周围神经疾病

华山医院神经科

王 毅

- 周围神经的解剖和生理
- 周围神经变性类型
- 周围神经病分类
- 颅神经疾病
 - 三叉神经痛
 - 面神经炎 (Bell's palsy)
- 脊神经疾病
 - 急性感染性多发性神经炎

(Guillain-Barré Syndrome)

周围神经解剖与生理

- 周围神经:
 - 颅神经
 - 脊神经
- 周围神经病
- 解剖生理 神经纤维:
 - 有髓鞘
 - 无髓鞘纤维
 - 雪旺细胞
 - 髓鞘组成和作用

中枢神经

周围神经

Peripheral nervous system

脑神经

躯体神经 为脏神经

脊神经

12对脑神经

1	嗅	
2	视	不属周围神经系统
3	动眼	
4	滑车	中脑
5	三叉	
6	外展	
7	面	桥脑
8	位听	
9	舌咽	
10	迷走	
11	副	延髓
12	舌下	

脊神经

脊神经前支

组成

<u>**G**</u> **C**1-**C**4

臂丛 C5-T1

胸神经 前支 **T**1-**T**12

腰丛 T₁₂-L₄

Dermatomes

骶丛 L4-L5→腰骶干 全部S, Co

周围神经变性类型

- 节段性脱髓鞘
- 局限性雪旺细胞及髓 鞘破坏-轴突正常 节段性、斑点状病变
- 电生理:
 - 肌肉失神经不明显
 - 神经传导可减慢

周围神经变性类型

- 轴突变性
- 轴突病变-继而髓鞘或雪旺细胞破坏、 神经传导阻滞、肌萎缩

- 电生理:
 - 肌肉失神经支配
 - 神经传导显著减慢

- 瓦勒变性 (Wallarian degeneration)

周围神经病分类

• 神经痛:

- 一受累感觉神经分布区发生疼痛
- -神经主质无明显变化
- -神经传导正常

• 神经病或神经炎:

- 各种原因引起的周围神经变性
- -神经主质有改变
- -神经传导异常

神经病或神经炎分类

- 分类的依据
 - 病理
 - 病程
 - 症状
 - -解剖部位
 - -神经数目

- 临床分类:
 - 对称性多发性神经病
 - 单神经病
 - 多数性单神经病

诊断和处理

- 电生理: 肌电图、神经传导速度
- 处理:
 - 病因治疗
 - 对症治疗
 - 康复治疗

颅神经疾病

三叉神经痛

- 反复发作
- 短暂、阵发性
- 解剖

Figure 1. The trigominal ganglion gives rise to three main branches of the trigominal nerve (cranial nerve V), which provides sensory innervation to the lace. The ophthalmic branch (V₁) innervates the upper part of the face, the maxillary branch (V₂) innervates the central part, and the mandibular branch (V₃) innervates the lower part.

病因和病理

- 原发性三叉神经痛
 - 原因不明
 - 无明显病理改变
 - 无三叉神经功能异常

病因和病理

- 原发性三叉神经痛
 - 原因不明???
 - 无明显病理改变??
 - 无三叉神经功能异常?

病因和病理

- 继发性三叉神经痛
 - -病因明确
 - 伴有邻近结构损害
 - -三叉神经功能丧失

临床表现

- -女性、多见于40岁后
- 单侧面部突发的剧痛(无先兆)
- 电击、针刺、刀割、撕裂、烧灼样
- 主要在第二、第三支分布区
- -有"触发点",时间短暂(不超过2分钟)
- -神经系统检查无阳性发现*
- 发作间隙期如常人

诊断和鉴别诊断

- 鉴别继发性三叉神经痛
- 同一部位的面痛鉴别
 - 青光眼
 - 牙痛、额窦或颌窦炎
 - 颞颌关节综合征
 - 其他颅神经痛

治疗

- 病因治疗: 继发性三叉神经痛
- 症状治疗:
 - 药物治疗
 - -神经阻滞(药物无效,而不宜手术)
 - 射频治疗*
 - 手术治疗

Bell's Palsy

Sir Charles Bell

Epidemiology

- Lifetime prevalence: 6.4 to 20 per 1,000
- Incidence: Increased with age
 - · Overall: 0.5 per year per 1,000
 - · Age 20: 0.1 per year per 1,000
 - · Age 80: 0.6 per year per 1,000
- Male = Female
- Recurrence: 7%
- Side: Right in 63%
- Increased incidence: Diabetes; Pregnant females

Pathogenesis

- Evidence for herpes simplex type 1 infection

Clinical Features

- Onset

- Paralysis: Progresses to maximal defect over
 3 to 72 hours
- Pain (50%): Near mastoid process
- Excess tearing (33%)
- · Other: Hyperacusis; Dysgeusia

Clinical Features

- Signs
 - Facial weakness
 - All branches of nerve: Upper & Lower
 - Unilateral, Bilateral in < 1%
 - Degree: Partial (30%); Complete (70%)
 - Stapedius dysfunction (33%): Hyperacusis

Clinical Features

- Signs

- · Lacrimation: Mildly affected in some patients
- Taste: No clinically significant changes in most patients
- Sensory loss
 - Mild or None
 - May be present on face or tongue: On side of paralysis
 - Possibly related to involvement of greater superficial petrosal nerve

Prognosis

- Prognosis better

- Incomplete paralysis
- Early improvement
- Slow progression
- Younger age
- Normal salivary flow
- Normal taste
- · Electrodiagnostic tests normal
 - Nerve excitability
 - Electrogustometry

- Course

- Improvement onset: 10 days to 2 months
- · Plateau: 6 weeks to 9 months

- Course

- Residual signs
 - Synkinesis (联带运动)
 - » Frequency: ~50%; May be reduced by corticosteroid treatment
 - » May be treated with botulinum
 - » Probably due to misregeneration of nerve
 - Face weakness: 30%
 - Contracture: 20%
 - Crocodile tears: 6%
 - Blepharospasm: May occur years after paralysis

- Statistical degrees of benefit from drug treatment
 - Prednisone + Acyclovir > Prednisone > Acyclovir
 - More benefit when treatment started within 3 days of onset
 - No benefit from treatment starting more than 10 days after onset

- Corticosteroids

- · Use within one week of onset
- Adults: Initial dose prednisone 80 mg qd x 5 days
- · Children: Initial dose prednisone 1 mg/kg/day
- After initial dose: Taper off over 7 to 10 days

- Acyclovir

- Use within 3 days of onset
- Adults
 - 2,000 mg per day (400 mg 5x/day) for 7 days
 - With varicella zoster 4,000 mg per day
- · Children: 80 mg/kg per day for 5 days
- · ? More effective in Ramsay-Hunt syndrome
- Alternative anti-viral: Valacyclovir

- Protect eye from exposure
- -? Facial exercise

Laboratory

- CSF: Protein high in 30%; Cells in 10%
- Calorics: Often reduced on affected side

Laboratory

- CNS imaging (MRI with gadolinium) indicated when
 - No improvement in facial paresis after 1 month
 - Hearing loss
 - Multiple cranial nerve deficits
 - · Signs of limb paresis or sensory loss

Guillain-Barré Syndrome

Epidemiology

- Incidence: 1 to 2/100,000/year
- Male: Female = 1.25: 1
- Peak ages: Young adults & > 55 years
- Genetic risk factor: Fc y RIIa-H131 allele homozygosity (vs R131)
 - More common than in healthy controls
 - Higher risk for severe disease than other genotypes
 - · Same allele protective against lupus nephritis

- Weakness
- Cranial Nerves
- Sensory
- -Tendon reflex loss
- Autonomic dysfunction

- Weakness

- · Distribution: Proximal + Distal; Symmetric
- Severity:
 - Quadriplegia in 30%;
 - Bed bound another 30%

- Weakness

- · Distribution: Proximal + Distal; Symmetric
- Severity:
 - Quadriplegia in 30%;
 - Bedbound another 30%

Respiratory failure

- Vital capacity < 1 liter: Observation in ICU necessary
- ~33% of GBS require intubation
- Indications for intubation
 - » Vital capacity < 12 to 15 ml/kg: Especially with rapid decline
 - » Negative inspiratory force (NIF) < 25 cm H2O
 - » Hypoxemia: PaO2 < 80 mm Hg (?)
 - » Difficulty with secretions

· Respiratory failure

- Time of onset: 7 days
- Time on respirator: 50% < 3 weeks
- Usually 2° to muscle weakness
- Occasionally related to aspiration

- · Cranial Nerves (70%)
 - VII
 - » Symmetric: Occurs early in parallel with weakness
 - » Asymmetric
 - » Occurs later in disease course
 - » Other weakness may be stable or improving
 - Extra-ocular: Overlap with Miller-Fisher
 - Tongue: Symmetric; Common (50%)

- Sensory

- Paraesthesias:
 - Initial symptom in 50%; Eventually occur in 70% to 90%
- · Pain
 - Prominent in 70%
 - Associations
 - » Neuropathy: In back, hips & legs at onset; Myalgias;
 Occasional radicular
 - » Immobility: Myalgias
 - » Recovery phase: Distal; Legs > Hands; Dysesthesias
- Loss(?)
 - Distal; Symmetric
 - All modalities involved

- Tendon reflex loss

- Early in most (70%) but not all patients
- Progressive reduction during 1st week
- Distribution: Ankles most frequently lost; Biceps most frequently spared
- · Associations: Sensory loss; Weakest limbs; Distal
- Spared reflexes all during disease course suggests another diagnosis

- Autonomic dysfunction
 - Frequency: 60%
 - More common in more severe syndromes
 - Blood pressure
 - Transient hypertension or, less often, hypotension
 - Increased sensitivity to anti-hypertensive medications
 - Cardiac arrhythmias:
 - Sinus tachycardia; Bradycardia

- Autonomic dysfunction

- Bladder: Urinary retention; Sphincter symptoms in 10% to 15%
- · GI: Ileus
- Test: Bilateral ocular pressure x 25 sec;
 Produces bradycardia (< 40 bpm)
- · Course
 - Usually improves in parallel with motor & sensory function
 - Rarely any long-term autonomic dysfunction

- Progression

- Nadir: Mean at 9 days
- · General definition: Progression for < 4 weeks
- 1% have acute onset of CIDP vs GBS: May need repeat treatment; ? Steroid responsive

· Death

- Frequency: 3% to 10%
- Causes: Pneumonia; Iatrogenic hypotension
- Associations:
 - » Mechanical ventilation;
 - »? Autonomic dysfunction

- Upper respiratory: + CMV titers = 18%
 - Younger patients
 - · More sensory loss & cranial nerve involvement
 - More severe disease
 - Respiratory insufficiency more common (65%)
 - Longer median time until independent locomotion
 - · Antibodies
 - Higher Frequency of serum IgM vs GM2 ganglioside
 - Also see IgM vs GalNAc-GD1a ganglioside

(N-乙酰半乳糖胺)

- Gastrointestinal:

- + Campylobacter jejuni titers = 28%
- Motor predominant
- · More severe outcome

- Mycoplasma pneumonia
 - Associated with antibodies to
 galactocerebroside (GalC) (半乳糖脑苷脂)
 - · Frequency: 5% of GBS patients in Japan

· Other infections

- Epstein-Barr virus;
- HIV;
- -? Hepatitis A

- Vaccinations

- Tetanus toxoid; Influenza; ± Polio (oral)
- Rabies
 - Vaccines: Myelin-containing (Semple); Suckling mouse brain
 - Usually > 10 years old
 - Some cases associated with sensitization to myelin basic protein
 - Occurs in clusters

- Surgery
- -? Graft vs Host disease
- Drugs: Zimeldine

- Demyelination ± Axonal loss
 - Common early (< 1 week from onset) features
 - Reduced H reflex (97%)
 - SNAPs: Upper extremity (61%); Sural may be preserved
 - Reduced F-waves (84%)

- Other electrodiagnostic features: Demyelination
 - Overall
 - Features less common in 1st 5 to 7 days of disease
 - Increased frequency when multiple nerves studied
 - Features of demyelination for more specific diagnosis
 - One abnormality in 2 different nerves
 - Nerves: Median & Ulnar or Peroneal

- Other electrodiagnostic features: Demyelination
 - Specific features
 - » Distal motor latency: > 150% upper limit of normal
 - » Motor NCV: < 70% lower limit of normal (? CIDP)
 - » F-wave latency: > 150% upper limit of normal
 - » CMAP amplitude decay: > 10% to 30%
 - » CMAP temporal dispersion
 - > 300% upper limit of normal (Distal)
 - » CMAP temporal dispersion
 - » > 150% upper limit of normal
 - » Distal: Proximal

- Motor conduction block probably causes acute weakness
 - Locations
 - Proximal nerve roots
 - Along course of nerve
 - Distal near motor nerve terminals
- Compound motor action potentials (CMAPs):
 - Often become progressively small
 - Small CMAPs may indicate
 - Axonal loss or distal conduction block
 - Poor prognostic sign
- EMG: Fibrillations & Positive sharp waves
 - · Onset: 2 to 4 weeks
 - · Peak: 2 to 3 months

GBS: Humoral Immunity

- IgM or IgG vs Tubulin: 10%
- IgG vs GM1, GM1b or GalNAc-GD1a (N-乙酰半乳糖胺): Motor syndromes
- United States: < 2%
 - · Japan, China, Australia & ? Europe: 10% to 20%

GBS: Humoral Immunity

- IgM or IgG vs Heparan sulfate: 35%
- IgG vs other glycolipids: 10% to 30%
- IgM or IgG vs PMP-22: Probably testing artefact; Not specific for GBS
- Tumor necrosis factor- α : High serum level correlates with demyelination

GBS: Laboratory

- CSF: Albumino-cytological dissociation

(蛋白一细胞分离2~6周)

- Protein
 - Early (1st 2 days): Usually (85%) normal
 - Later
 - » High; 66% in 1st week; 82% in 2nd week
 - » Highest with most slowing of NCV
- Cells: Normal (~90%), unless associated disorder present
- Oligoclonal bands: 10% to 30%

GBS: Laboratory

- Hematology: Only abnormal with associated infection or other disorder
- Serum CK: Higher in patients with pain
- ESR: Usually < 50 mm/hr
- Mild proteinuria: 25%
- Liver function test: Abnormal in 10%
- WBC: Most commonly normal; > 20,000 only with associated infections

GBS: Laboratory

- HLA types: Class II associations with AIDP in northern Chinese patients
 - General
 - Regions important in peptide binding and T cell recognition
 - Associated with other diseases with pathoimmunological basis
 - No class II associations found for AMAN
 - Susceptibility: DQ β RLD55-57/ED70-71 & DR β E9V11H13
 - Protection: DQ β RPD55-57 epitope

Causes of morbidity

- Weakness
 - Respiratory failure
 - Pneumonia or sepsis
 - Dysphagia
 - · Thromboembolism
 - · Corneal exposure

Causes of morbidity

- Sensory
 - Pain: 2° neuropathy or immobility
- Autonomic
 - Cardiac Arhythmias
 - Labile blood pressure
 - Hypersensitivity to cardiovascular medications

Associated Systemic Disorders

- Infections: Prodromes
 - Viral
 - Cytomegalovirus (CMV)
 - Epstein-Barr virus (EBV) ± Hemophagocytic syndrome
 - Human immunodeficiency
 - Bacterial
 - Campylobacter jejuni
 - Mycoplasma pneumoniae

Associated Systemic Disorders

- Porphyria
- Hyponatremia
 - Mildly reduced Na+ in 7% to 26%
 - Severely reduced Na+ (SIADH) (105 to 120 mEq/L) may occur
 - No relation to degree of severity of GBS

Associated Systemic Disorders

- Renal
 - Common: Mild transient proteinuria
 - Rare: Glomerulonephritis
- Cardiac
 - Arhythmias: 10% to 75%
 - EKG changes: > 50%
- Serum CK: High in 33%; Up to 4x normal

- Mechanical ventilation needed

- Rapid disease progression
- Bulbar dysfunction
- · Facial weakness: Bilateral

- Mechanical ventilation needed
 - Dysautonomia
 - · Pulmonary function testing
 - Vital capacity < 20 ml/kg
 - Decrease from baseline > 30%: Vital capacity or Respiratory pressure

- Residual disability greater
 - Clinical prognostic factors for residual disability
 - Increasing age (especially > 40 to 60)
 - Weakness
 - » Severe
 - » Need for ventilatory support
 - » Rapid development

Residual disability greater

- · Clinical prognostic factors for residual disability
 - Complete areflexia in the acute stage
 - Diarrhea prodrome: Especially with Plasma exchange treatment
 - Lack of treatment with plasma exchange or IV Ig
 - Longer time to improvement
 - » Initial improvement > 21 days
 - » Disability present at 12 to 18 months

- Laboratory prognostic factors for residual disability
 - Axonal loss
 - » Low compound motor action potential (CMAP) amplitudes
 - < 20% of normal
 - »? Lack of demyelinating features
 - Serology
 - »? Serum IgG vs GM1 ganglioside
 - »? Preceding Campylobacter jejuni infection
 - » Recent CMV infection

Treatment

Immunomodulation

- · Plasma Exchange or IV IgG definitely indicated
 - Patients with inability to walk
 - 1st 2 weeks of disease
 - Decision between IV IgG & PE: Depends on individual features of patient & disease
- Probably indicated: Milder weakness; Early in disease course

Treatment

Immunomodulation

- Plasma Exchange and IV IgG
 - Often provide similar degrees of benefit
 - Exception
 - » Associated IgG vs GM1, GM1b, or GalNAc-GD1a gangliosides: IVIg more effective
- Not Corticosteroids

Treatment

- Ventilatory support
- Avoid anti-hypertensive medications
- Sub-cutaneous heparin with immobility: Lower Risk of thromboembolic events

Childhood GBS

- Ages: Neonatal to Teens
- Onset
 - · Lower extremity Generalized weakness
 - · Pain & Paresthesias (60%): Lower limbs or Back
- Miller-Fisher syndrome: 1% of childhood AIDP

Childhood GBS

- CNS signs: More frequent; At onset
- Bladder dysfunction
- Mental status changes & headache
- Pain & meningismus (30%)
- Ataxia: Gait
- Occasional: Papilledema (< 5%)

Childhood GBS

-Recovery

- » Often more rapid than adults
- » Disability at 1 year: Rarely full recovery
- » Residual disability (~30)%:
- » Foot drop, Pes cavus, Tremor

Miller Fisher Syndrome

- · Epidemiology in Japan
 - Onset: Mean 40 years; Range 13 to 78 years
 - Seasonal: Higher frequency in Spring (March to May)
 - Clinical prodrome: Respiratory most common

Miller Fisher Syndrome

- Epidemiology in Japan
 - Frequency: 25% of GBS in Japan; 1% of GBS in US
 - Associated infections
 - Campylobacter jejuni: Often serotype O-2 or O-10
 - Hemophilus influenzae: 7% of MFS patients with positive serology

Miller Fisher Syndrome — Clinical

- Onset
 - Diplopia (Asymmetric) (80%)
 - Myalgia & Paresthesias
 - Vertigo & Ataxia

Miller Fisher Syndrome – Clinical

- Eye

- External ophthalmoplegia (100%):
 Symmetric or Asymmetric
- · Pupillary dysfunction (42%): Mydriasis
- Ptosis (58%)

Miller Fisher Syndrome — Clinical

- Ataxia (100%): Dysmetria; Gait ataxia; Arms & Legs
- Areflexia (100%): By 1 week of disease
- Sensory
 - Distal & Facial paresthesias & dysesthesias (24%)
 - · Sensory loss: Minimal; Definite in 20%
- Weakness: 20%
- Autonomic: Bladder disorders 16%

Miller Fisher Syndrome – Clinical

- Other Cranial nerve disorders
 - Oropharyngeal weakness (26%)
 - Facial weakness (32%)
- Progression
 - Over days to weeks
 - May progress to generalized weakness
 - Recovery
 - Onset: After 2 weeks to 2 months
 - Long term: Many with no residual defects

MFS-Cranial nerve variants

- Often associated with IgG vs GQ1b or GT1b gangliosides
- GBS overlap: Ophthalmoplegia; Weakness; \pm Ataxia
- Internal ophthalmoplegia: Dilated pupils; Light-near dissociation
- Acute external ophthalmoplegia: Complete or partial

MFS-Cranial nerve variants

- Acute ataxia: May progress to Weakness & GBS
- Visual impairment
- Rule out: Neurosyphilis

MFS-Cranial nerve variants

- Chronic ophthalmoplegia with serum IgG binding to GQ1b ganglioside
 - May be associated with vestibulopathy or demyelinating neuropathy
- Acute neuropathies with bulbar dysfunction: Pharyngo-cervical-brachial variants
- Bickerstaff brainstem encephalitis: Brainstem signs

- CSF
 - Protein: 20 to 60 mg/dl
 - Cells: Few or None; 0 to 5/mm3

- Nerve conduction studies
 - Sensory
 - Axonal loss
 - SNAPs: Reduced amplitude
 - Motor
 - Peripheral nerve: Normal CMAPs
 - Facial: Reduced CMAP amplitude
 - · F-waves: Prolonged; Dispersed; Absent
 - · H reflexes: Absent from soleus

- Serum antibodies
 - IgG vs GQ1b(80%)
 - · IgG staining of cerebellar molecular layer

- MRI

- Cranial nerve enhancement (gadolinium) may occur
- Brainstem or Cerebellar lesions: Some patients

THANKS!

Q&A