第 25 卷第 3 期 2008 年 9 月

Chinese Journal of Magnetic Resonance

Vol. 25 No. 3 Sep. 2008

Article: 1000-4556(2008)03-0337-05

Assignment of ¹³C and ¹H Chemical Shifts of Cyclovirobuxinum D

LIU Jie^{1*}, LI Bei¹, HANG Tai-jun², CHEN Zhan-ming¹, ZHANG Zheng-xing²
(1. Hainan Provincial Institute For Drug Control, Haikou 570216, China;

2. Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China)

Absract: Cyclovirobuxinum D was isolated from traditional Chinese medicine *Buxus icrophylla Sieb*. *et Zucc*, for treating coronary heart disease and arrhythmias. High performance liquid preparation chromatography was used for separation and purification. ¹³C and ¹H chemical shifts of the compound were assigned using 1D and 2D NMR techniques including ¹H NMR, ¹³C NMR, COSY, DEPT, HMQC and HMBC. The structure of the compound was determined from the NMR data.

Key words: NMR, chemical shift, 2D NMR, cyclovirobuxinum D, Buxus alkaloids **CLC number:** O641 **Document code:** A

Introduction

A number of Buxus alkaloids from Buxus microphylla Sieb. et Zucc, such as one of the oral preparations known as huang-yangning tablet in traditional Chinese medicine, are used to treat coronary heart disease and arrhythmias [1-4]. Previously, we have examined raw cyclovirobuxinum D brought from market by HPLC method [5], the content of which is between 55% to 85%. In fact, it was the Buxus alkaloids extractive (Huangyangning), not a pure compound. Here, we obtained pure cyclovirobuxinum D (the purity >98%), through high performance preparation liquid chromatography. 2D NMR experimental techniques including ¹H NMR, ¹³C NMR, DEPT, COSY, HSQC and HMBC[6,7], were used to study its structure and complete assignments of its ¹H and ¹³C

Received date: 23 Aug. 2007; Revised date: 29 Oct. 2007

Foundation item: Emphasis item of science-technology bureau Jiangsu province(part of three drug)(BE2003608).

Biography: Liu Jie(1978-), Female, Hunan Hongjiang, PHD., Chemical dept. vice director, major in pharmaceutical analysis. Tel: 0898-66832956, E-mail: liuniu96407@126.com. * Corresponding author.

chemical shifts are reported for the first time. The molecular structure is depicted in Fig. 1.

Fig. 1 Structure of cyclovirobuxinum D

1 Experiment

1.1 Material

Buxus alkaloids extractive (Huangyangning) was provided by xiaoying pharmacy factory. All the solvents used were commercially available reagents (AR).

1.2 Purification

We have established a high performance preparation liquid chromatography method. Cyclovirobuxinum D was purified on a Lichrospher-SiO₂ (250 mm \times 18 mm, 5 μ m) column with a mobile phase of methoth- hexamethylene- acetone- ethanediamine (100: 50: 50: 2) and a flow rate of 5 mL • min⁻¹ with the ELSD detection.

1.3 Purity test method

HPLC method was performed using Agilent 1100 series, Lichrospher-NH₂(250 mm \times 4.6 mm, 5 μ m) column with a mobile phase of acetonitrile-0.4% dipotassium hydrogen phosphate solution(70:30) and a flow rate of 1 mL • min⁻¹ at 40 °C with the UV detection at 210 nm.

1.4 Sample preparation and Apparatus

20 mg Cyclovirobuxinum D was dissolved in 0.5 mL CDCl₃, which was used as the internal reference at the same time. in a 5 mm NMR tube for experiments. All the experiments were performed on a Bruker advance DRX500 spectrometer equipped with TBI tube, a temperature control system.

1.5 NMR Experiment

All the NMR experiments were conducted at room temperature, the main parameters are listed in Table 1.

SW (kHz)	TD	SI	NS	
4.5	32 k	32 k	8	
31.5	32 k	32 k	2 k	
31.5	32 k	32 k	2 k	
4.5/4.5	1024×256	512×512	4	
4.5/31.5	$1~024\times128$	512×512	8	
4.5/31.5	1024×128	512×512	8	
	4. 5 31. 5 31. 5 4. 5/4. 5 4. 5/31. 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Table 1 Experimental parameters

2 Results and Discussion

The cyclovirobuxinum D obtained is some what white crystalline powder. The molecular formula $C_{26}\,H_{46}\,N_2\,O$ was determined 402. 359 4 by TOF-MS, which was supported by ^{13}C NMR spectrum. Its purity was 98.65%.

From ¹H NMR spectrum, it can be concluded that the cyclovirobuxinum D has forty-three protons in sixteen different circumstances, expect for solvent peaks. The ratio of their integral is (from high magnetic field to low magnetic field) 1:1:6:1:3:3:3:3:1:2:2:4:4:6:4:1:1. From ¹H NMR and D_2O exchanged ¹H NMR spectra, we can conclude that the cyclovirobuxinum D has three active protons $16\text{-OH}(\delta 4.1)$, $3\text{-NH}(\delta 1.4)$ and $20\text{-NH}(\delta 1.9)$. The ¹³C NMR spectrum of cyclovirobuxinum D displayed signals of twenty-six carbons in twenty-six different circumstances, expect for solvent peaks. The DEPT spectrum indicated that the cyclovirobuxinum D has seven methyl carbons($\delta 35.36$, $\delta 33.45$, $\delta 25.51$, $\delta 20.57$, $\delta 18.90$, $\delta 18.24$, $\delta 14.77$), eight methylene carbons($\delta 44.53$, $\delta 32.35$, $\delta 31.49$, $\delta 29.99$, $\delta 26.62$, $\delta 25.92$, $\delta 25.89$, $\delta 21.08$), six methane carbons($\delta 78.30$, $\delta 68.37$, $\delta 61.67$, $\delta 58.62$, $\delta 48.30$, $\delta 47.74$), and five quaternary carbons($\delta 47.08$, $\delta 44.86$, $\delta 39.61$, $\delta 26.47$, $\delta 19.20$). Total carbon number and the carbon's type agreed with the cyclovirobuxinum D structure. All direct connections between protons and carbons were identified with HMQC spectra (see Table 2).

Fig. 2 Main HMBC of cyclovirobuxinum D

Table 2 NMR data and ¹³C-¹H correlations of cyclovirobuxinum D (in CDCl₃)

Position $\delta_{\rm C}$		DEPT -	Related proton			
	δc		$\delta_{\rm H}(J_{ m Hz})$ (HMQC)	¹ H- ¹ H COSY	HMBC	
1	32.35	CH ₂	1.48 (d, 12), 1.24(d, 12)	H-2	H-19	
2	26.62	CH_2	1.92, 1.28(m)	H-1, H-3	H-11, H-8	
3	68.37	СН	1.96(m)	H-2	H-22, H-23, H-5, H-26, H-2, H-1	
4	39.61	С	/	/	H-22, H-23, H-5, H-3	
5	48.3	СН	1.33(d,8, overlapped)	H-6	H-22, H-23	
6	21.08	CH_2	1.62, 0.77(m)	H-5, H-7	H-5, H-7, H-8	
7	25.89	CH_2	 33(m, overlapped) 11(m, overlapped) 	H-6, H-8	H-8, H-5, H-6	
8	47.74	СН	1.44(m)	H-7	H-7, H-18, H-21	
9	19.2	С	/	/	H-19, H-11, H-8	
10	26.47	С	/	/	H-5	
11	25.92	CH_2	2.04(m), 1.11(m, overlapped)	H-12	H-19, H-8, H-12	
12	31.49	CH_2	1.65, 1.50(m)	H-11	H-18, H-17, H-11	
13	44.86	С	/	/	H-12, H-18, H-17, H-11, H-8	
14	47.08	С	/	/	H-15, H-8	
15	44.53	CH_2	1.39(d, 9), 1.86(m)	H-16	H-17, H-8	
16	78.3	СН	4.09(m)	H-15, H-17	H-20, H-17, H-15	
17	61.67	СН	1.59(m)	H-20, H-16	H-18, H-20, H-24	
18	18.9	CH_3	0.96(s)	/	H-17, H-12	
19	29.99	CH_2	0.30(d, 10), 0.53(s)	/	H-5, H-8	
20	58.62	СН	2.49(m)	H-17, H-24	H-17, H-25, H-16, H-24	
21	20.56	CH_3	1.11(s, overlapped)	/	H-15, H-8	
22	14.77	CH_3	0.74(s)	/	H-23, H-5, H-3	
23	25.51	CH_3	0.94(s)	/	H-22, H-3	
24	18.24	CH_3	1.09(m)	H-20	H-17	
25	33.45	CH_3	2.44(m, overlapped)	/	H-20	
26	35.36	CH_3	2.44(m, overlapped)	/	H-3	

From the structure of cyclovirobuxinum D, δ_C 78. $3(\delta_H$ 4.093, m) methane carbon in lowest magnetic field (proved by DEPT) belongs to C-16 obviously, because it is connected with the strongest electron drawing group (-OH). δ 68. $37(\delta$ 1.963, methane carbons) in the low magnetic field belongs to C-3 connected with NH, obviously.

References:

- [1] Jiangsu Institute of Botany, CAS(中国科学院江苏省植物研究所). Compendium of New China (Xinhua) Herbal (新华本草纲要)[M]. Shanghai(上海): Science and Technology Press(上海科学技术出版社), 1988. 816—817.
- [2] Liu Ru-ying(刘如英). Clinical application of huangyangning tablets(黄杨宁片的临床应用)[J]. Journal of Clinical Internal Medicine(临床内科杂志), 1997, 14(2); 112—115.
- [3] Zhang Kai-shan(张开山), Wu Yi-yuan(吴义元). Summarization of clinical application of huangyangningtablets (黄杨宁片临床应用概述)[J]. Primary Journal of Chinese Materia Medica(基层中药杂志), 2000, 14(4): 52-54.
- [4] Chinese Pharmacopoeia Commission(中国药典委员会). ChP 2000 Vol I(中国药典 2000 年版 一部) [S]. Beijing (北京): Chemical Industry Press(化学工业出版社), 2000. 153.
- [5] Liu Jie(刘洁), Hang Tai-jun (杭太俊), Zhang Zheng-xing(张正行). Determination of cyclovirobuxinum D and its related alkaloids in huangyangning by HPLC-UV(HPLC 法测定黄杨宁中环维黄杨星 D 和有关生物碱含量)
 [J]. Chin J Pharm Anal (药物分析杂志), 2006, 26(4): 446—449.
- [6] Jiang Gao-xi(蒋高喜), Li Qin(李勤), Liu Xue-hui(刘雪辉), et al. Structure elucidation for some drugs using NMR technics(一些药物分子的核磁共振应用研究)[J]. Chinese J Magn Reson(波谱学杂志), 2003, 20(4): 393-401.
- [7] Li Xiang(李想), Li Min-yi(李敏一), Zhen Yi-nan(郑毅男), et al. Structure elucidation of taraxerone isolated from mangrove excoecaria agallocha(红树植物海漆中 Taraxerone 化合物的结构解析) [J]. Chinese J Magn Reson(波谱学杂志), 2006, 23(4); 451—455.

环维黄杨星 D 13C 和1H 化学位移的全归属

刘 洁1*,李 备1,杭太俊2,陈赞明1,张正行2

(1. 海南省药品检验所,海南 海口 570216; 2. 中国药科大学 药物分析教研室, 江苏 南京 210009)

摘 要: 环维黄杨星 D 为自黄杨木中提取精制的有效生物碱,临床上已长期用于心血管疾病的治疗. 本文用制备高效液相色谱提取、分离并纯化环维黄杨星 D,用 1D,2D NMR 技术 (COSY, DEPT, HMQC 和 HMBC)对其结构进行研究,并且首次对环维黄杨星 D 的¹ H NMR 和 ¹³ C NMR 信号进行了全归属,同时通过 NMR 数据确证了环维黄杨星 D 的结构.

关键词: NMR; 归属; 2D NMR; 环维黄杨星 D; 黄杨宁生物碱

基金项目: 江苏省科学技术厅科技攻关项目(BE2003608).

^{*} 通讯联系人: 刘洁, 电话: 0898-66832956, E-mail: liuniu96407@126.com.