T_2 分子 $X^1\Sigma_g^+$, $B^1\Sigma_u^+$ 和 $C^1\Pi_u$ 态的势能函数

张霭云,周玲玲,谢安东

(井冈山大学物理系,江西吉安 343009)

摘要:使用 SAC/SAC-CI 和 D95 + + * *,6-311 + + g * *及 cc - PVTZ 基组,分别对 T₂ 分子的基态 X¹ Σ_g⁺、第 2 激发态 B¹ Σ_u⁺ 和第 3 简并激发态 C¹ Π_u 的平衡结构和谐振频率进行优化计算. 对所有计算结果进行 比较,得出 cc - PVTZ 基组为最优基组. 运用 cc - PVTZ 基组和 SAC 方法对基态 X¹ Σ_g⁺,SAC-CI 方法对激发态 B¹ Σ_u⁺ 和 C_u^{II} 进行单点能扫描计算,并用正规方程组拟合 Murrell – Sorbie 函数,得到相应电子态的势能函数解析 式,由得到的势能函数计算了与 X¹ Σ_g⁺, B¹ Σ_u⁺ 和 C¹ Π_u 态相对应的光谱常数,结果与实验数据吻合.

关键词:分子结构与势能函数;激发态;Murrell-Sorbie 函数

中图分类号:O 561.1 文献标识码:A 文章编号:0258-7971(2008)02-0175-05

势能函数既是分子的几何与电子结构的完全 描述^[1~3],又是研究分子反应动力学的关键^[4~6]. 双原子分子势能函数是构造多原子分子全空间势 能函数的基础^[7~9],因此,理论计算导出双原子分 子基态与低激发态的势能函数是较重要的研究课 题.氢及其同位素不仅资源丰富,内部蕴藏能量大, 产物清洁、不污染环境,而且可储、可输、转换及使 用方便,是人类当今及以后的通用燃料和理想能 源.氚是一种具有强烈放射性的气体,极难单独保 存,为便于保存和使用,可使氚与氧化合构成氚水. 要得出氚水分子的势能函数与相关动力学参数,首 先需要对 T₂ 分子的结构与性质进行理论研究,尽 管 T₂ 分子的结构参数与光谱数据有实验与理论研 究结果^[10~13],但研究 T₂ 分子基态和激发态的势 能函数,未见文献报道.

Gaussian03 提出了计算基态及激发态势能函数的一种新方法: SAC/SAC - CI (Symmetry Adapted Cluster/Symmetry Adapted Cluster - Configuration Interaction),本文在简要推导T₂分子各电子态的离解极限后,利用这一方法计算并讨论D95++**,6-311++g**和cc-PVTZ基组对T₂分子基态X¹ Σ_{g}^{+} 、第2激发态B¹ Σ_{u}^{+} 和第3

简并激发态 $C^{I}\Pi_{u}$ 的平衡几何和谐振频率的影响, 使用优选出的 cc – PVTZ 基组,用 SAC 方法对基 态、SAC – CI 方法对激发态进行单点能扫描计算, 用正规方程组拟合 Murrell – Sorbie 函数,得到 3 个 电子态的势能函数解析式,并与文献报道的光谱实 验结果^[13]进行对比.结果表明,利用 SAC/SAC – CI 方法获得的 T₂ 分子基态与低激发态势能函数, 结果较好.

1 T₂分子的电子态与离解极限

 T_2 分子为同核双原子分子,属 $D_{\infty h}$ 群.要获得 其基态 $(X^1\Sigma_g^+)$ 、第 2 激发态 $(B^1\Sigma_u^+)$ 和第 3 简并激 发态 $(C^1\Pi_u)$ 的正确势能函数,必须确定其合理的离 解极限.

T 原子的基态电子状态^[14]为²S_g,属 SO(3)群, 当 2 个基态 T 原子反应生成 T₂ 分子时,T 原子的 对称性降低,SO(3)群的不可约表示分解为 D_{∞h}群 的不可约表示:²S_g→² Σ⁺_g,通过对组合 T(²S_g) + T(²S_g)的直积和约化:² Σ⁺_g ⊗² Σ⁺_g→¹ Σ⁺_g ⊕³ Σ⁺_g, 容易看出最后结果中含有 T₂ 分子的¹ Σ⁺_g,因此 2 个基态 T 原子的组合是可以得到¹ Σ⁺_g 态的 T₂ 分

* 收稿日期:2007-11-22
 基金项目:江西省教育厅科技项目资助(2007326);江西省科技计划指导性项目资助(200621).
 作者简介:张霭云(1972-),男,讲师,主要从事大学普通物理与实验教学及研究方面的工作.
 通讯作者:谢安东(1964-),教授,博士,xieandongzhou@163.com.

子的.根据微观过程的可逆性原理^[15,16],这一过程 的逆过程,即下述过程为其可能的离解极限之一

$$T_2(^1\Sigma_g^+) \rightarrow T(^2(S_g) + T(^2(S_g)).$$
 (1)

当 2 个 T 原子都处于²P_u 激发态时,同理,由 于²P_u可以分解为 D_{∞h}群的² Σ⁺_g ⊕² Π_u,而组合 T(²P_u) + T(²P_u)经直积和约化后(² Σ⁺_g ⊕² Π_u)⊗ (²Σ⁺_g ⊕² Π_u)→¹Σ⁺_g(2)⊕¹Σ⁻_u ⊕¹ Π_g⊕¹ Π_u⊕¹Δ_g ⊕³Σ⁺_u(2)⊕³ Π⁻_u⊕³ Π_g⊕³Δ_u,既含有¹Σ⁺_g,又含 有¹Π_u,因此根据微观过程的可逆性原理,下述离 解极限是可能的:

 $T_2(^{1}\Sigma_g^{+}) \rightarrow T(^{2}P_u) + T(^{2}P_u),$ (2)

 $T_2(^2 \prod_u) \rightarrow T(^2(P_u) + T(^2P_u).$ (3)

不过,对于通道(2),由于所生成的 T 原子都 是处于²P_u激发态的,因此其离解能肯定高于生成 原子都处于基态的通道(1).所以,根据分子反应静 力学的最优能量过程原则^[16],通道(1)较通道(2) 为最优过程.

当1个T原子处于基电子态²S_g、另1个T原 子处于激发电子态²P_u时,基于同一道理,由于²S_g →² Σ_{g}^{+} ,²P_u→² $\Sigma_{u}^{+} \oplus$ ² Π_{u} ,又由于组合T(²S_g)+ T(²P_u)经过直积和约化后² $\Sigma_{g}^{+} \otimes$ (² $\Sigma_{u}^{+} \oplus$ ² Π_{u})→ ¹ $\Sigma_{u}^{+} \oplus$ ³ $\Sigma_{g}^{+} \oplus$ ¹ $\Pi_{g} \oplus$ ³ Π_{g} ,其中既含有¹ Σ_{u}^{+} ,又含 有¹ Π_{u} ,因此根据微观过程的可逆性原理,下述离 解极限是可能的:

 $T_2(^{1}\Sigma_u^{+}) \rightarrow T(^{2}S_g) + T(^{2}P_u),$ (4)

$$T_2(^1\prod_u) \to T(^2S_g) + T(^2P_u).$$
 (5)

对于通道(3),由于所生成的 T 原子都是处 于²P_u激发态的,因此其离解能肯定高于生成原子 1个处于基态、1个处于激发态的通道(5).所以,根 据分子反应静力学的最优能量过程原则,通道(5) 较通道(3)为最优过程. 综上所述,T₂分子的3个电子状态的合理离 解极限为

$$\Gamma_2(X^1 \Sigma_g^+) \rightarrow T(^2 S_g) + T(^2 S_g), \qquad (6)$$

$$\Gamma_2(B^1 \Sigma_u^+) \rightarrow T(^2 S_g) + T(^2 P_u), \qquad (7)$$

$$T_2(C^1 \prod_u) \to T(^2S_g) + T(^2P_u).$$
 (8)

2 结果与分析

2.1 基组的优选 众所周知,利用 Gaussian03 程 序进行能量计算,即使采用同一计算方法,不同的 基组对基态及激发态的能量计算结果仍有较大影 响.本文选用 D95++**,6-311++g**和 cc -PVTZ 3 个基组,SAC 与 SAC - CI 方法,分别对 T₂ 分子的 X¹ Σ_g^+ ,B¹ Σ_u^+ 和 C¹ Π_u 态进行几何优化和 频率计算,表 1 列出所有计算结果与实验值.由表 1 知,cc-PVTZ 基组计算得到的结构参数、谐振频 率最为接近实验值.因此,使用 cc-PVTZ 基组对 T₂ 分子的基态及激发态进行单点能扫描,以得到 势能函数解析式与多个光谱数据.

2.2 理论计算拟合 T₂ 分子的势能函数 分别在 SAC/cc-PVTZ 与 SAC-CI/cc-PVTZ 水平上对 基态及激发态进行单点能扫描计算. 扫描计算过程 中使用的各种参数,除 2 个 T 原子的核间距在不 断改变外,其它与结构优化时保持严格一致. 得到 $X^{1}\Sigma_{g}^{+}$, $B^{1}\Sigma_{u}^{+}$ 和 $C^{1}\Pi_{u}$ 态的一系列单点势能值后,用 正规方程组将其拟合为如下形式的 Murrell – Sorbie 函数^[15]

$$V = -D_{e}(1 + a_{1}\rho + a_{2}\rho^{2} + a_{3}\rho^{3}) \cdot \exp(-a_{1}\rho), \qquad (9)$$

式(9) 中, $\rho = r - r_e, r \pi n_e$ 分别为核间距和平衡 核间距; $D_e, a_1, a_2 \ Q \ a_3$ 为拟合系数, 拟合结果列 入表 2 中.

表 1	T ₂ 分子的 X ¹ Σ ⁺	$B^{1}\Sigma_{u}^{+}$	和 C ¹ II	态的优化	计算结果	和实验结果
-----	--	-----------------------	---------------------	------	------	-------

Tab. 1 Experiment and optimization calculations of electronic states $X^1\Sigma_g^+$, $B^1\Sigma_u^+$ and $C^1\Pi_u$ of T_2 molecule

基组	$X^1\Sigma_g^+$			$B^1\Sigma_u^+$			$C^{1}\Pi_{u}$		
	T_0/eV	$R_{\rm e}/{\rm nm}$	$\omega_{\rm e}/{\rm cm}^{-1}$	$T_0/{\rm eV}$	$R_{\rm e}/{\rm nm}$	$\omega_{\rm e}/{\rm cm}^{-1}$	$T_0/{\rm eV}$	$R_{ m e}/ m nm$	$\omega_{\rm e}/{\rm cm}^{-1}$
D95 + + * *	0.0	0.074 1	2612.4	10.3593	0.1132	1 055.5	13.1582	0.0839	3 324.9
6 - 311 + g * *	0.0	0.0743	2 564.0	10.1242	0.1157	1084.9	12.8882	0.0939	2 586.7
cc – PVTZ	0.0	0.0743	2 582.3	10.4073	0.1372	807.7	11.8831	0.1029	1 509.4
实验值[13]	0.0	0.074 1	2 546.5	11.3690	0.1290	787.3	12.4155	0.1011	1 454.2

^a Te is Adiabatic excitation energy

Tab. 2 Murrell – Sorbie potential functions of electronic states $X^1\Sigma_g^+$, $B^1\Sigma_u^+$ and $C^1\Pi_u$ of T_2 molecule								
状态	方法	$D_{\rm e}/{\rm eV}$	a_1/nm^{-1}	a_2/nm^{-2}	a_3/nm^{-3}	$f_2/$ (al·nm ⁻²)	$f_3/$	$f_4/$ (al·nm ⁻⁴)
$X^1\Sigma^+$	SAC	4,7178	38,700	290.29	4 650, 0	693.22	- 57 759.5	4 407 344
g	实验值 ^[13]	4.7476	39.157	387.62	3 360.4	576.15	- 3 7401.6	2 346 085
$B^1\Sigma^+_u$	SAC – CI	3.6843	20.097	196.21	1 220.5	45.810	-3367.2	218 953
	实验值[13]	3.5812	22.232	299.56	1 115.5	55.071	-2055.1	100 096
$\mathrm{C}^{1}\Pi_{u}$	SAC – CI	2.1280	45.120	624.52	3 577.5	268.26	- 12 312.4	358 415
		2 539 3	47 636	741 77	2.687.6	187 89	-97166	426 365

表 2 T₂ 分子的 $X^{1}\Sigma_{g}^{+}$, $B^{1}\Sigma_{u}^{+}$ 和 $C^{1}\Pi_{u}$ 态的 Murrell – Sorbie 势能函数

图 1 示出 T₂ 分子的 X¹Σ⁺_g, B¹Σ⁺_u 和 C¹Π_u 态 的势能曲线.其中,实线为正规方程组拟合得到的 Murrell – Sorbie 势能函数线,圆圈线为单点能扫描 结果.由图 1 及表 2 显见:能量扫描得到的 X¹Σ⁺_g, B¹Σ⁺_u 和 C¹Π_u 态的离解能,与拟合得到的结果基 本一致,其它位置处的点、线之间也符合得好.这说 明,拟合出的 Murrell – Sorbie 函数确实能正确表 达 T₂ 分子的基态 X¹Σ⁺_g 和 B¹Σ⁺_u, C¹Π_u 2 个激发态 的势能函数.图 1 所示的势能曲线对应分子稳定平 衡结构的极小点,说明 T₂ 分子的 X¹Σ⁺_g, B¹Σ⁺_u 和 C¹Π_u 态能稳定存在,离解能越大,稳定性愈高, T₂ 分子 3 个电子态 X¹Σ⁺_g, B¹Σ⁺_u, C¹Π_u 的稳定性依次 减小.

显然,从图 1 可明显看出,这 2 个激发态的势能曲线在离解极限处是趋于重合的.这也与离解通道(7)、(8)相同相吻合.

为进一步分析讨论,本文利用(10)~(12)的力 常数与 Murrell - Sorbie 势能函数中的拟合参数 a_1, a_2 及 a_3 间的关系^[15],计算了T₂分子的二阶、 三阶及四阶力常数,计算结果列在表 2 中.

$$f_2 = D_{\rm e}(a_1^2 - 2a_2), \qquad (10)$$

$$f_3 = -6D_{\rm e} \left(a_3 - a_1 a_2 + \frac{1}{2} a_1^3 \right), \tag{11}$$

$$f_4 = D_e(3a_1^4 - 12a_1^2a_2 + 24a_1a_3).$$
(12)

根据上面计算得到的二阶、三阶和四阶力常数,使用文献[17]给出的方法及公式(13)~(15)^[15]计算得到 T₂分子 X¹ Σ_{g}^{+} ,B¹ Σ_{u}^{+} 和 C¹ Π_{u} 的光谱常数,计算结果见表 3.

$$B_{\rm e} = \frac{h}{8\pi^2 c \mu R_{\rm e}^2} , \qquad (13)$$

$$\alpha_{\rm e} = -\frac{6B_{\rm e}^2}{\omega_{\rm e}} \left(1 + \frac{f_3 R_{\rm e}}{3f_2}\right) , \qquad (14)$$

$$\omega_{\rm e} \chi_{\rm e} = \frac{B_{\rm e}}{8} \left[-\frac{f_4 R_{\rm e}^2}{f_2} + 15 \left(1 + \frac{\omega_{\rm e} \alpha_{\rm e}}{6B_{\rm e}^2} \right) \right] \,. (15)$$

式中, μ 为单个分子的约化质量; R_e 为平衡核间 距; ω_e 为谐振频率; χ_e 为非谐振动因子;c 为真空 中的光速; B_e , α_e 为刚性和非刚性转动因子.

表 3 T₂ 分子的 $X^{1}\Sigma_{g}^{+}$, $B^{1}\Sigma_{u}^{+}$ 和 $C^{1}\Pi_{u}$ 态的光谱常数

Tab. 3 Spectroscopy constants of	electronic states X ¹	$^{1}\Sigma_{\sigma}^{+}$, $B^{1}\Sigma_{\tau}^{+}$ and C	${}^{1}\Pi_{}$ of T ₂ molecule
----------------------------------	----------------------------------	--	---

状态	方法	$\omega_{\rm e}/{\rm cm}^{-1}$	$\omega_{\mathrm{e}}\chi_{\mathrm{e}}/\mathrm{cm}^{-1}$	$B_{\rm e}$ / cm ⁻¹	$\alpha_{\rm e}/{\rm cm}^{-1}$	$R_{\rm e}/{\rm nm}$	$D_{\rm e}/{\rm eV}$	
$X^1 \sum_g^+$	SAC	2 793.2	72.84	20.266	0.9376	0.0743	4.7178	
	实验值[13]	2 546.5	41.23	20.335	0.5887	0.0741	4.7476	
$\mathrm{B}^{1}\Sigma_{u}^{+}$	SAC - CI	377.7	2.04	6.718	0.1329	0.1372	3.6843	
	实验值[13]	787.3	7.01	6.716	0.2076	0.1290	3.5812	
$\mathrm{C}^{1}\Pi_{\mathrm{u}}$	SAC - CI	1737.6	30.39	10.937	0.2258	0.1031	2.1280	
	实验值[13]	1 454.2	30.52	10.931	0.3659	0.1011	2.5393	

2.3 光谱实验数据拟合 T₂ 分子的势能函数

由 T_2 分子的 $X^1 \Sigma_g^+$, $B^1 \Sigma_u^+$ 和 $C^1 \Pi_u$ 态的实验 光谱常数^[13] R_e , B_e , α_e , ω_e , $\omega_e \chi_e$ (见表 3)可以求出 与之相对应的 Murrell – Sorbie 势能函数. 利用 (16)~(18)光谱常数与力常数之间的关系式^[15], 计算出与之相对应的二阶、三阶和四阶力常数, 计 算结果列入表 2 中.

$$f_2 = 4\pi^2 \omega_{\rm e}^2 \mu c^2, \tag{16}$$

$$f_{3} = -\frac{3f_{2}}{R_{\rm e}} \left(1 + \frac{\omega_{\rm e}\alpha_{\rm e}}{6B_{\rm e}^{2}} \right) , \qquad (17)$$

$$f_4 = \frac{f_2}{R_e^2} \left[15 \left(1 + \frac{\alpha_e \omega_e}{6B_e^2} \right)^2 - \frac{8\omega_e \chi_e}{B_e} \right] . \tag{18}$$

图 1 T₂ 分子的基态、第 2 激发态及第 3 简并激发态 的势能曲线

Fig. 1 Potential energy curves of the ground state, the second excited state and the third excited state of T_2 molecule

求出二阶、三阶和四阶力常数后,再根据式 $(19) \sim (21)^{[15]}$,求出 T₂分子的 Murrell – Sorbie 势 能函数的系数 a_1, a_2 及 a_3 ,计算结果列入表 2 中.

$$D_{\rm e}a_1^4 - 6f_2a_1^2 - 4f_3a_1 - f_4 = 0, \qquad (19)$$

$$a_2 = \frac{1}{2} \left(a_1^2 - \frac{f_2}{D_e} \right) , \qquad (20)$$

$$a_3 = a_1 a_2 - \frac{a_1^3}{3} - \frac{f_3}{6D_{\rm e}} \,. \tag{21}$$

图 2 给出 T₂ 分子的 X¹ Σ_{g}^{+} ,B¹ Σ_{u}^{+} 和 C¹ Π_{u} 态 的光谱实验数据拟合的 M-S 曲线.同时也给出单 点能扫描计算结果.由图 2 显见,X¹ Σ_{g}^{+} ,B¹ Σ_{u}^{+} 和 C¹ Π_{u} 态的势能计算值与实验结果吻合较好,尤其 是基态吻合甚好.说明在 SAC/cc - PVTZ 上研究 T₂ 分子基态,在 SAC - CI/cc - PVTZ 水平上研究 T₂分子激发态是可行的.

图 2 T₂的分子基态、第 2 激发态及第 3 简并激发态 的光谱实验数据与计算结果的比较

Fig. 2 The experimental and calculated spectrum of the ground state, the second excited state and the third excited state of T₂ molecule

3 结 论

利用原子分子反应静力学的原理,首次导出 T₂分子基态 X¹Σ⁺_g和激发态 B¹Σ⁺_u与 C¹Π_u的离解 极限,分别用 SAC 和 SAC – CI 方法对基态和激发 态进行平衡几何优化和谐振频率计算,并使用优选 出的 cc – PVTZ 基组进行单点能扫描计算,由此拟 合出 Murrell – Sorbie 势能函数解析式,理论计算 值与实验结果吻合较好.说明 Murrell – Sorbie 势 能函数能正确表达 T₂分子基态 X¹Σ⁺_g和激发态 B¹Σ⁺_u与 C¹Π_u的势能值与距离之间的依赖关系. 对进一步研究氚水分子的结构与性质具有参考价 值.

参考文献:

- [1] GRANDINETTI F, VINCIGUERRA V. Adducts of NF₂⁺ with diatomic and simple polyatomic ligands: a computational investigation on the structure, stability, and thermo-chemistry. International[J]. J Mass Spectrometry, 2002,216:285-299.
- [2] ZIVNY O, CZERNEK J. CCSD(T) calculations of vibrational frequencies and equilibrium geometries for the diatomics F₂, SF, and their ions[J]. Chem Phys Lett, 1999, 308:165-168.
- [3] 庞礼军,汪荣凯,令狐锋,等.HF分子基态(X¹∑⁺)的 分子结构与势能函数[J].云南大学学报:自然科学 版,2007,29(2):156-159.

- [4] HIRST D M. Ab initio potential energy surfaces for excited states of the NO₂⁺ molecular ion and for the reaction of N⁺ with O₂[J]. J Chem Phys, 2001, 115(2): 9 320-9 330.
- [5] HORST M A T, SCHATZ G C, HARDING L B. Potential energy surface and quasi-classical trajectory studies of the CN + H₂ reaction [J]. J Chem Phys, 1996, 105 (2):558-571.
- [6] GREGORY K SCHENTER. The development of effective classical potentials and the quantum statistical mechanical second virial coefficient of water [J]. J Chem Phys, 2002, 117(14):6 573-6 581.
- [7] ANTARA D, DAVID C S. Full configuration interaction potential energy curves for breaking bonds to hydrogen: An assessment of single-reference correlation methods
 [J]. J Chem Phys, 2003, 118(4):1 610-1 619.
- [8] 黄辉,李权.PdH₂和YH₂分子结构与分子光谱[J]. 四川师范大学学报:自然科学版,2006,29(4):481-484.
- [9] 冉鸣,黄萍.LaH2 基态的分析势能函数[J].四川师范 大学学报:自然科学版,2000,23(2):156-159.
- [10] KIRK A, Peterson, WOODS R C. An ab initio investi-

gation of the spectroscopic properties of BCl, CS, CCl^+ , BF, CO, CF^+ , N_2 , CN^- , and NO^+ [J]. J Chem Phys, 1987, 87(8):4 409-4 456.

- [11] KURTZ H A, JORDAN K D. Properties of the X¹Σ state of BF[J]. Chem Phys Lett, 1981, 81:104-112.
- [12] ALEXANDER L, Wulfov. Approximate full configuration interaction calculations of total energies, harmonic vibrational frequencies and equilibrium bond distances on F₂, BF, C₂, CN⁺ and NO⁺ molecules in a DZ + P basis set[J]. Chem Phys Lett, 1996, 263:79-86.
- [13] HUBER K P, HERZBERG G. Molecular spectrum and molecular structure. IV. Constants of diatomic molecules-Tables[M]. Princeton: Van Nostrand, 1979.
- [14] MOORE C E. Atomic energy levels(I)[M]. Washington: U. S. Government Printing Office, 1971.
- [15] 朱正和,俞华根.分子结构与分子势能函数[M].北 京:科学出版社,1997.
- [16] 朱正和.原子分子反应静力学[M].北京:科学出版 社,1996.
- [17] 唐永建,高涛,王红艳,等.S₂分子 X³∑₈和 B³∑₄态的 势能函数和振动光谱特征[J].原子与分子物理学 报,1998,15(2):159-166.

Analytical potential energy functions for the electronic states $X^1\Sigma_g^+$, $B^1\Sigma_u^+$ and $C^1\Pi_u$ of molecule T_2

ZHANG Ai-yun, ZHOU Ling-ling, XIE An-dong

(Department of Physics, University of Jinggangshan, Ji'an 343009, China)

Abstract: The energies, equilibrium geometries and harmonic frequencies of the ground state $X^{1}\Sigma_{g}^{+}$, the second state $B^{1}\Sigma_{u}^{+}$ and the third degenerate state $C^{1}\Pi_{u}$ of molecule T_{2} have been calculated using the method Group Sum of Operators of SAC/SAC-CI with the basis sets D95 + + * * ,6-311 + + g * * and cc-PVTZ. Comparing the three basis sets above mentioned, the conclusion was gained that the basis set cc-PVTZ was the most suitable for the energy calculation of molecule T_{2} . The whole potential curves for these three electronic states were further scanned adopting SAC/cc-PVTZ method for the ground state and SAC-CI/cc-PVTZ method for the excited states, then a least square was fitted to Murrell-Sorbie function, and last the spectroscopy constants were calculated, which are in better agreement with the experimental data. It was believed that Murrell-Sorbie function form and SAC/SAC-CI method were suitable not only for the ground state, but also the low-lying excited states.

Key words: molecular structure and potential function; excited state; Murrell-Sorbie function