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Abstract; The symmetry algebras of 1+ 1 dimensional nonlinear evolution equation arising from

the motion of plane curve in affine geometry are systematically studied. It is found that the equa-

tion admits a seven-dimensional symmetry group H, and there are twenty-one elements in the

one-parameter optimal system of the symmetry algebras. The optimality of one-parameter optimal

system 6, is established by finding some algebraic invariants under the ajoint actions of the group

H]-
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One of the main applications of Lie theory of
symmetry groups for differential equations is the
construction of group invariant. Given any sub-
group of the symmetry group, under some mild
conditions one can write down the equation for the
invariant solution with respect to this subgroup.
This reduced equation is of fewer variables and is
easier to solve generally. In fact, for many impor-
tant equations arising from geometry and physics
these invariant solutions are the only ones which
can be studied thoroughly. Their importance lies in
the fact that they usually describe the asymptotic
behavior or display the structure of the singulari-
ties of a general solution.

A basic problem concerning the group invari-
ant solution is its classification. Since a Lie group
(or Lie-algebra) usually contains infinitely many
subgroups (or subalgebras) of the same dimen-
sion, a classification of them up to some equiva-

lence relation is necessary. Following Ovsian-
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nikov('J, one calls two subalgebras 4, and 8, of a
given Lie algebra equivalent if one can find some
element g in the Lie group generated by # so that
Ad, (8,) =8,,where Ad, is the adjoint representa-
tion of g on 0. A family of r-dimensional subalge-
bras {f.}a€ A is an r-parameter optimal system if
(1) any r-dimensional subalgebra is equivalent to
some #. and (2) 6. and G5 are inequivalent for dis-
tinct @ and B. Discussions on optimal systems can
be found in[1],Olvert® and Ibragimov. Some ex-
amples of optimal systems can also be found in I-
bragimov®,

The method in [2] is based on the observation
that the Killing form of the Lie algebra is an ”in-
variant” for the adjoint representation. We shall

apply this idea to study the nonlinear equation
_4 1,
U™ Ul u.t:t.tI+ ?u.m:a Uzerr (l)

which arises from the motion of plane curves in

affine geometry Sa(2)
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Yt=fn+gt, (2)
where f and g are respectively the normal and tan-
gent velocity,? is the curve. Letting f=%,% is the
affine curvature in (2),then we get equation (1).

The layout of this paper is as follows:In sec-
tion 1,we calculate the lie point symmetries admit-
ted byequation (1). In section 2,we construct the
1-para meter oprimal system &, of the Lie algebra
h, and the optimality of the optimal system is also
established. Section 3 is the concluding remarks on
this work.

1) Lie Point symmetries of the equation (1).

Set A=u,+u;%unn—%u;%uin, 3

we determine the infinitesimal transformations of
the form

X=x+ef(x,t u)+0(*),

T=t+er(z,t,u)+0(),

U=u+ed(z,t,u)+0(e)). 4)
Equation(1)admit Lie point transformations of the
form (4) if and only if

veay=o, A=0, (5)

where V®*is the fourth extended generator of

whenever

V=5(z,t,u)a%-l-t(x,t,u)%—l-d)(z,t,u)%,

which is given by the following relation

&9, &3 b3, &9 , P2
W _ Pl —_— —_—
V _V+ au: + aul + a‘,tz + auz:: auzz,tz

Here &, & ,$~ ,d"*and & are given explicitly in

terms of &,7,P and their derivatives.

By solving the determining equations dereved
by equation (5) we obtain

=C1“+C2$+C37

¢=C4u+C51'+Ce ’

4oyt | Acyt
=ittt

So the Lie point symmetries of equation (1)
form a seven-dimensional Lie algebra which is gen-
erated by the following vector fields

UV =0 Uy =M sV3 = sV, == T — UL » Vs = ud

+:car+%t3t,z;e =xdr—udu yv; =xdh+udr.

We denote the Lie algebra spanned by {v,,v,,
<=2, }by h,.

2) The 1-parameter optimal system for equa-
tion(1).

In this section we give an optimal system for
the Lie algebra A,. To obtain the optimal system of
h., we calculate the commutation realtions of the
Lie algebra A, and the adjoint of the Lie group H,
on the Lie algebra A,,The results are listed in table
land table 2 respectively.

Theorem 1 An one-dimemsional optimal system
6, of h, is given by

W) =Us y W2 =V s W3 =V 0y

Wy =0, — V3, ws =vs+av,(aF0)

We=D3 W7 =01y W=V, V3,

Wy =+ V1, V0=vsFT0; + 3

W=V, F U, — V3w, =U,F+ v, 101,

wy=v,+v,+v,+vs3

Wis =V F 0+ 0, — Vs s V1sa =04 T 0+ 05 »

Vi =Vs 07— Vs »Wis =07, W =37,

Wy, =vs+av,(a>0,a7#0),

Wy =5 T 07, wa =05+ v, +2,.

Tab.1 The commutation relations for &, (the(i,j)*-entry is[v;,v,])

v vz 3 A Us s vy
" 0 (78 " ™" LA
LA 0 -0 Uy —u, "
3 0 0 8vs/3 0 0
Uy —v; 1 0 0 — 2v, 2ve
vs —u —v, —8v,/3 0 0 0
vg — Uy 0 2v; 0 0 2vu,
v —u, —u 0 — 2vs 0 —2v, 0

7
Proof Let w= Za,—v,- is a general vector in A, and
1

A =al~+a?—a®— &’ Later we shall see that A(A

d(g)v)=A)orall g€ H,and v€h,. That's, A is
an invariant of A;. To simplifyw,we consider two

cases separately.
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13 ai+a%=0. A direct calculation shows that

7
Ad exp(ev,) Ad exp(e,v,) (w) = 25,-1},— »where

a)=a; —¢&as +€za4 ’d; =Qy— &4, —€as.

1.1) al+a2#0 . We can eliminate a, and a, by
choosing
&= (a1a5 +a2a4 )/(af‘f—ag) ’

&=(a1a,—azas)/(al+a?).

Tab.2 Actions of the ad joint representation of Hon (the(i,j )*—entry is Ad(exp ev,)v,)

™" Uy U3 Uy Us U U
v, v V2 U3 Vs~ €V, Vs €y Ve — €V, V7 €U,
U2 (4 V2 U3 v +ev, Vs~ €Uy v+ vy Vr—EY;
v v v, v; v, vs— 8ev;/3 s vy
vy vicose+ V;C08E— U3 U, Us vecos2e+ v;co82e—
v sine vsine v,8in2e vesin2e
s ‘s e‘v, e¥/3y, V4 Vs Vg v,
Vg e‘y e 'y, U3 vycosh2e— Us Vs v;cosh2e—
vrsink2e v,Sinh2e
v, vicoshe + vycoshe+ U3 vcosh2e+ Vs vecosh2e+ U,
vgsinke visinhe vssinh2e vysinh 2e

Then w is reduced 0: w=ayv;ta,u+asv;.
Now we consider three subcases ;

D Ifa,=0 ,a:7#0, we take as=1 and use 4d

a3

exp(ev;)to kill v; term by choosing e=ga
5

Then we get an equivalent form for w
Wy =1s.
i) If a,540,a,=0 applying Ad exp(evs) on w),
we have the following inequivalent form
w;=v,,(a;=0),
ws=vy+tvs, (@3a,>0),
Wy=v,—v;. (@;a,<<0).

i) If @,70,a,540 . using Ad exp (ev,) acting

3a, . .
R4, *W 18 equivalentto ; w; =1,
8a5

on w by choosing e=

+av, (a7:0).

1.2) ai+ai=0,a2+a2=0. In this case is re-
duced to

w=a,v; +a;v:+a,v;.
If ai+a%=0,we obtain Ws =w;. wg=1,.
If a’+ais£0,after using Ad exp (ev,
&,w is equivalent to
w =1, (@370 ), wy=v; %05 (ay5£0).

It is also pointed out that U3 — v, is mapped in-

) for suitable

to v3+wv,; by using Ad exp (mov,).

7
2) @i+ a2#0,w; Ea,-'vf. Firstly,using Ad exp
1

(ev)to kill v term ,the coefficient of new w is

a; = @, cos & — a,sine,

a; = a, cos & — g,sine,
as = a; cos 2e — g,sin 2¢,

~

a; = a;cos 2e + g¢sin 2e.

. 1 a; .
if a;%0 , we choose e=?arctan a—;lf as=0 ,we
6

n ~ .
choose e=—4—. then g,=0 . Moreover,usmg Ad exp

(evs) ,we can arrange the coefficients of v, and v, to

be equal, so w is equivalent to the following three

cases

w=a,u;ta,tav;+-aw,+avs;, (@i>a?),

w=a,v,tav;+a;v;+a, (v +v,)+asv;, (ai=gq?),

W=av e ta3vstasvs+a;. (ai<al).

For the first case,we use 44 exp(€,v,) and Ad exp

(e2v,) to eliminate 4, and a;. w is reduced to
wW=a;v;+av+asvs.

This case has been classified before.

For the second case

w=a,v, ta,v, “+a,v,; +a, (v, +v;) “+asvs.
If a;=0,we choose &= 2‘172 using Ad exp (ev;) to
4

kill v, term ,% becomes
@ v +asvs+a (v, +v,).

Now we consider the following several different

cases ,

i) ar=a;=0,wy=v,+v,;

i) a;=0,a,7%0. W10 =0, Fv,+v;5. (a32,>>0)
wn=v,t+v;,—v,. (a;a,<0);

ili)a;=0,a,50. wi=vst v +uv, (@1a,>0)

W3 =10y +U7 —vy. (@1a,<0) H
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Since Ad (exprv,) (vs+v,+v,) =v,+v; — v, wy,ls
equivalent to w;;.
iv) a;70,a;70. Acting on w by Ad exp(¢&v;) and

Ad exp(eus)for the suitable €, ,5,, we get

W =v.+v;+v,+7v;,(a, and a; have the same
sign),

wys =v,+v;+v, —v;, (otherwise).

If a5£0,w=a,v, +a,v;+asv;+a(vi+v;)+asvs,
Choosing & = 3a;/8a;,¢,=a,/as and &, =a,/a;, we
use Ad exp(gv,),Ad exp(&v;) and Ad exp(&;v;)
to kill v,,v, and v;,then apply Ad exp (evs)on w,
s0 w is equivalent to the following form

Wi =0y T+ vs s (asa, > 0),

wis="v,+v;—vs, (a;a,<<0).

For the third case

w=a,v, +a,v,+asvs+asvs+a;v;.
We will consider three subcases;

i) a;=0,a;=0. After acting on w by Ad exp
(gyv))and Ad exp(e,u;)for suitable ¢, and €, we see
that w is equivalent to;w,s=1v;.

ii) as=0,a;7%0. We get the following equiva-
lent form of w by using the action of Ad exp (& v,)
Ad exp(&v;) on w

Wy ="0;tv3, (@;a;>0) ,wy =v;— 13, (a;a;<<0).
Since Ad exp(%v4)(wzo)= —wy ,wy is equivalent
to wag.

iii) a;7#0. We use Ad exp(ev;)to kill term v;,
then w is reduced to

w=a,v; +asvs +a,v;.

If a,=0,we have
wyp=vs+av;, (@>0,a7%#1), wyy=vs+v;.

It is also pointed out vs+awv,(a>>0) is equiva-

lent to as —awv, ,since Ad exp(%m) (vs+av;) =vs—
av;.
If a,540,we get
wu=vs+v:1+v;,
Wy=1;+v;— v,
Wy =Us—U;1+Uz»
Wy =Us Uy — V.
It is easy to find that
Ad exp(nv) (vs+v,4+v,) =vs+v,—v;,

Ad exp(—%vl)Ad exp(%v;) (vstv,+v,)=

vs+v,— v,

Ad exp( —%m) (vstv,—v,) =vs—v;,+vy,

Ad exp(zty,) (vs—v:+v,) =vs—Uv;— ;.
From these expressions,we conclude that w,, ,w;s,
w5 and w7 are equivalent to each other,

Thus, we have shown that every one-dimen-
sional subalgebra of h, is equivalent to one member
in @,. It remains to prove @, is optimal ,we shall ac-
complish this by introducing some adjoint invariant
in addition to A.

Lemma 1 A=a, +a,—a;s—a; is an invariant.
Proof A straightforward calculation shows
172 ~

T g 4sas

9
is the Killing form of Lie algebra k,,where

7 7
V= ;a,—vn W= ;5;'{);.

A well-known fact is that the Killing form is in-

K(V 7W) = 10(a4;4 +a555 —asas—a727)

variant under the adjoint action. Hence K(V,V) is
invariant under the adjoint action. From Lemma 2,
we see A is an invariant.

Lemma 2 a;is an invariant.

Proof : This can be easily seen from Tab. 2.
Lemma 3 Define

4 e —ay —a
o= J
4y e —a —a
|:a, ...... a, ~— a7:l
- az ------ as —a5 .
1 (@) (0,0

- {o (z,3) = (0,0
Then B is an invariant provided A=0.

Proof The new (x,y) under the adjoint actions
are listed in Tab. 3,it is clear from this table that B
is invariant if A=0.

Tab.3 New (x,y) under adjoint actions

Ad(e) New(x,y)
v (z,y+e€A)
2 (x—€A,y)
V3 (zs3)
Vs (xcose— ysine,xsine+ ycose)
s e'(xyy)
Vs (e™*xye'y)
vy (xcoshe— ysine, ycoshe — rsinhe)
{as , (a;=0)
Lemma 4 Let(C= ,
0, (a;#0)
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Then C is an invariant.

Proof From Tab. 1,it is sufficient to check the in-
variance of C under Ad exp(ev;) fori=1,2,4,5,6,
7. In fact under Ad exp (ev;), the newcoefficient;

a:—a;— iea5. Hencea; = a; if and only if a5 =0.

3
The lemma has been proved.
signa,, A—alz=0,

Lemma 5 Let D={ .
. 0, otherwise,

then D is an invariant.

Proof Since a;,A are invariants,we only need to
prove the lemma in the case a;=1,a,70,a} —ai—
a’>=0. When we use Ad exp(ev,)(i=1,2,3,4,5),
the value of a, is not changed. So signa, is pre-

served. For Ad exp(ev;) ,we find

a,=a,cosh2e(1— %tanhZe).
4
Since a3>a§+a¥>a3,so|%|<l and [tanh2e| <1,
4

so we know 1 —%tanhZeZO,cosZe>O. So we can
4

get signa,=signa,.

For Ad exp (ev;), we have a, = a,cosh2e (1 + ?
5

tanh2¢). Equivalently we can prove signa, =signa,.
Then the lemma has been proved.

We find that{A,B,C,D,a;,F}is enough to
distinguish all the vectors and yields {w,,w;,w;"*
w,, ). Now we evaluate them at w;(i=1,2,3-,
24),the results are put in Tab. 4. From this table
one can see that all w, are mutually inequivalent.
Hence the theorem has been proved.

Finally it is found some algebraic invariants of
the symmetry algebra of the 1+ 1-dimensional non-
linear evolution equation arising from the motion of
plane curve in affine geometry under the inner au-
torphism of the Lie group H,. These invariants are
used to establish the optimality of the one-parame-
ter optimal systems of the symmetry algebras of
the 1-+1-dimensional nonlinear evolution equation.
It is of great interest to classify all subalgebras of
h, and to extend the results to the higher-dimen-

sional differential equations.

Tab. 4 Evaluation of the invariants

A B C D as F
w 1 0 0 0 1 0
wy 1 0 0 1 0 0
w; 1 0 1 1 0 0
wy 1 0 —1 1 0 0
ws 14-2a? 0 0 a’ 1 0(a%0)
ws 0 0 1 0 0 0
ws 0 0 0 0 0 1
wy 0 0 1 0 0 1
wy 0 0 0 1 0 0
wWio 0 0 1 1 0 0
wr; 0 0 —1 1 0 0
whz 0 1 0 1 0 0
wie 0 1 1 1 0 0
Whs 0 1 —1 1 0 0
Whga 1 0 [} 1 1 0
Wigh 1 0 0 —1 1 0
wig —1 0 4] 0 0 0
W —1 0 1 0 0 0
wy 1—a? 0 0 0 0 a(a¥1)
W3 0 0 0 0 1 0
Wa 1 0 0 1 0
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Abstract: The properties of the generators in a finite field are studied and something interesting are ob-
tained.
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