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Abstract: We quantize SU(n) N =2 supersymmetric gauge field system with non-Abelian Chern-Simons to-

pological term for constrained Hamilton system in framework of Faddeev-Senjanovic path integral quantiza-

tion, deduce the total angular momentum based on the global canonical Norther theorem at quantum level,

obtain the fractional spin of this supersymmetric system, and find that this anomalous fractional spin has the

contribution from the group superscript components.
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1 Introduction

Considerable attention has been given to a connec-
tion between extended supersymmetry and the existence
of self-dual solutions''’, Ref. [2] studied supersymmet-
ric Chern-Simons systems. A SU(n)N =2 supersymmet-
ric gauge field model is constructed™ | fractional spin
and statistics have important meanings in explaining the
quantum Hall effects™*’ and high-T. superconductivity
phenomena”’.

Gauge theories with Chern-Simons topological term

may result in fractional spin'® ).

It is interesting to
study the supersymmetric anyon system, because both
spinor fields and scalar fields are naturally contained in
supersymmetric fields.

Refs. [6—9 ] investigated the angular momentum
of Chern-Simons system by energy-momentum tensor and

classical Noether theorem, and obtained the fractional

spin character. Because the phase-space path integral
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method is more fundamental than the configuration-
space path integral method.

In this letter we investigate quantization and frac-
tional spin of the SU(n) N =2 supersymmetric gauge
field system with non-Abelian Chern-Simons topological
term at quantum level by using the phase-space path in-

tegral method.

2 Supersymmetric Gauge Field Sys-
tem with Non-Abelian Chern-Si-
mons Term and Its Constraints

A SU(n)N =2 super symmetric gauge field system
with non-Abelian Chern-Simons topological term in 2 +1
dimensions was constructed'"”’. Using Wess-Zumino
gauge, the action is expressed in terms of component

fields as
1

S = fd%c[-%@“bvfggb +?K JRIZI
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where 3’ =ig', y' =, and y* = ig’ satisfy y"y’ =
g +ie""y., g, =diag( +1,-1,-1), D, =9, -
AT (a=1,2,3), G, =04, —0,A, +f ""AA. T
are generators of SU(n) and satisfy [T, T" ] =if ™T"
and tr(T'T") =8""/2. Fixing the potential by requiring
the conservation of the fermion-number, the potential
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in which v is the expected value of vacuum state.
One can see that Eq. (1) is singular in Dirac
method. We first analyze the constraints of this system

in phase space. The canonical momenta are defined as

4
T, = aRf[, (3)
"

where ¢“ stands for the component fields , the subscript “

R 7 denotes the right derivative for ¢p°. It is easy to get

the relative momenta as
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According to Dirac-Bergmann procedure'""’ | the primary
constraints of the system should includes 7y, Ty, »
Tyras T s Ty The constraints referring to fermion
fields have novel feature, and can be handled in a dif-
ferent procedure'”’. According to Dirac-Bergmann pro-
cedure, the primary constraints of the system are given
by

ry==""=0,
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where symbol * =

11
senseL ]

means weak equality in Dirac
. The canonical Hamilton density corresponding

to action (1) is given by
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Then, the total Hamiltonian is

H, = fvdzx(%ﬁ T+ ol +
0I5 + iy + 5I%) (7)
where 17, 75, n5, mi, and 7 are the conrrespondence
multipliers. Using Possion bracket ™ and the consisten-

cy conditions I, = { I"}, H,} , =0, we get the seconda-

ry constraints

I—v; — aiﬂ_i,r —f rsuﬂ_i,sA;l + %KgolmalA:" _
i(r, T+, Te + m, T, +m, T'A, +
7 Tx + 7 TN) ~0. (8)

While the consistencies 7, , I, I'; and I, of the pri-
mary constraints lead to the equations for determining
the Lagrange multipliers, then no further constraint oc-
curs. We further deduce that constraint I} are the first
class constraint, constraints I, I'5, I, 1% and I7
are the second class. Therefore, we can find a set of the
first class constraints
A== A =0,
Ay =—a, T (") me™ +

1 m r
?Kg()l a[Am _

(7, To + 77"p+T'¢>Jr + 7T|/,pTr(//p + 7T/\pT’A/\p +
7 T, +m TN) =0, 9)
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here A} and A, are also the gauge transformation genera-

tors, the second-class constraints are

0’; :Fg :7Td/p_il7[,+a(’)/0)lcjx =( s
03 :Fg :7TL/J+°‘zO’

1. .
0 =I5 = m, - 5L ~0,
1.,
0 = 1% =m — (=0, (10)
We thus complete the classification of the constraints.

3 Quantization of the System in
Framework of Path Integral

We consider the Coulomb gauge

0 =34 =0. (11)

Because of the existence of two first-class constraints A
and A5, another gauge-fixing condition should be cho-

sen as the consistent condition

O =0 = {0, Hi}py = VZA(r) -

o = f(9A)AY = 0. (12)
On the other hand, because general physical
processes should satisfy quantitative causal relation'" |
some changes (cause) of some quantities in condition
(12) must lead to some relative changes (result) of the
other quantities in condition (12), so that the right side
of condition (12) keeps zero, namely, condition (12)
also satisfies the quantitative causal relation, which just
makes the different quantities form a useful expression.
According to Faddeev-Senjanovic quantization for-
mulation, the phase space generating functional of

Green function for the supersymmetric system is given

by[15]
z[0] = j%“%a[[lam»;a(ej) :
28 det| {4, 0t |(det] {6,,6,1 D" -
explifd'x(m,d" -7} (13)

Whered)a = (A;’ @, §D+’ l//’ l!/+7 )\7 X N)’ T, =
(7", aw,, m,, Wy, W, m,, Wy) . Therefore, we

can obtain

A, | = [V (x-y) )7, (14)
Hej, 0/"} ‘: [8a36(2)<x_y)]4~ (15)

Thus, we find that both | {A,, £,} | and [{6;, 6, |
are independent of field variables and they can be ig-
nored in the generating functional. The condition (12)
coming from the consistent condition very naturally
eliminates the gauge arbitrariness. Using the properties
of 5-function, we finally write out the phase space gen-

erating functional of Green function

Z[0] = fﬁ%ag;wa;@/\i%j@wkexp{ijdzx(u%:’;ff)} ,
(16)



%41 Huo Qiu-hong et al: Quantization of SU(n)N =2 Supersymmetric Gauge Field System with Non-Abelian Chern-Simons --- =+ 277 -

where
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in which A}, ; and u, are multipliers of the first class

constraints A;, the gauge fixing conditions () and the

second class constraints 6, respectively.

4 Quantal Angular Momentum and
Fractional Spin

We first formulate the quantal canonical Noether

theorem' "' ; If the effective action I”, = [ d*x.% , is in-
variant in extended phase space under the following

global transformation

o= A = e, (x, B, ), (17)
¢" (x") = ¢"(x) + A" (x)
= ¢ (x) + &, (%, b, m) , (18)
7 (x") = m,(x) + Am, (%)
=7, (x) +e,ni(x, o, 7)), (19)
where ¢ are the global infinitesimal arbitrary parameters
(o=1, o), ™7,

canonical Varlables and space time, and if the Jacobian

&7 and 7’ are functions of

of the transformations (17—19) is unity, then at the

quantum level there are conserved laws

07 = [Exla(e - ot - Lt

o=1,2,-,r. (20)

const,

We now deduce the angular momentum by using

the conserved quantities in 2 + 1 dimensions. Consider
the Lorentz transformation
Ax* =8 o*'x,
[e3 1 v v o
A" = Lot (F)i
1 v v [e3
Amy = ?80)" (X*")gm, - (21)

Under the spatial rotation, the effective canonical action
I, =[d’x% ", is invariant, and the Jacobian of the spa-
tial rotation transformation is unity. Using Eq. (20) we

can obtain the conserved angular momentum

J = f d’x "] [x,7" "9A, + mA; +
+
xiw,,,pajzpp + X, 7, 0,0 + X7, 0,07 +

S
%7, A, + X7 0 X, + X7y ;N +

1
E(ﬂ'¢,7i7j¢ + 77Aa')’i7j)‘a + WXPYinXp)] . (22)

The last term is related to spinor fields and is coincide

t[(), 7]

with the resul obtained by classical Noether theo-

rem. One can observe that the partial angular momen-
tum given by non-Abelian Chern-Simons topological

term is
I = j Ix a9 Ay + xm A, + A
= fdzx[ - f;l"'pc[GOk"8ijc -&'G AT +

0“7

K L] kleaAr
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where Egs. (4) and (5) have been used, and the total

angular momentum can be rewritten as

J = fdzx g“"x,[w%ajlpp + 00 +
T + ), A, + T, 0 X, +
Ty N+ GO gAL +

2 01 1
J'd X e J[Z(W“’P%pr +
T\YYika + T ViYiX,) + GoA] ] +
: jdzx(gv U A AL + &g AVAT)

=Jo+Js +Jp . (24)

The first part J,, the second part J5 and the third part
Ji stand for the orbital angular momentum, the spin an-
gular momentum, and the fractional spin angular mo-

mentum, respectively. And we can have
szx(é‘l] "xAj0A; + &g, ANAL)
=—Kjd2x(g'fo‘ maA) (25)

Using the following asymptotic form''®’ of the non-abe-

lian vortex configuration
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and substituting Eq. (26) into Eq. (25), we first find

j = ¢ (27)

TK

This term is the “anomalous one” which is interpreted
as fractional spin. For consistent quantum mechanics,
the coefficient k should be quantized so that k = m/4

71 Contrary to the abelian

with nonzero integer m
case, the result has the contribution of group component
values. When Q° is replaced by the abelian charge Q,
this result is reduced to the common result'*'. If there
is no gauge field strength term in the Lagrangian density
(1), we also obtain the anomalous J,, but the orbital
angular momentum and spin angular momentum of the

field A, will disappear, which can be seen from Eq.
(24).

S Summary and Conclusion

In terms of path integral quantization for the canon-
ical constrained system in Faddeev-Senjanovic scheme,
this paper quantizes the SU(n) N =2 supersymmetric
non-Abelian system with Chern-Simons topological term.
We analyze the constraints of the system in phase space,
take the Coulomb gauge and use its consistency of the
gauge to deduce another gauge condition. We further
obtain the phase space generating functional of Green
function.

Using the global canonical Noether theorem, we
deduce the angular momentum of this system, concretely
get the partial angular momentum given by non-Abelian
Chern-Simons topological term, and find it to possess
the “anomalous spin” part. We also find that the total
angular momentum in this paper is different from that of
the system without gauge field strength term, the results
deduced from the system without gauge field strength
term are missing the orbital angular momentum and spin

angular momentum of the field A,. Different with the

abelian case, we discover that this anomalous spin term
has the contribution from the group superscript compo-
nents.

In our method, the total angular momentum plays
the role of the canonical angular momentum as in Ref.
[6]. Furthermore, we systemically deduce the total an-
gular momentum and find that the orbital angular mo-
mentum, spin angular momentum, and fractional spin
angular momentum all appear in the total angular mo-

mentum.
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