文章编号:1001-8166(2009)09-1001-08

多通道地基微波辐射计在 0713 号"韦帕"台风 登陆前后探测性能及特征分析^{*}

赵兵科¹,邵德民¹,鲁小琴¹,徐 同¹,翁永元²

(1. 中国气象局上海台风研究所,中国气象局台风预报技术重点开放实验室,上海 200030;

2. 上海市宝山区气象局,上海 201900)

摘 要:利用上海市气象局 2007 年 9 月进行的"韦帕"台风探测试验资料和地面常规观测资料,对 多通道地基微波辐射计在 0713 号"韦帕"台风登陆前后探测性能及特征进行了分析。结果表明: 多通道地基微波辐射计探测的温度和相对湿度趋势与 GPS 探空得到的基本一致,尽管二者之间存 在一些小的差异,但也表明了微波辐射计对台风具有一定的探测能力。0713 号"韦帕"台风登陆前 后温度和水汽密度场上,甚短生命史的冷暖气柱和高水汽密度柱十分活跃,体现了"韦帕"台风登 陆前后的阵性特征。

关键 词:超强台风"韦帕";微波辐射计;水汽密度 中图分类号:P458.1⁺24 文献标志码:A

1 引 言

微波辐射计是一种被动式的微波遥感仪器。它 所探测的是人们肉眼看不见的大气微波辐射信息。 微波辐射计通过接收来自大气的一定波段的微波辐 射,来探测大气温度、相对湿度、水汽、液态水的垂直 廓线。当微波辐射计的天线主波束指向大气目标 时,天线接收到目标辐射、目标散射和传播介质辐射 等辐射能量信号。天线接收的信号经过放大、滤波、 检波和再放大后,以电压的形式给出。对微波辐射 计的输出电压进行温度绝对定标后,即可建立输出 电压与所观测目标亮度温度的关系,也就可以确定 所观测目标的亮度温度。该亮度温度值就包含了辐 射体和传播介质的一些物理信息,通过反演就可以 了解被探测目标的一些物理特性。由于微波辐射计 接收的是被测目标自身辐射的微波频段的电磁能 量,它所提供的关于目标特性的信息与可见光、红外 遥感和主动微波遥感不同。由于被测目标自身所辐 射的微波频段的电磁能量是非相干的极其微弱的信号,这种信号的功率比辐射计本身的噪声功率还要小得多,所以微波辐射计实质上是一种高灵敏度的接收机。微波辐射计是进行对大气探测不可缺少的重要的工具,在微波遥感器中占有重要地位,越来越受到人们重视。

美国 Radiometric Corporation 公司生产的 MP-3000 型微波辐射计是目前国际上较先进的多通道 微波辐射计,该型号的微波辐射计具有 51~59 GHz 和 22~30 GHz 二重波段,共计 35 个通道,可用于对 大气温度、相对湿度、水汽和液态水含量的探测,探 测高度从地面开始至 10 km 高空。它的探测原理是 通过测量氧气在 60 GHz 附近的辐射强度或亮度温 度得出温度分布(图1)。谱线峰值中心位置由于不 透明性很强,所有信号均仅仅来源于天线上方附近; 在此峰值中心两侧的频率位置吸收减弱,辐射计则 会"看"得远一些。从此峰值向谱线两侧下方扫描, 仪器则可通过此方法获得高度信息。在任意高度上

^{*} 收稿日期:2009-02-04;修回日期:2009-07-16.

^{*} 基金项目:国家自然科学基金项目"华东登陆台风强度变化机理的研究及其预报技术探索"(编号:40645025)资助. 作者简介:赵兵科(1964-),男,陕西眉县人,博士,主要从事天气、气候动力学研究. E-mail:zhaobk@mail.typhoon.gov.cn

的氧气发射电磁波都与当地的温度和氧气密度分布 呈正比,因此可以得到温度剖面。而通过观测来自 于水汽线压力增宽的辐射的强度和形状的信息,可 以得到水汽廓线。22 GHz 附近适合进行相对潮湿 地区的地基廓线反演。在反演过程中运用神经网络 方法进行反演得出廓线,神经网络是运用 Stuttgart Neural Network Simulator (斯图加特神经网络模拟 器)和探空廓线的历史资料得出的。标准后向传播 (back-propagation)算法用于同化,标准前馈网络用 于廓线的得出。廓线0~500 m高度上每 50 m 输出 一个数据,500 m~2 km高度上每 100 m 输出一个 数据,2~10 km 每 250 m 输出一个数据,共 58 个反 演层。

图 1 大气吸收光谱 MP-3000 微波辐射计观测通道 (源自 MP-3000 手册)

Fig. 1 The atmospheric absorption spectrum and MP-3000 observation channels (origin MP-3000 Manual)

2007年9月上海市气象局在华东进行了0713 号"韦帕"登陆台风外场探测试验,在这次试验中首 次使用 MP-3000 多通道微波辐射计,主要目的是为 了揭示台风在登陆前后温度、相对湿度和水汽的廓 线变化情况。众所周知,探空站的探空观测一般每 天仅为2次(北京时间08时和20时),在台风登陆 期间也最多加密到4次,间隔长达6小时,而且每获 得一次对流层温度、湿度廓线也需要30分钟左右, 另外,由于气球不断移动,得到的廓线严格来说也不 是探测点上的。而台风系统内的变化可以说瞬息万 变,如果有一种设备能进行连续观测,那么对揭示台 风系统变化无疑是有助的。恰好 MP-3000 多通道 微波辐射计就具有这样的功能,每获得一次廓线的 时间间隔仅不到1分钟,而且获得的资料是探测点 上空一个锥体的平均。目前,中国香港气象台的 Chan $\begin{bmatrix} 1^{-3} \end{bmatrix}$ 做了一系列微波辐射计的研究工作, 尤 其通过微波辐射计资料对 2004 年大屿山的焚风进 行了研究,结果表明在焚风发生时,小小的大屿山两 边温差和相对湿度差分别达到5℃和20%;国际上 已有较多的气象研究者从事地基微波遥感的研究和 应用工作^[4~18],如 Ware 等^[17]对微波辐射计资料和 探空资料进行了对比,结果指出在数值预报中,微波 辐射计资料与探空资料具有同等的准确性:Knupp 等^[7]对比微波辐射计资料和探空资料,结果表明温 度误差小于2℃,水汽密度小于1.5 g/m³,进一步指 出微波辐射计对中-~尺度天气系统的热力结构有 较好的监测作用。然而,国内气象部门利用微波辐 射计探测大气和相关的研究工作刚刚开始,尤其是 涉及到利用微波辐射计研究台风的工作还未曾看 到。该设备在台风探测中能否使用,即该设备在台 风登陆前后观测的性能如何?这是本文分析和研究 的目的。本文通过与试验点同时释放的探空资料进 行对比分析,在此基础上,进一步分析了微波辐射计 所获得的台风登陆前后的一些特征。

2 "韦帕"超强台风概况

2007年第13号台风"韦帕"于9月15日15时 (北京时,下同)在西北太平洋130°E 以东、15°N 以 南洋面形成,随后一路向西北方向移动,强度逐渐加 强。17日02时强度达到台风级别,17日20时达到 强台风级别,18日05时强度达到了超强台风级别, 18日20时位于台湾北边的东海南部海域,强度由 超强台风减为强台风。于9月19日02时30分在 浙江省苍南县霞关镇登陆,登陆时中心附近最大风 力 14 级(45 m/s),为强台风。登陆后强度迅速减 弱,19日11时减弱为热带风暴,20日停编。"韦 帕"具有发展迅速、强度强、范围大、路径西折、风大 雨强等特点,另外作者本人也经历了"韦帕"台风登 陆的现场,感受到"韦帕"台风在登陆前后阵性变化 特征显著。台风"韦帕"是2007年登陆我国大陆最 强的台风,与2005年台风麦莎、2004年台风云娜的 强度相当;但是"韦帕"造成的损失较轻,无论是死 亡人数,还是经济损失都比"麦莎"和"云娜"少,尤 其是死亡人数远低于"云娜"。但也对华东较大范 围造成了较大影响,福建和浙江的东部沿海、上海等 地出现了8~11级、阵风13~15级的大风;台湾、福 建、浙江、上海、安徽、江苏、山东等11个省(市)出 现了暴雨或大暴雨(图2)。"韦帕"造成浙江、江

图 2 超强台风"韦帕"登陆前(2007 年 9 月 19 日 02 时前)6 小时降水量(阴影)和极大风速 风向及该台风中国最佳路径和强度变化

Fig. 2 Six hours accumulative rainfall (shaded), maximum wind, best route over China and strength change of 0713 super typhoon "WIPHA" before its landfall (before 2'oclock on September 19, 2007)

苏、福建、山东、安徽、上海6省(市)遭受不同程度 灾害,直接经济损失79.7亿元。

3 "韦帕"台风探测试验

在"韦帕"台风位于台湾东部海域的时候,上海 市气象局就预测该台风将在福建北部到浙江中南部 登陆,并决定对"韦帕"进行"追风"试验,也就是利 用上海市局的追风探测车进行现场探测。"追风" 组在17日下午接到出发命令后,经过连续6个小时 的长途跋涉,于夜间到达"韦帕"台风登陆点北边象 山观测目的地(距"韦帕"台风登陆点200 km 左 右),位于图2大暴雨北缘的海边附近。在台风登 陆前后共成功施放了10个 GPS 探空气球,平均3 小时间隔一次;传回80多小时的现场实景资料;通 过超声风温仪、移动自动气象站和风廓线仪获得了 试验期间较完整的边界层和地面台风个例资料;并 在华东地区第一次通过微波辐射计获得"韦帕"台 风登陆前后对流层温度、相对湿度、水汽和液态水 资料。

4 与探空的比较

图 3 为"韦帕" 台风登陆前微波辐射计和 GPS

探空温度廓线和偏差与标准差。由温度廓线图可以 看出,微波辐射计获得的和 GPS 探空的得到的温度 趋势基本一致。进一步从两者的偏差来看,从地面 到对流层顶标准差都小于 2℃,微波辐射计探测的 结果从底层到高层依次呈现偏暖—偏冷—偏暖—偏 冷—偏暖的特征,尤其从 850~500 hPa 呈现较厚层 次的偏暖探测特征。

由相对湿度廓线图可知,微波辐射计获得的和GPS 探空的得到的相对湿度趋势也基本一致,但微 波辐射计的比较光滑,GPS 探空的抖动较多,这可能 与两者的探测方式不同有关,微波辐射计是一个锥 体的平均,而 GPS 探空仅是气球所到之处的探测结 果。从两者的偏差可以看出,从地面到对流层顶绝 大高度的标准差都小于 20%,但在 3 500 m 附近和 对流层顶超过 20%;微波辐射计探测的结果具有低 层偏干高层偏湿,这种下干上湿的探测结果与一些 研究者^[4,5]的结果刚好相反。

以上分析可以得出,尽管微波辐射计探测和 GPS 探空探测结果之间存在一定的差异,但对温 度和相对湿度探测的廓线趋势是一致的,由此表 明微波辐射计在台风监测中具有一定的探测 能力。

图 3 "韦帕"台风登陆前 (2007 年 9 月 18 日 23:30 BJ) 微波辐射计和 GPS 探空温度廓线和偏差与标准差 Fig. 3 The biases, standard deviations and temperature profiles from the radiometer and the GPS radiosonde before typhoon "WIPHA" landfall at 23:30 BJ, September 18,2007

(a) 廓线; (b) 偏差和标准差

(a) Temperature profiles; (b) Biases and standard deviations

图 4 "韦帕"台风登陆前 (2007 年 9 月 19 日 1:30 BJ) 微波辐射计和 GPS 探空相对湿度廓线和偏差与标准差 Fig. 4 The biases, standard deviations and relative humidity profiles from the radiometer and the GPS radiosonde before typhoon "WIPHA" landfall at 1:30 BJ, September 19,2007

5 台风登陆前后的水汽变化特征

图 5 为微波辐射计在浙江象山探测到的超强台 风"韦帕"登陆前后(2007年9月19日)温度和水汽 密度高度一时间剖面,由此图可以发现在"韦帕"台 风登陆前后,位于登陆点东北偏北侧200 km 左右的 象山台风试验观测点温度和水汽密度随时间有明显 的变化特征,在台风登陆前后各有两次显著变化过 程。温度场上在台风登陆前半小时内和登陆后1.5 小时内各出现了两次4 km 以下为暖的气柱,而4 km 以上为冷的气柱,暖中心位于1 km 左右,冷中心 主要在对流层高层,可以看到下暖和上冷非常对应, 时间生命史大约在15~30分钟。尤以登陆后的第 二次的时间生命史较长,约30分钟,且也比登陆前 出现的间隔略长一些;在水汽密度场上对应为5 km 以下的高水汽密度柱。温度场和水汽场上这种特征 可能是台风登陆前后阵性变化的一种表现手段,几 位作者也在现场体验了"韦帕"台风登陆前后阵雨 和阵风变化的特点。是否在台风登陆前后,温度场 和水汽密度场上都是这种变化特征,有待更多的台 风观测资料来证实;这种高水汽密度柱的空间范围 到底有多大以及在常规天气观测能否体现出来,这 些问题都是有待下一步要研究的问题。

为了进一步揭示"韦帕"台风登陆前后的温度 和水汽特征,图6给出了"韦帕"台风登陆前、登陆 时和登陆后温度及水汽密度廓线,由此图可以看出, 台风登陆前后温度及水汽密度廓线有一个明显变化 过程,温度的变化主要表现在边界层,台风登陆前1 km以下边界层温度随高度递增,而在台风登陆时这 种特征不明显,基本上是随高度递减的,台风登陆以 后1km以下边界层温度又基本恢复到登陆前的特 征;水汽密度场上主要表现为1~5km水汽密度在 登陆时明显减弱。温度和水汽场在台风登陆前后的 这种表现特征可能与边界层混合等因素有关。有待 进一步分析和研究。

图 5 微波辐射计在浙江象山探测到的超强台风"韦帕"登陆前后(2007 年 9 月 19 日)温度和水汽密度高度—时间剖面。 Fig. 5 Height-time section for temperature and vapor density detected by microwave radiation profiler at Xiang shan mountain in Zhejiang Province before and after "WIPHA" landfall (September 19, 2007)

纵坐标为高度(km),横坐标为北京时间(h),红箭头为登陆时间标志

Y-axis represents height (km) and X-axis means Beijing time (h). Red arrow is the symbol of landing time

图 6 微波辐射计在浙江象山探测到的超强台风"韦帕"登陆前、登陆时和登陆后温度和水汽密度廓线 Fig. 6 Height-time section for temperature and vapor density detected by microwave radiation profiler at Xiang Shan mountain in Zhejiang Province before and after "WIPHA" landfall (September 19, 2007)

(a)和(d)为登陆前;(b)和(e)为登陆时;(c)和(f)为登陆后

Y-axis represents height (km) and X-axis means Beijing time (h). *Red arrow* is the symbol of landing time. (a) and (d) before landfall; (b) and (e) landing time; (c) and (f) after landfall

6 结 论

本文对多通道地基微波辐射计在 0713 号"韦 帕"台风登陆前后探测性能及特征进行了分析。结 果表明:与 GPS 探空对比来看,多通道地基微波辐 射计对温度和相对湿度具有一定的探测能力,探测 的趋势两种设备基本一致。然而,也发现二者之间 存在一定的差异:

(1) 微波辐射计温度探测结果从底层到高层依 次呈现偏暖—偏冷—偏暖—偏冷—偏暖的特征。 (2) 微波辐射计相对湿度探测结果具有低层偏 干高层偏湿特征。

尽管存在以上的差异,但是从以上分析可以看 到,微波辐射计在台风监测中是可用的,而且微波辐 射计能提供台风登陆前后一个连续很有用的信息, 尤其是可以得到台风登陆前后温度和水汽密度随时 间随高度变化较丰富的信息,这可能对于研究台风 内部结构和机理十分有助。这仅仅是一个初步的分 析,有待更多的分析和研究,尤其是从定量角度研究 台风登陆前后水汽的变化,揭示台风系统中中小尺 度的热力细微结构。关于微波辐射计获得的可降水 量与观测站降水之间的对比分析将另文分析。

2007年的"追风"试验仅仅是华东登陆台风探 测试验的开端,但这在华东登陆台风科考领域却迈 出了具有探索性的第一步,尤其是微波辐射计等先 进设备的应用,对台风研究自有其不可低估的认识 和科研价值。相信通过更多个例的探测试验和更多 点上微波辐射计的应用,台风系统内部水汽分布特 征将得到更好地揭示。

参考文献(References):

- [1] Chan P W, Yeung K K. Experimental extension of the measurement range of a boundary layer wind profiler to about 9 km[C] // American Meteorological Society. 12th Symposium on Meteorological Observation and Instrumentation, 2003.
- [2] Chan P W. Measurement of eddy dissipation rate by a mini-sodar for aviation application; Comparison with tower measurement [C] // American Meteorological Society. 11th Conference on Aviation, Range, and Aerospace Meteorology Massachusetts. USA,2004.
- [3] Chan P W, Tam C M. Performance and application of a multiwavelength, ground-based microwave radiometer in rain nowcasting[C] // American Meteorological Society. 9th Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface. San Diego, USA, 2005.
- [4] Han Y, Westwater E. Analysis and improvement of tipping calibration for ground-based microwave radiometers [J]. *IEEE Trans*actions on Geoscience and Remote Sensing, 2000, 38:1 260-1 276.
- Hewison T, Gaffard C, Nash J. Monitoring inversions from ground-based remote sensing instruments during temperature, humidity, and cloud profiling campaign (TUC) [C] // Preprints, 8th Specialist Meeting on Microwave Radiometry and Remote Sensing Applications. 2004.
- [6] Hill G. Analysis of supercooled liquid water measurements using microwave radiometer and vibrating wire devices [J]. Journal of Atmospheric and Oceanic Technology, 1996, 11:1 242-1 252.
- [7] Knupp K. Mobile Integrated Profiling System (MIPS) obser-vations of boundary layer and water vapor variations around boundaries and storms [C] // American Meteorological Society. 12th Symposium on Meteorological Observations and Instrumentation. Long Beach, California: 10 ~13 February, 2003.
- [8] Liljegren J. Observations of integrated water vapor and cloud liquid water at SHEBA[C] // Department of Energy, Washington D C.
 9th Atmospheric Radiation Measurement Program Science Team

Meeting. Texas, San Antonio, 22 ~ 26 March, 1999.

- [9] Liljegren J, Clothiaux E, Mace G, et al. A new retrieval for cloud liquid water path using a ground- based microwave radiometer and measurements of cloud temperature [J]. Journal of Geophysica Research, 2001, 106:14 485-14 500.
- [10] Liljegren J, Clothiaux E, Kato S, et al. Initial evaluation of profiles of temperature, water vapor and cloud liquid water from a new microwave profiling radiometer [C] // American Meteorological Society. 5th American Meteorological Society (AMS) Symposium on Integrated Observing Systems. Boston, Massachusetts, 14 ~19 January 2001.
- [11] Liljegren J, Lesht B, Kato S, et al. Clothiaux, Initial evaluation of profiles of temperature, water vapor, and cloud liquid water from a new microwave profiling radiometer [C] // Department of Energy, Wasting D C. 11th Atmospheric Radiation Measurement (ARM) Program Science Team Meeting. Georgia: Atlanta 19-23 March, 2001.
- [12] Solheim F, Godwin J. Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid profiles by a frequency synthesized microwave radiometer [J]. *Meteorologische Zeitschrift*, 1998, 7:370-376.
- [13] Solheim F, Godwin J, Ware R. Microwave radiometer for passively and remotely measuring atmospheric temperature, water vapor, and cloud liquid water profiles [C] // Final Contract Report DAAL01-96-2009. White Sands Missile Range, White Sands, 1996.
- [14] Solheim F, Godwin J, Westwater E, et al. Radiometric profiling of temperature, water vapor, and liquid water using various inversion methods[J]. Radio Science, 1998, 33:393-404.
- [15] Stankov B, Gossard E, Weber B, et al. Humidity gradient profiles from wind profiling radars using the NOAA/ETL Advance Signal Processing System (SPS) [J]. Journal of Atmospheric and Oceanic Technology, 2003, 20:3-22.
- [16] Vandenberghe F, Ware R. Four-dimensional variational assimilation of ground-based microwave observations during a winter fog event[C] // International Workshop on GPS Meteorology. International Symposium on Atmospheric Sensing with GPS. Tsukuba, Japan, 14-17 January,2003.
- [17] Ware R, Alber C, Rocken C, et al. Sensing integrated water vapor along GPS ray paths[J]. Geophysical Research Letters, 1997, 24;417-420.
- [18] Ware R R, Carpenter J G ldner, Liljegren J, et al. A multi-channel radiometric profiler of temperature, humidity and cloud liquid [J]. Radio Science, 2003, 38:8 032-8 079.

Performance and Characteristics Analysis of a Multi-wavelength, Ground-based Microwave Radiometer before and after 0713 Typhoon "Wipha" Landfall

ZHAO Bingke¹, SHAO Demin¹, LU Xiaoqin¹, XU Tong¹, WENG Yongyuan²

(1. Laboratory of Typhoon Forecast Technique, Shanghai Typhoon Institute of CMA, Shanghai 200030, China;
 2. Shanghai BaoShan District Meteorological Bureau, Shanghai 200030, China)

Abstract: Using typhoon "Weipa" exploring experiment data and the basic observations during September, 2007 from Shanghai Meteorological Bureau, detection performances of multi-channel ground-based microwave radiometer and the relative characteristics of No. 0713 typhoon Weipa before and after its landing are investigated. Results suggest that trends of temperature as well as relative humidity before and after Weipa landing detected by multi-channel ground-based microwave radiometer are in substantial agreement with those from GPS sounding if minor differences between them are neglected, which proves that microwave radiometer has the ability of typhoon detection. In addition, features of sudden outbursts of Weipa landing are detected by microwave radiometer with active shot-lived cold or warm atmospheric column on temperature field and atmospheric column with high water vapor density on vapor field during the landing of Weipa.

Key words: Super strong typhoon "Wipha"; Microwave radiometer; Vapor density.

2009 年第 10 期要目

高亚洲冰川系统物质平衡特征及其对全球变化响应研究进展与展望 谢肖	自楚,周宰根,李巧媛,王淑红
卫星遥感探测大气 CO2 浓度研究最新进展	石广玉,戴 铁,徐 娜
干旱区陆面过程和大气边界层研究进展 张 强,王 胜,张	杰,王润元,刘宏宜,李岩瑛
地震海洋学研究进展	毅,刘怀山,陈 坚,许 江
钙锰矿的研究进展 崔浩杰,冯雄汉,刘	凡,谭文峰,邱国红,陈秀华