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Gene Differential Expression at Seedling Stage in Four Cotton Combinations
Hybridized by CRI-12 and Its Pedigree-Derived Lines

ZHU Xin-Xia"?, ZHU Yi-Chao', Al Ni-Jiang', LIU Ren-Zhong', and ZHANG Tian-Zhen'""

!National Key Laboratory of Crop Genetics & Germplasm Enhancement / Nanjing Agricultural University, Nanjing 210095, China; 2 College of Life
Science, Shihezi University, Shihezi 832003, China

Abstract: CRI-12, an Upland cotton variety with high yield, elite fiber quality and disease resistance, is characterized by its high
heritability, combining ability, and genetic stability. CRI-12 and its pedigree-derived lines were used to develop high heterosis
cotton hybrids, such as Zhongmiansuo 28, CRI-29, XZM2, and Jimian 18. The roots and leaves at seedling stage of these hybrids
and their corresponding parents were sampled for cDNA-AFLP analysis and validation by Quantitative Real-Time PCR. The re-
sults were as follows: (1) CIR-12 played a predominant role in the heterosis of vegetative growth in CRI-28, CRI-29, and
Jimian18 at seedling stage. (2) Four differential expression types were detected between the hybrid and its parents: I. Up expres-
sion only showed in hybrid but not in both parents; II. Dominant expression showed in one of the parents but not in F; and another
parent, including the expression pattern in female parent and hybrid not in male parent, and the expression pattern in male parent
and hybrid not in female parent; III. The gene silenced in one of the parents, including the expression pattern in male parent not in
hybrid and female parent and the expression pattern in female parent not in hybrid and male parent; IV. Down expression showed
in both parents but not in the F; generation. The tendency of proportion in four types was consistent and showed a high ratio in
dominant expression and silencing in single parent, but a low ratio in down expression in roots and leaves of hybrids. The type
expressed only in one parent and F, or only in one parent played main role in heterosis. Differential expression genes in leaves and
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roots accounted for 29.20-46.09% and 15.65-22.49%, respectively. The differential expression genes in leaves were more than
those in roots, indicating that some genes play more important roles for heterosis than these in roots. (3) Genes co-expressed be-
tween hybrids and high value parent CRI-12 and/or its derived lines were much more than those between hybrids and the relative
low value parents, indicating that CIR-12 plays a predominant role in the expression of genes responsible for heterosis in CRI-28,
CRI-29, and Jimian 18 at seedling stage. (4) Differentially expressed genes in the four hybrids accounted for 27.00-34.56% of
total genes detected. Further analysis revealed that the main modes of gene action involved in hybrids were additive and dominant
effects accounting for 79.52-83.79%, and the effect of over-dominance accounting for 3.30-7.17%, under-dominance effects ac-
counting for 2.62-4.14% and low-parent dominance effects accounting for 5.65-13.03%. All possible modes of gene action
co-existed supported the hypothesis of multiple gene mechanisms contributed to heterosis. (5) The over-dominance effect in
CRI-28 which express high parent was 7.17%, which was higher than that in other three middle heterotic crosses at three earlier
growing stages. The result suggests that the differential expression type expressed only in Fy play an important role in heterosis of
vegetative growth.
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Table 1 Dry weight of plant in hybrids and parents at seedling stage (g)
Material Above-ground Below-ground Indiviual
P, 0.2570+0.0699 0.0398+0.0045 0.2968+0.071%
P, 0.2593+0.0451 0.0293+0.0047 0.2887+0.0477
2 F, 0.3060+0.0663 0.0417+0.0091 0.3476+0.0672
CRI-28 o
Mid-parent hetero s 18.50 2055 18.75
(%)
Control heterosis ( 1) 17.98 4.68 17.11
P, 0.3630+0.0734 0.0511+0.009 0.4140+0.079%
P, 0.2204+0.0563 0.0332+0.0068 0.2535+0.056¢
18 F, 0.2953+0.0692 0.0471+0.0087 0.3424+0.070%
Jimian 1¢ e
Mid-parent hetero s 125 11.84 258
(%)
Control heterosis ( o) -18.64 -7.76 -17.30
P, 0.2394+0.0524 0.0359+0.0056 0.2753+0.0531
P, 0.2123+0.0396 0.0268+0.0075 0.2391+0.0432
2 F, 0.2279+0.0272 0.0317+0.0034 0.2596+0.0262
CRI-29 fd-
Mid-parent hetero s 091 114 0.95
(%)
Control heterosis ( 1) -4.78 —~11.76 -5.69
P, 0.2570+0.0699 0.0398+0.0045 0.2968+0.071%
P, 0.2703+0.0419 0.0476+0.0052 0.3180+0.0402
2 F, 0.2699+0.0393 0.0447+0.0037 0.3147+0.0374
XZM 2 ‘d-
Mid-parent hetero s 2137 299 236
(%)
Control heterosis ( 1) 5.02 12.38 6.01
12 Py, P, Fi
P,: female parent of hybrids, CRI-12. P,: male parent of hybrids, F,: hybrids.
4 18 29
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Fig. 1 Gene expression types of cotton hybrid and its parents at seedling stage
3

Each type of 3 bands from left to right represents female parent, hybrid, and male parent, respectively.
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Table 2 Percentage of gene expression types in roots and leaves at three-leaf stage

Differential expression gene Single expression

type
(P1F1+P,Fy) (P1+P2)
Organ Cultivar . Up expression in single parent Down expression in single parent L.
Up expression (P1F1+P4Fy) (%) (P1+P2) (%) Down expression in Total No. of Ratio No. of Ratio
in hybrid (Fy) hybrid (P;+P,) band o band o
(%) %) ands (%) ands (%)
P:Fy P,F, Total Py P,
Total
CRI-28 10.01 8.84 3.86 12.71 2.70 3.60 6.30 4.39 631 33.40 1258 66.60
Leaf
Jimian 18 5.18 15.04 381 18.85 4.83 14.40 19.24 2.83 944 46.09 1104 53.91
CRI-28 5.98 6.02 5.40 11.42 5.06 9.62 14.68 5.65 902 37.72 1489 62.28
XZM 2 3.55 5.33 6.39 11.72 6.69 3.94 10.62 3.30 690 29.20 1673 70.80
CRI-28 3.39 6.49 0.92 7.40 1.62 3.17 4.80 2.89 262 18.48 1156 81.52
Root
Jimian 18 4.26 4.26 2.13 6.39 1.18 181 3.00 2.29 202 15.93 1066 84.07
CRI-28 4.50 4.43 2.07 6.50 1.00 2.07 3.07 1.57 219 15.65 1180 84.35
XZM 2 2.69 1.00 8.26 9.25 5.77 3.38 9.15 1.39 226 22.49 779 77.51
CRI-28 7.17 7.83 2.60 10.43 2.24 3.42 5.65 3.75 893 27.00 2414 73.00
Average .
Jimian 18 4.83 10.92 3.17 14.08 3.44 9.59 13.03 2.62 1146 34.56 2170 65.44
CRI-28 5.44 5.44 417 9.60 3.56 6.83 10.40 4.14 1121 29.58 2669 70.42

XZM 2 3.30 4.04 6.95 10.99 6.41 3.77 10.18 2.73 916 27.20 2452 72.80
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Table 3 cDNA sequences of differential expression fragments between hybrid and parents
E
Code Primer Expression type Homologous protein Acc. No. E-value
L1145 E8MI16 11 No significant similarity found
L1146 E8MI 11 No significant similarity found
L1148 EIIMS 111 No significant similarity found
S- cDNA
L1161 EIIMI2 11 Cucumis sativus clone CU14E03 glutathione S-transferase mRNA, partial ~ACI16511.1 6xE-50
cds
/ (MYND ) QxE_34
L1162  E8MI6 11 Arabidopsis thaliana ubiquitin carboxyl-terminal hydrolase family protein ~ NP_194895.1
/ zinc finger (MYND type) family protein (AT4G31670)
L1163 ElIMI15 11 No significant similarity found
L1165 E8MI 11 No significant similarity found
L1167 EI10MS I shaggy-like cDNA , CAA72330.1  3xE-45
R. communis mRNA for shaggy-like kinase, partial
S- cDNA
L1168 EI2MI2 11 Cucumis sativus clone CU14E03 glutathione S-transferase mRNA, partial ~ACI16511.1 IxE-83
cds
L1169 EI13M6 I No significant similarity found
L1170 E13M8 1 SIT4 . R . . . . NP_180403.1 3xE-16
SIT4 phosphatase-associated family protein (Arabidopsis thaliana) -
L1171 E4MI0 | _ NitaMp073 - YP_173415.1  1xE-23
Hypothetical protein NitaMap073 (Nicotiana tabacum) -
L1173 El4M4 111 No significant similarity found
L1174 El14M4 111 No significant similarity found
L1175 E14M4 I No significant similarity found
2+
L1176 E4M11 I _ ZTI . . . . NP_566278.1  2xE-27
Zn”" binding protein (Arabidopsis thaliana) -
L1177 E10M15 1T . . Hl . . . I BACS53940.1 6xE-13
Stress-inducible H1 histone-like protein (Nicotiana tabacum)
L1178 E1IMIS5 I NP_189420.1  1xE-39
Monodehydroascorbate reductase -
06 1
2
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Fig. 2 Relative expression level of differential expression genes
P,: female parent of hybrids; P,: male parent of hybrids; F;: hybrids.
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