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Abstract; By using the gauge potential decomposition, we have discussed the self-dual equation and its

solution in Jackiw-Pi model. We obtained a new concrete self-dual equation and find relationship between

Chern-Simons vortex solution and topological number which is determined by Hopf indices and Brouwer

degrees of ¢-mapping. To show the meaning of topological number we presented several figures with dif-

ferent topological numbers. In order to investigate the topological properties of many vortices, 5 parame-

ters (two positions, one scale, one phase per vortex and one charge of each vortex) have been used to

describe each vortex in many vortices solution in Jackiw-Pi model. For many vortices, three figures with

different topological numbers have been drown to show the effect of the charge on the many vortices solu-

tion. We also studied the quantization of flux of those vortices related to the topological numbers in this

case.
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1 Introduction

Chern-Simons theories based on secondary charac-
teristic classes discovered in Ref. [ 1] exhibit many in-
teresting and important physical properties. In the early
1980s, the first physical applications of the Chern-Si-
mons form called topologically massive gauge theory
was advanced by Schonfeld? | and many topological
invariants of knots and links discovered in the 1980s
could be reinterpreted as correlation functions of Wil-
son loop operators in Chern-Simons theory'*’. Moreo-
ver, for gauge theories and gravity in three-dimen-

sions, they can appear as natural mass terms and will

lead to a quantized coupling constant as well as a mass
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after quantization'*’. They have also found applications
to a lot of physical problems, such as particle physics,
quantum Hall effect, quantum gravity and string theo-
ry> ). Chern-Simons term acquires dynamics via
coupling to other fields'® "', and gets multifarious
gauge theory, non-relativistic Chern-Simons theory
supports vortices solution, these static solutions can be
obtained when their Hamiltonian was minimal. Vortices
and their dynamics are interesting objects to be stud-
ied""™' R. Jackiw and S-Y. Pi considered a
gauged, nonlinear Schrodinger equation in two spatial
dimensions, to describe non-relativistic matter interac-
ting with Chern-Simons gauge fields. Then they found

explicit static, self-dual solution which satisfies the Li-
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ouville equation and got an n-soliton solution depends
on 4n parameters (two positions, one scale, one phase

7]

per solition) '* 7). P. A. Horvéthy proved that the so-

lution depends on 4n parameters without the use of an

21 and indi-

index theorem and the flux quantization
cated the regular solutions with finite degree only arises
for rational functions, the topological degree of those
solutions is the common number of their zeros and poles
on the Riemann sphere'®’.

In this paper, by using the gauge potential decom-

197 we will discuss topological structure of

posmon
the self-dual solution in Jackiw-Pi model. We will look
for complete many vortices solution from the self-dual
equation and set up the relationship between the many
vortices solution and topological number which is deter-
mined by Hopf indices and Brouwer degrees. We will
give several figures to show the effects of the topological

number on vortices. We also study the quantization of

the flux of those vortices.

2  Topological Number of Self-dual
Vortex in Jackiw-Pi Model

In this section, based on the self-dual equation,
we will look for complete vortex solution in Jackiw-Pi
model making use of the decomposition of gauge poten-
tial. The Abelian Jackiw-Pi model in nonlinear

Schriodinger systems is'® "

L="re"PAF  +ilp" (a+ CA )y -

K
4
g+ £y, (1

here relativistic notation with the metric diag is (1,

-1, -1) and &* =(ect, r) , where D=V —ihiA,
c

and ¢ is “matter” field, the first term is the Chern-Si-
mons density, which is not gauge invariant. Also m is
the mass parameter, AM is gauge potentials, g governs
the strength of nonlinearity, k controls the Chern-Si-
mons term and provides a cutoff at large distance grea-
ter than 1/« for gauge-invariant electric and magnetic

fields, which can be written as E= — VA® - (1/¢) x

d,A and B = VxXA. Thus the Chern-Simons terms give

rise to massive, yet gauge-invariant “ electrodynam-

”

ics”. The last term represents a self-coupling contact

term of the type commonly found in nonlinear

Schrodinger systems. The magnetic fields B satisfies
where p =y, (3)

with g = F e’/2mck, and sufficiently well-behaved

fields so that the integral over all space of V xJ vani-

shes, the energy is
K :
H:z—mjdrupl + D)7, (4)

this is non-negative and vanishes. So it is obvious that

self-dual equation
Dy = FiDyy . (5)

To solve Eq. (5), we note that when ¢ is decomposed

i satisfies a

into two scalar fields

b=+’ (6)
We can define a unit vector field n as follows
naz#l[%,aZI,Z. (7)
[l
It is easy to prove that n satisfies the constraint condi-
tions
n‘n“=1. (8)
From Eq. (5), and making use of the decomposition of

U(1) gauge potential in terms of the two-dimensional

unit vector field"", we can obtain

%( “n";n" +L3l181m) (9)

A = )

From Eq. (2) and Eq. (9) we get

B = ’f:a'f “9.n an+h—v Inp, (10)
I.e.
_i _El/ ab a b E 2
P = .E¢ ainajnizevmp. (11)

This equation can be rewritten as
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Vinp =+ %p £ 260 gm0’ (12)

with the help of the ¢-mapping method'” | Eq. (12)

can be written as

V2Inp Zi%p zans () J(Y) . (13)

in which J(¢/x) is Jacobian

Y\ _ L w0y
J(x)—ze ST =2, (18)
When p#0, Eq. (13) will be the Liouville equation,
o 200
Vlnp—ihCKp, (15)
as we all know, Eq. (15) has the general real solution
as follows
4Hck lf"(2) |2
= 16
P = e i) P (16)
in which

r=(rcosf, rsinf) =x , (17)

where z = rexp (i0) and f(z) is an arbitrary func-
tion'®’.
Because p is the charge density of the vortex, it

must be positive, the Liouville equation is
(18)

so Eq. (16) should be

_4hclkl

p(r> ez |f’(z)| (]9)

(L4117 ]

and Eq. (13) can rewritten as

hczlﬁp - (sgnK)4Tr52(l/1)](%) .

(20)

Vzlnp = -

It is a Liouville equation with a § function on its right
side. For r =0, this equation is also right. To show
the meaning of the § function of this equation, we will
integrate Eq. (20) in section 3, and discuss its singu-
lar point. For one vortex

N

: ) (21)

z -z,

f(2) =(

in which ¢ =r_ exp(i6,) and z, =ryexp(i6,) is a com-
plex constant, so there are 5 real parameters involved
in this solution: 2 real parameters z, describing the lo-
cations of the vortices, 2 real parameters ¢ correspond-
ing to the scale and phase of each vortex, 1 real pa-
rameter NV describing the charge of the vortex, and it is

easy to obtain the radially symmetric solutions ™"

> —r/ 2(N-1)
p = 4l N (r=r/1.) (22)

er A+ (r=ry)/r,"¥°

where

_70 ’ (23)

(24)
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Fig. 1  Density p for solution (22) representing one vortex with
0=1.
6 -

2r,

Fig.2  The section plane of Fig. 1, this section plan includes
the center of this vortex, as is shown in this figure, we

can define the hight p . and radius r, of the vortex.

where () is the topological number of the vortex, those
numbers are determined by Hopf indices and Brower
degrees of . Particularly, p is invariant when change
N to— N, see Fig. 1 for a plot of the one vortex case,

in this case, the center of the vortex is z, =3 +3i. In
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order to study the shape of the vortex, we slice off Fig.
1 through it’ s center, and define the height and radius

of the vortex, as is shown in Fig. 2, we can obtain

1
A B - . 25
r, r(,(l E—— 1) (25)
The height of the vortex
1
fic | kl SgnKQ SgnkQ -1
ax — X
pmdx riez (Sgl’]KQ _ 2)
[ (sgnkQ - 1)* - 1] . (26)

From Egs. (25) and (26) we can see that the height
and radius of the vortex are depend on topological num-

ber and r,"*".

3 Topological Structure of Many
Vortices Solution and Its Magnet-
ic Flux

In this section, making use of Eq. (20), we will
discuss the topological structure of the many vortices
solution, then we will study the magnetic flux of the
vortices. The meromorphic function f(z) yields a regu-
lar many vortices solution with finite magnetic flux if

and only if f(z) is a rational function,

) =5 (27)
subject to
degP < degT . (28)

In particular, when all roots of T(z) are simple, f(z)

can be developed in to partial fractions' "’

M

C
= . 2
f) = B (29)
in which
2, = ranp<i0u) y Co = rOueXp(iGOU) ’
a:l’z,"'M. (3())

So there are 4M real parameters involved in this solu-
tion: 2M real parameters r, and 6, describing the loca-
tions of the vortices, 2M real parameters ry, and 6,,
corresponding to the scale and phase of each vortex.
However, there is non evidence to believe the charge

of each vortex equals to 1, in order to study the charge

and topological structure of each vortex in this solution,
we suppose the charge of vortex z, is N, ( vortex z, is
the vortex whose center is z,), then we can rewrite
f(2) as

M

o) = Y]

a=1 V2 — Z,

(31)

whick describes M separated charge vortices, and N, >
0 because of Eq. (28) , then we add M real parameters
N, in our solution for describing the charge of each vor-
tex and in the following we will see that N, is related to
the topological number of each vortex. Under the ra-

dially symmetric, V’Inp can be expressed as

2
V2 Inp :aTlnp+Larlnp. (32)
aJr r
Integrating Eq. (20)
2¢°
VZlInpdr = || -
o mpar = J[- e
2 L2
sgnidmd (lll)](x)]dr. (33)
The Eq. (33) can be rewritten as
ra+r, Iqtre 262
V? Inpdr = -
fra e fru [ hc|K|p+
sgnK4ﬂ52(¢)J($x’i)]dr, (34)

where r, = (r cosf, r,sinf), 0<O<2m, and r, is a

ra+rg
infinitesimal scalar, soj is an integral in the infini-
r,

a

tesimal region neighbouring the r, point. The left side
of this equation is
Io+

J.

a

"Vilnpdr = 4m(N, - 1) . (35)

Suppose that the vector field ¢ possesses M isolated ze-
ro which is in r =r,, according to the §-function theo-

ry, we can obtain

? = 3 #2 _
5 () = Z{I J(/x) |r=r”6 (r=r,), (36)

and then we can obtain

[ a2

. x
= 4xl” €ﬁan(,62(r -r,)dr,

a

(37)
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where B, is the positive integer (the Hopf index of the
zero point) and 7,, the Brouwer degree of the vector

field o,

. = sgnj(iﬁ) —+1. (38)

X

r=r,

The meaning of the Hopf index B, is that while r covers
the region neighbouring the z, point once, the vector
field ¢ covers the corresponding region B, times.
Hence, B, and 7, are the topological numbers which
show the topological properties of the vortex solution.

We have

&) J(Y)=pmd(r-r). (39

X

If we define the topological number @, of the vortex

a

whose center is z, as

0. = [ J(L)ax = g, (40)

X
from Eq. (34) we can get
N, -1 =(-sgnx)0, , (41)

in which N, =1 >0, so k must satisfy sgnk = — sgn/
and we can set N, =1 =1, |, then the total charge of

those vortices

N = iNll:(—sgnK)Q+M, (42)

a=1
where () is the total topological number and can be de-

fined as

Q=Zoa. (43)

Substituting Eq. (41) into Eq. (31), we can obtain

M

fz) = 3 (2

a=1\2 — Z,

)\()al+1 ’ (44)

it is obviously that Eq. (44) and Eq. (19) are the so-
lutions of Eq. (20). On the other hand, this means
vortices density p relates to its topological number Q.

We now see that N, must be an integer. If we note the

unit magnetic flux @, =2mhc/e, we can get

{e) =f Bdr = -2(sgnk) @, | —sgnkQ + M1 ,
o

(45)

from this equation we know the magnetic flux is quan-
tized. When the total topological number equal to zero,

the magnetic flux of this vortex is
D = j Bdr = - 2(sgnk) M®, . (46)
0

For example, when set M =1 in Eq. (31), we can get
the one vortex solution Eq. (22). When set M =2 in
Eq. (31), we can get the two vortices solution with z,

=-3,2z=3,¢=¢=1, 1.e.

f(z) _ (zi3)l()]\+l N (zi3)|02‘+1 , (47)

Fig.3  Density p for solution (47) representing two separated
vortices with Q, =0, Q, =1.

Fig.4  Density p representing three separated vortices with Q,
=0, =1, 0, =2.

with Eq. (19), we can give the solution of two vorti-
ces. See Fig.3 for a plot of the two vortices case, see
Fig. 4 for a plot of the three vortices case and Fig. 5 for
the four vortices case. From the figures we can see the
shape of those vortices is different when their topologi-
cal numbers are different. So it is not enough to use

4M parameters to describe M vortices, we have to in-
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troduce a charge parameter N, from Egs. (25) and
(26) we can see, the height and radius of the vortex
depend on (.

30

25

Fig.5 Density p representing four separated vortices with Q, =
0, 0,=1, 0,=2, 0, =3.

4 Conclusions

In this paper, We discussed the self-dual equation
and its solution in Jackiw-Pi model by using the gauge
potential decomposition and ¢-mapping method, we got
a Liouville equation with a § function, then we also ob-
tained the solution of this equation, and the § function
will not change the character of the solution when p #
0. We added M parameters to the M-vortices solution,
those parameters describing the charge of each vortex,
i. e., use 5M parameters ( two positions, one scale,
one phase per vortex and one charge per vortex) to de-
scribe M-vortices solutions in Jackiw-Pi model. We
studied the topological structure of Chern-Simons vorti-
ces in Jakiw-Pi model by calculating the integral of the
Liouville equation, and found the charges of those vor-
tices were determined by the topological numbers of
those vortices, those topological numbers were deter-
mined by Hopf indices and Brouwer degrees of ¢p-map-
ping. We also gave some figures with different topologi-
cal numbers to show the relationship between the shape
of those vortices and topological numbers. In many vor-
tices solution, in order to show the shape of those vorti-

ces is different when only their topological numbers are

different, we showed some vortices only with different
positions and different topological numbers in many
vortices figures ( see Figs. 3—5). We also found the
relationship between the quantization of the flux and
the topological numbers from the integral value of the
solution in the whole space. However, the flux is non-
vanishing when the topological number equals to zero.

So does the angular momentum.
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