难选氧化锌矿氨浸动力学

朱 云, 胡 汉, 苏云生, 杨保民

(昆明理工大学材料与冶金工程学院,云南 昆明 650093)

摘 要: 兰坪氧化锌矿氨浸的动力学实验表明,氧化锌矿的氨浸动力学遵从不生成固体产物层的 未反应核缩减模型,即符合 1-(1-a)^{1/3}=[*MkCⁿ/(bpd*₀)]t 方程.通过研究氨水的浓度、温度以及矿石 粒度对难选氧化锌矿浸出速率的影响,发现氧化锌矿氨浸反应为一级反应,得到反应的活化能为 11.1 kJ/mol,为边界层扩散控制.

关键词:氧化锌矿;氨浸;动力学;一级反应;活化能

中图分类号:TF803.21 文献标识码:A 文章编号:1009-606X(2002)01-0081-05

1 前 言

兰坪铅锌矿是世界级大型铅锌矿^[1],锌的工业储量达 1400 多万吨,其开采利用对我国铅锌工 业发展的贡献是其它矿山无法比拟的.但兰坪铅锌矿的氧化矿占金属储量的一半,且矿含泥质高, 极易过磨,形成次生矿泥;矿石中矿物组成复杂,矿物品种多,金属分散,钙镁含量高等.这就决 定了其选冶加工困难和工艺复杂.按常规"选矿--酸浸--电积"的工艺,锌的选矿回收率低(约 50%). 实验表明氧化矿采用"直接酸浸--萃取--电积"工艺,锌的直收率可提高 20%.但兰坪铅锌矿含钙 镁高,酸浸酸耗太大,每吨矿石耗硫酸约 500 kg,仅能提取约 100 kg 锌,经济上不合算."原矿氨 浸--萃取--电积"工艺具有锌的浸出率高(>90%)、钙镁的危害小、工艺简单、环境友好等特点.

唐谟堂^[2]曾做过氧化锌矿的氨浸工艺方面的研究. 但氧化锌矿的氨浸动力学研究还未见报道.

2 实验方法

实验所用原料是云南兰坪难选氧化锌矿,化学成份如表 1 所示. 其特点是 CaO 含量高,锌的 品位低. 锌在矿中以 ZnCO₃, Zn₂SiO₄·H₂O, Zn₂SiO₄, ZnO·Al₂O₃等形态存在. 以 ZnCO₃为主,其含 锌量占总锌量的 87.72%,其次是 Zn₂SiO₄·H₂O,占总锌量的 8.78%.

表 1 兰坪难选氧化锌矿的化学成份

Table 1 The compos	The composition of poorly-floated zinc-oxide-ore									
Component	Zn	Pb	SiO ₂	Fe	As	Sb	Mn	Al_2O_3	CaO	MgO
Composition (%)	10.57	1.75	13.78	19.70	0.06	0.02	2.33	1.60	12.78	1.65

浸出实验在 1000 ml 五口烧瓶中进行.中口为密封机械搅拌,旁边两口为加料和取样,另外两口分别为氨的冷凝回流和测温,水浴器恒温.每次实验取 10 g 矿样,600 ml 氨水,确保浸出体系的液固比足够大,保证氨水浓度近似不变.将氨水和氧化锌矿加入五口烧瓶中浸出,定时取样分析,计算其浸出率. (双月刊)

根据文献[3]的数据进行热力学计算表明,在氨液中,ZnCO₃,Zn₂SiO₄·H₂O 等矿物能全部转化为[Zn(NH₃)₄]²⁺进入溶液.

 $ZnCO_{3(s)} + 4NH_{3} \cdot H_{2}O_{(aq)} = Zn(NH_{3})_{4}^{2+} + CO_{3}^{2-}_{(aq)} + 4H_{2}O, \qquad G_{298}^{0} = 7.50 \text{ kJ}.$ (1)

收稿日期: 2001-04-09, 修回日期: 2001-08-09

基金项目:云南省科学基金资助项目(编号:2000E0027M)

作者简介:朱云(1962-),男,云南昆明市人,硕士,副教授,有色金属冶金专业.

在 [Zn(NH₃)₄²⁺]<0.05 mol/L , [CO₃²⁻]<0.05 mol/L 条件下,当反应的 G<0 , 即反应能自发进行时 , [NH₃]_{最小}=0.44 mol/L.

 $Zn_2SiO_4 \cdot H_2O_{(s)} + 4NH_{3(aq)} = Zn(NH_3)_4^{2+} + 2OH_{(aq)}^- + H_4SiO_{4(aq)} + H_2O, G_{298}^0 = 11.35 \text{ kJ.}$ (2) 在 [Zn(NH₃)₄²⁺]<0.5 mol/L, [OH]=10⁻⁶ mol/L 条件下,当反应的 G<0,即反应能自发进行时, [NH₃]_{量小}= 0.32 mol/L.

氨浸氧化锌矿属于生成物为水溶物种的液固反应,可用生成物溶于水、固相的外形尺寸随反应的进行而减小直到消失的"未反应核缩减模型"来描述.其反应动力学方程为^[4]

图 1 矿石颗粒形状

Fig.1 Morphology of the Lanping zinc-oxide-ore particles $1 - (1 - \alpha)^{1/F} = \frac{Mk C^{n}}{b \rho d_{0}} t.$ (3)

式(3)的使用条件为固体反应物为单粒级、液体 反应物的浓度和反应温度恒定不变.故实验前应对 氧化锌矿进行筛分,采用孔径很相近的两个筛子分 出中间的矿.这部分矿可近似为单粒级矿.矿粒的 原始直径 d_0 取两个筛子孔径的平均值;矿粒的密度 $\rho=4.3$ g/cm³;矿粒可近似视为球形,如图 1 所示, F=3;分子量 M=65.38;式(1)和(2)中的计量系数 b=4(即 1 mol 矿与 4 mol 氨反应).

无论过程是扩散控制还是化学控制,式(3)都适 用.从表1的数据来看,矿中的锌含量很低.虽然反

应无固体产物层,但反应表面有惰性物覆盖,有扩散控制的可能.要判断过程是扩散控制还是化 学控制,应结合过程活化能来分析,活化能小于13 kJ/mol 时为扩散控制;活化能大于42 kJ/mol 时为化学控制^[4].

3 结果与讨论

用泰勒标准筛 200 目(0.074 mm)和 230 目(0.062 mm)筛分氧化锌矿,得到两个筛之间的氧化锌 矿,平均粒径为 0.068 mm,视为单粒级.用它进行不同氨浓度、不同温度的浸出实验,测定溶液 中锌的浓度随时间的变化,计算得出浸出率与时间的关系;再用泰勒标准筛 100 目(0.147 mm)和 115 目(0.124 mm)、170 目(0.088 mm)和 200 目筛分氧化锌矿,得到两个单粒级的氧化锌矿(平均粒 径分别为 0.136 mm 和 0.081 mm),在 25°C下,氨浓度 4 mol/L,用它进行不同粒度的浸出实验, 测定溶液中锌的浓度随时间的变化,计算得出浸出率与时间的关系,结果见表 2.

Table 2 Leaching rate (α , %) of zinc versus time										
Particle size	Temperature (°C)	[NH ₃] (mol/L)	Time (min)							
(mm)			8	16	24	32	40	48	56	
	40	0.5	3.9	7.9	13.1	17.6	21.4	25.2	29.2	
	40	1.0	9.1	17.6	27.1	32.9	40.4	46.5	52.1	
	40	2.0	17.1	31.0	44.8	56.6	64.3	71.7	76.2	
	40	4.0	22.7	38.8	54.3	65.6	74.8	82.3	83.9	
0.068	10	2.0	9.2	20.3	27.5	36.1	44.1	51.9	56.4	
0.008	10	4.0	11.8	22.4	32.7	41.8	50.2	57.7	62.9	
	25	2.0	12.8	24.8	33.3	43.8	51.8	59.5	63.6	
	25	4.0	15.7	29.8	41.7	53.6	62.8	71.3	77.9	
	60	2.0	19.6	38.6	51.5	64.4	74.8	80.3	86.1	
	60	4.0	27.6	50.6	64.3	76.9	84.4	90.1	90.1	
0.081	25	4.0	13.5	26.2	34.8	46.2	53.0	63.4	68.1	
0.136	25	4.0	8.1	16.1	23.0	29.5	35.9	42.1	46.8	

表 2 浸出率α与时间 t 的关系

3.1 氨浓度对氧化锌矿浸出速率的影响

在 40°C 下,用平均粒径为 0.068 mm 的氧化锌矿进行不同氨浓度的浸出实验,测定溶液中锌 的浓度随时间的变化,计算得出浸出率与时间的关系.用 1–(1– α)^{1/3} 对 *t* 作图,如图 2 所示.由图 可见,1–(1– α)^{1/3} 与 *t* 呈直线关系,说明氧化锌的氨浸符合动力学 "未反应核缩减"模型.

根据式(3), 用线性回归法求出每一条直线的斜率 $k_1=MkC^{*}/b\rho d_0$, 所得数据列于表 3.

表 3 不同氨浓度下氧化锌氨浸的速率常数

Table 3 Rate constants under different initial a	mmonia con	centrations	$(d_0=0.068)$	mm, 40°C)
Initial concentration of ammonia (mol/L)	0.5	1	2	4
Rate constant, $k_1 (\min^{-1})$	0.00186	0.00389	0.00696	0.00989

从表 3 可知,随着氨水浓度的增加,锌的反应速率亦增加.再对 $k_1=MkC^n/b
ho d_0$ 取对数得:

$$\lg k_1 = \lg[Mk/(b\rho d_0)] + n \lg C.$$
(4)

用 lgk₁ 对 lgC 作图见图 3. 图中前 3 点在一条直线上,即氨的初始浓度低于 2 mol/L 以下时是 一反应级数,氨的初始浓度再升高,反应级数发生变化.氨的初始浓度低于 2 mol/L 时,用线性回 归得到直线的斜率为 0.944,即氧化锌矿氨浸的反应级数可视为 1.

Fig.2 Leaching zinc-oxide-ore with ammonia at different ammonia concentrations

3.2 温度对氧化锌矿氨浸速率的影响

温度影响氧化锌矿氨浸过程的速率常数 k_1 . 研究温度的影响是在 10°C 至 60°C 下进行的. 由于 氨的挥发,尤其是 60°C 时,采用盐水深度冷却回流的办法来维持氨的浓度不变,测定溶液中锌的 浓度随时间的变化,计算出 1–(1– α)^{1/3} 与时间 t 的关系,如图 4 所示. 由图可见,氧化锌矿氨浸的 1–(1– α)^{1/3} 与时间 t 呈直线关系. 根据式(1),用线性回归求出每一条线的斜率 k_1 . 根据阿伦尼乌斯 公式:

$$\lg k_1 = \lg A - \frac{E}{2.303R} \frac{1}{T},$$
(5)

以 lgk₁ 对 1/T 作图,如图 5 所示.氧化锌矿氨浸的 lgk₁--1/T 为一直线. [NH₃]=2.0 mol/L 时,用线性 回归求得直线的斜率为--581.3,表观活化能为 11.1 kJ/mol; [NH₃]=4.0 mol/L 时,斜率为--639.3,表 观活化能为 12.2 kJ/mol. 从氨浸的表观活化能来看,氧化锌矿氨浸过程为边界层扩散所控制.

图 4 不同温度下氧化锌矿氨浸的速率 Fig.4 Leaching zinc-oxide-ore with ammonia at different temperatures

3.3 粒度对氧化锌矿氨浸速率的影响

用表观速率常数 k_1 描述氧化锌矿氨浸过程速率 ,与氧化锌矿的粒度有关. 图 6 是在 4 mol/L 的 氨水溶液中,不同粒度下氧化锌浸出的 $1-(1-\alpha)^{1/3}$ 与时间 t 的关系. 由图可见,浸出时间在 40 min 之前, $1-(1-\alpha)^{1/3}$ 与时间 t 呈直线关系. 浸出时间在 40 min 之后,浸出率已接近平衡. 氧化锌矿的 粒度越小,锌的浸出速度也越大,浸出率越高. 这是由于在总质量一定的情况下,粒度越小,粒 数就越多,反应总表面积就越大,浸出速度就越快,被脉石包裹的锌矿物越少,浸出率越高.

4 结论

氨溶液能很好地浸出难选氧化锌矿中的锌.动力学研究表明,浸出反应遵循不生成固体产物 层的"未反应核缩减"模型,为一级化学反应.其表观活化能为11.1 kJ/mol. 60°C下,在4 mol/L 的氨水溶液中,浸出 40 min 锌的浸出率可达到 90.1%.实验结果表明,在一定浓度下提高氨水的 浓度、升高温度以及减小矿石的粒度,均可提高锌的浸出速率.

符号表:

Α	常数	М	固体矿中锌的相对原子质量 (g)
b	反应物氨的化学计量系数	Ν	反应级数
С	溶液中氨的浓度 (mol/L)	R	常数 (8314 J/mol)
d_0	固体矿的原始直径 (mm)	Т	绝对温度 (K)
Ε	活化能 (kJ/mol)	t	反应时间 (min)
F	几何形状函数	α	t时的反应率 (%)
k	化学反应速率常数	ρ	密度 (g/cm ³)
k_1	表观速率常数		

参考文献:

[1] 西南铅锌科技协作组. 有色金属进展, 第 19 分册 [M]. 北京:冶金工业出版社, 1984. 18-20.

- [2] 唐谟堂, 欧阳民. 硫氨法制取等级氧化锌[J]. 中国有色金属学报, 1998, 8(1): 118-121.
- [3] 杨显万, 何蔼平, 袁宝州. 高温水溶液热力学数据计算手册 [M]. 北京: 冶金工业出版社, 1983. 251-673.
- [4] 杨显万, 邱定蕃. 湿法冶金 [M]. 北京: 冶金工业出版社, 1998. 170-174.

Kinetics of Leaching Poorly-floated Zinc-oxide-ore with Ammonia

ZHU Yun, HU Han, SU Yun-sheng, YANG Bao-min

(Department of Metallurgy, Kunming University of Science and Technology, Kunming, Yunnan 650093, China)

Abstract: Tests indicate that the kinetics of leaching poorly-floated zinc–oxide–ore with ammonia comply with the shrinking un-reacted core model without solid product. By investigating the effects of ammonia concentration, temperature and size of ore on the leaching rate, it was suggested that the leaching of poorly-floated zinc-oxide-ore with ammonia is one of the first order reaction. Its activation energy is 11.1 kJ/mol, indicating that the external mass transfer was the rate controlling step.

Key words: zinc-oxide-ore; leaching with ammonia; kinetics; first order reaction; activation energy