\psi_0}\right),\tag{1}$$

式中 y_i 表示 *i* 号实验的综合评分 , R_0 为 500 nm ; ψ_0 为晶形评分 ψ_i 的最大值, ω_1 , ω_2 分别为 CaCO₃ 特征粒径 R_i 和晶形的权系数(其中 ω_1 =0.4, ω_2 =0.6). CaCO₃的晶体形态评分标准见表 2.

表 2 CaCO3 晶形的评分标准

	Table 2	Index of CaCO ₃ crystal morphology					
Crystal morphology	norphology Cube		Sphere	Spindle	Plate		
Morphology index ψ_i	1	2	3	4	5		

根据表 2 中 CaCO₃ 晶体形态的评分标准 , CaCO₃ 的特征粒径 *R*_i 越小 , 形态越趋近于立方体 形 , 其综合评分就越小.因此 , 反应条件越有利于合成立方体形纳米 CaCO₃ , 其综合评分越小.实 验所得综合评分值 *y*_i 如表 3 所示.

表 3 综合指标计算结果及分析 Table 3 Result of orthogonal test and analysis

	Table 5 Result of offiogonal test and analysis								
Evp. No.	Factor-level				Particle size		Morphology		Synthesis
Exp. No.	А	В	С	D	$R_{i}(nm)$	R_i/R_0	ψ_i	ψ_i/ψ_0	index y_i
1	1	1	3	2	23	0.046	Cube	0.20	0.138
2	1	2	1	1	30	0.060	Cylinder	0.40	0.264
3	1	3	2	3	52	0.104	Cylinder	0.40	0.282
4	2	1	2	1	58	0.116	Sphere	0.60	0.406
5	2	2	3	3	37	0.074	Sphere	0.60	0.390
6	2	3	1	2	55	0.110	Sphere	0.60	0.404
7	3	1	1	3	62	0.124	Spindle	0.80	0.530
8	3	2	2	2	403	0.806	Plate	1.00	0.922
9	3	3	3	1	382	0.764	Plate	1.00	0.906
<i>Yi</i> 1*	0.684	1.074	1.198	1.576	Temperature, T				
y_{i2}^*	1.200	1.576	1.610	1.464	>Ca(OH) ₂ concentration				
<i>Y</i> _{i3} *	2.358	1.592	1.434	1.202	> Additive species				
Range	1.674	0.518	0.412	0.374	> Mass ratio of additive to CaO				

表 3 的结果表明,各因素对综合指标影响的大小主次依次为:反应温度 $T(A) > Ca(OH)_2$ 浓度 (B) > 添加剂种类(C) > 添加剂与 CaO 的质量比(D). 合成立方体形纳米 CaCO₃ 的最优水平为 A₁, B₁,C₁,D₃. 即在反应温度 $T=10^{\circ}$ C、Ca(OH)₂浓度为 0.25 mol/L、添加剂 EDTA–2Na 加入量与 CaO 质量比为 EDTA–2Na:CaO=3:1000 的碳化反应条件下,可合成立方晶形的纳米 CaCO₃. 3.2 CaCO₃颗粒的 SEM 特征

图 1 分别是不同实验反应条件下合成的 CaCO₃ SEM 形貌. 从图 1(a)可以看出 反应温度 10°C、添加剂三聚磷酸钠 STPP:CaO =1:1000 的反应条件下(实验 2),合成的 CaCO₃存在两种形态,一种 是粒径为 20~30 nm 的圆柱形,另一种是粒径约为 52 nm 的球形. 在同样温度下,当添加剂 EDTA-2Na:CaO=2:1000 时(实验 1),合成的是分布较均匀、 $R_i = 23$ nm 的立方晶形 CaCO₃ [图 1(b)].

(a) STPP: CaO = 1:1000, T=10°C

(b) EDTA-2Na: CaO = $2:1000, T=10^{\circ}C$

(c) EDTA-2Na: CaO =3:1000, T=25°C

图 1 不同添加剂及其与 CaO 质量比条件下合成的 CaCO₃ SEM 形貌 Fig.1 The SEM images of CaCO₃ synthesized with different additives and mass ratio of additive to CaO

纳米 CaCO₃的结晶动力学研究表明^[7,8],添加剂的作用在于其所形成的络阴离子占据了CaCO₃ 结晶的表面活性部位,从而抑制了 CaCO₃晶体生长.所以,当添加剂量不足以包覆 CaCO₃晶体的 活性表面时,部分 CaCO₃晶体生长受到抑制,而另一部分晶体仍在生长,CaCO₃的粒径呈现双峰 分布状态.图1(c)(实验 5)的 CaCO₃颗粒有一定凝聚,且由于反应温度(T=25°C)的作用,相对实验 1,所合成的 CaCO₃特征粒径(R_i =37 nm)有所增大;但相对于实验 2,由于添加剂量不足而生长的 部分 CaCO₃(ϕ =53 nm),其粒径 R_i 仍是较小的.因此,采用添加剂控制纳米 CaCO₃的形态时,添加 剂的加入量少[图1(a)],不足以完全抑制 CaCO₃的生长;而加入量过大则容易产生凝聚[图1(c)].

(a) $T = 25^{\circ}$ C, STPP as additive

(b) $T = 40 \,^{\circ}$ C, STPP as additive

(c) T=40 °C, EDTA–2Na as additive

图 2 不同温度和添加剂条件下合成的 CaCO₃ SEM 形貌 Fig.2 The SEM images of CaCO₃ synthesized with different additive species and temperatures 图 2(a), (b)是添加剂为 STPP 时,反应温度分别为 25 和 40°C 条件下合成的 CaCO₃ 的 SEM 形 貌. 从图 2(a)可以看出,在 25°C 时(实验 6)合成的 CaCO₃ 是特征粒径 $R_i = 55$ nm 的球形颗粒,在 40°C 时(实验 7)合成的 CaCO₃大多为纺锤形,杂有少量圆柱形,特征粒径 $R_i=62$ nm[图 2(b)].因此,随 着碳化反应温度的升高,CaCO₃呈现高面网密度的晶体形态,而且晶体特征粒径 R_i 也随着增大.图 2(c)是添加剂为 EDTA-2Na、温度为 40°C 时合成的 CaCO₃(实验 9),CaCO₃是特征粒径 $R_i=$ 403 nm 的菱片形结晶.与图 2(b)相比,反应温度相同,但由于添加剂不同,合成的 CaCO₃粒径和形态变 化很大.

4 结论

(1) 纳米 CaCO₃ 的特征粒径 *R*_i和形态与 Ca(OH)₂ 碳化体系的温度、Ca(OH)₂ 浓度、添加剂种 类及其加入量有关.采用添加剂控制 CaCO₃ 的形态时,添加剂的加入量少,不足以抑制 CaCO₃ 的 晶体生长;加入量过多,则容易产生团聚;随着碳化反应温度的升高,CaCO₃ 晶体呈现高面网密 度的结晶形态.

(2) 在反应温度为 10°C、 Ca(OH)₂浓度为 0.25 mol/L、 以 EDTA–2Na 为添加剂、EDTA–2Na: CaO = 3:1000 的条件下,可合成特征粒径 *R*_i=23 nm 的立方晶形的纳米 CaCO₃.

参考文献:

- [1] 龚良发, 郭林, 李欢军. 氧化物纳米微粒的制备与应用 [J]. 化学工程师, 1999, (71): 27-30.
- [2] 崔爱莉, 王亭杰, 林玉兰, 金涌. 超细碳酸钙的合成与形态控制 [J]. 化工冶金, 1998, 19(4): 293-297.
- [3] 胡黎明, 古宏晨, 李春忠. 化学工程的前沿—超细粉末的制备 [J]. 现代化工, 1996, (2): 1-8.
- [4] 山田英夫, 原尚道. Ca(OH)2-H2O-CO2 系反应によるコロイド状炭酸カルシウムの生成過程 [J]. 石灰と石膏, 1985, (194): 3-12.
- [5] Takasaki S, Parsiegla K I, Katz J L. Calcite Growth and the Inhibiting Effect of Iron (III) [J]. Journal of Crystal Growth, 1994, (143): 261–268.
- [6] 全国碳酸钙行业科学技术顾问组. 工业碳酸钙产品的粒度与分类 [J]. 无机盐工业, 1988, (1): 1-4.
- [7] 林荣毅, 张培新, 阎加强. 超微细 CaCO3的结晶动力学 [J]. 材料研究学报, 1999, 13(6): 667-669.
- [8] 林荣毅, 张家芸, 张培新. 纳米 CaCO3的控制生长 [J]. 无机材料学报, 2001, 16(2): 353-357.

Orthogonal Experiment on Synthesizing Conditions for Nanometer CaCO₃ LIN Rong-yi^{1, 2}, ZHANG Jia-yun², ZHANG Pei-xin¹

(1. College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China;

2. University of Science and Technology Beijing, Beijing 100083, China)

Abstract : Using orthogonal experimental design and SEM analysis, the effects of reaction temperature, $Ca(OH)_2$ concentration, the additive species and the mass ratio of additive to CaO on the nanometer $CaCO_3$ particle size and morphology were investigated. The result showed that the optimum processing conditions for synthesizing cubic nanometer $CaCO_3$ were: reaction temperature $10^{\circ}C$, $[Ca(OH)_2] = 0.25$ mol/L, adding EDTA–2Na:CaO =3 :1000 as additive. It was also observed that when the additive was insufficient, the CaCO₃ crystal growth can not be inhibited. On the contrary, the CaCO₃ particles would be aggregated if excessive additive was added. With the increase of temperature, the CaCO₃ crystal would exhibit a morphology with a higher lattice network density.

Key words: nanometer CaCO3; cubic-crystal; orthogonal experimental design