挙

杂

Vol. 26 No. 1 Mar. 2009

第 26 卷第 1 期 2009 年 3 月

文章编号: 1000-4556(2009)01-0058-17

波

谱

取代基效应对脂肪醇¹³C NMR 化学位移的影响

易贵元,曹晨忠*

(湖南科技大学化学化工学院,湖南湘潭 411201)

摘 要:用原子电负性、静电作用、极化度作为基本参数,并结合表征原子空间连接方式的立体效应参数,对醇分子中不同环境碳原子的化学位移进行关联,将 120 个模型化合物(91 个脂肪一元醇,29 个二元醇)中 747 个碳原子相关参数值和化学位移值带入模型中得到如下估算方程:

 $\delta_{\rm C} = 42.9479 + 63.0640 Q_i - 3.6286F + 5.1213\Sigma_{\alpha_x} - 6.5848 Q_i \Sigma_{\alpha_x}$

 $-4.842\ 7N_{\rm H}^{\alpha}$ $-0.585\ 5N_{\rm H}^{\gamma}$ $-4.104\ 6N_{\rm OH}^{\gamma}$

 $(R = 0.998 \ 1 \ R^2 = 0.996 \ 1 \ S = 1.14 \ F = 27 \ 125.2 \ n = 747)$

方程中各参数物理意义比较明确.通过用"留一法"(LOO)检验($R_{ev}=0.9980$, $R_{ev}^2=0.9960$, $S_{ev}=1.16$)及对样本外5个化合物69个碳原子化学位移的预测值和实验值比较,结果表明模型方程具有很好的稳定性和预测精度,该模型的提出为以后计算更加复杂化合物的¹³CNMR 化学位移奠定了良好的基础.

关键词:核磁共振(NMR);¹³C化学位移;电负性;静电场;原子极化度;立体效应;脂肪醇 中图分类号:O482.53 **文献标识码**:A

引言

核磁共振(nuclear magnetic resonance, NMR) 谱是研究化合物组成、状态、结构表征的重要工具^[1],由于有机化合物分子的基本骨架主要由碳原子构成,因而¹³C NMR 在有机化合物结构鉴定、构象分析、反应机理等方面有着独到的作用^[1-5].随着核磁共振

收稿日期: 2008-07-17; 收修改稿日期: 2008-08-22

基金项目:国家自然科学基金资助项目(20772028);湖南省自然科学基金(06JJ2002)和湖南省教育厅资助项目.

作者简介:易贵元(1970-),男,讲师,湖南科技大学在读研究生,物理有机专业. * 通讯联系人:曹晨忠,电话: 0732-8291336, E-mail. czcao@hnust. edu. cn.

碳谱在化学、化工、生物和医药等领域显示出的巨大威力,对¹³C NMR 的定量结构波谱 相关研究也日趋活跃,自 Grant 和 Paul^[6]通过对链状烷烃的研究提出以经验的加合方法 计算分子中碳原子的化学位移以来,人们进行了许多改进和深入研究,并取得了一定成 果^[6-16].但是,由于影响碳谱化学位移的因素很多,并且各因素与化学位移之间的关系 仍不十分清楚,目前尚不能预先提供一个准确而定量的计算值用于有机物结构解析^[2,4]. 因此,进一步探讨分子结构如何影响¹³C NMR 化学位移,以及选择合适参数建立定量结 构波谱关系(QSSR)仍是值得深入研究的问题.

有关醇类化合物¹³C NMR 谱化学位移(δ_c)与结构参数的关系研究,刘树深等^[12,13] 曾提出用原子电性距离矢量描述无环醇类化合物不等价碳的化学位移,并结合γ效应校 正碳原子类型,建立了4类等价碳的5参数化学位移线性模型;李美萍等^[14]则用离子性 指数(*INI*)、极化效应指数(*PEI*)以及结构信息参数[*N*ⁱ_H(*i*=α,β,γ)和γ_{OH}],对饱和一 元醇化合物中碳原子的¹³C NMR 谱化学位移进行关联,得到脂肪一元醇类化合物¹³C NMR 化学位移的8参数线性模型,取得较好的进展.最近,作者用近邻原子极化度、静 电势关联小分子化合物的C₁。结合能及C原子上所连H的化学位移取得令人满意的结 果^[17],本文试图将这一方法进一步扩展用于估算脂肪醇(包括一元醇和二元醇)中碳¹³C 的化学位移.

1 原理及方法

根据核磁共振的基本原理,分子中处于不同化学环境的某种同位素原子核,其核磁 共振的化学位移值取决于它所受到核外电子云屏蔽效应的大小^[1-3,10],任何影响该原子 核外电子云分布的因素均会导致其化学位移值的变化^[2],因此原子在分子中的价态、成 键方式以及与它所连接的其他原子(基团)的数目、特性、空间位置与其化学位移的大小 密切相关.

对于脂肪族链状化合物,影响¹³C NMR 化学位移的主要结构因素为邻近原子(基 团)的电负性效应以及立体效应^[1].最近的研究表明邻近原子(基团)的静电场效应、极 化效应也对化学位移有贡献^[16,17].一般而言取代基的电负性是影响脂肪族化合物 δ_c 值 的主要因素^[2],观测原子与其键连原子电负性差异,会使得观测原子核外电子云密度有 所改变(屏蔽或去屏蔽),从而引起¹³C NMR 化学位移值变化;同时,这种电负性差异又 会使得观测原子和其键连原子带上部分净电荷,它们之间会产生静电引力,而静电引力 的存在将导致观测原子核外电子云的部分变形从而进一步影响 δ_c 值,此种情况在有较 强极性的分子中尤为显著^[5].由于原子极化度可以衡量其核外电子云可变形的程度,所 以观测原子及近邻原子的极化效应也会对观测原子的 δ_c 值有影响.此外,据认为邻近原 子在空间的连接方式,即立体因素,同样会影响观测原子的 δ_c 值(例如链烷烃分子中 γ-邻位交叉效应使¹³C NMR 化学位移移向高场^[1,2]).从以上分析我们认为电负性效应、 场效应、极化效应、立体效应是影响脂肪族链状化合物体系的¹³C NMR 化学位移的主要 结构因素,通常取代基效应对有机化合物性质的影响采用线性自由能的方法进行关 联^[18,19],所以本文采用式(1)描述脂肪族链状化合物中碳原子的化学位移值(δ_c).

 $\delta_{\rm C} = \delta_0 + \delta_Q + \delta_P + \delta_F + \delta_S = a + bQ + cP + dF + eS$ (1) (1)式中 $\delta_{\rm C}$ 表示化学位移, δ_o , δ_P , δ_F , δ_S 分別表示观测原子的部分净电荷, 邻近原子的 极化效应,静电作用,立体效应对观测原子化学位移的贡献, δ_0 表示表示相应价态(如: sp^3 、 sp^2 、sp等)碳原子的化学位移特征值^[7,8]; Q, P, F, S分别表示观测原子的部分净 电荷,邻近原子的极化效应,静电作用和立体效应;a, b, c, d, e为系数.

方程(1)的使用,关键在于各种效应的具体量化,下面探讨如何从原子的电负性和 极化效应以及空间效应来估算δ_c,我们选择脂肪醇(一元醇、二元醇)作为模型化合物, 因为它们有以下优点:1)分子结构相对简单并且含有较强的极性键,更适合于考察电负 性效应对化学位移的影响;2)碳-氢键、碳-碳键和碳-氧键均为σ键,分子内不存在共轭 效应;3)脂肪醇(一元醇、二元醇)均溶于氘代氯仿,且不少脂肪醇在氘代氯仿溶剂中 的¹³C NMR 谱已经准确测定^[20,21],为验证模型提供了方便.

1.1 部分净电荷

脂肪醇分子中; C和H以及O原子的电负性χ_P(Pauling标度)不同,使得C-O和C-H键呈极性.根据作者以前的工作^[17,23]可以用被考察的*i*原子与其键连的*j*原子的电负性之差来近似衡量部分净电荷*Q_i*的多少:

$$Q_i = k_1 \times \Sigma(\chi_j - \chi_i) \tag{2}$$

(2)式中 k1 为比例系数.

以 3-甲基丁醇(CH₃CH(CH₃)CH₂CH₂OH)为例,其分子骨架图如图 1(末端原子均 为 H 原子)所示:

图 1 3-甲基丁醇的分子骨架图

Fig. 1 The molecular skeleton of 3-methylbutanol

已知 C、H、O 的电负性分别为 2.55、2.20 和 3.44,那么分子中各骨架原子所带部 分净电荷为(相关原子的电负性见表 1):

 $Q_{C1} = k_1 \times \Sigma(\chi_j - \chi_C) = k_1 \times [(\chi_O - \chi_C) + (\chi_C - \chi_C) + 2 \times (\chi_H - \chi_C)] = k_1 \times [(3. 44 - 2.55) + (2.55 - 2.55) + 2 \times (2.2 - 2.55)] = 0.19k_1$

 $Q_{C2} = k_1 \times \Sigma(\chi_j - \chi_C) = k_1 \times [2 \times (\chi_C - \chi_C) + 2 \times (\chi_H - \chi_C)] = 2k_1 \times [(2.55 - 2.55) + (2.2 - 2.55)] = -0.7k_1$

 $Q_{C3} = k_1 \times \Sigma(\chi_j - \chi_C) = k_1 \times [3 \times (\chi_C - \chi_C) + (\chi_H - \chi_C)] = k_1 \times [3 \times (2.55 - 2.55) + (2.2 - 2.55)] = -0.35k_1$

 $Q_{C4} = Q_{C5} = k_1 \times \Sigma(\chi_j - \chi_C) = k_1 \times [3 \times (\chi_H - \chi_C) + (\chi_C - \chi_C)] = k_1 \times [3 \times (2.2 - 2.55) + (2.55 - 2.55)] = -1.05k_1$

 $Q_{\rm O} = k_1 \times \Sigma(\chi_j - \chi_{\rm C}) = k_1 \times [(\chi_{\rm H} - \chi_{\rm O}) + (\chi_{\rm C} - \chi_{\rm O})] = k_1 \times [(2, 2-3, 44) + (2, 55-3, 44)] = -2.13k_1$

1.2 静电作用力

一个点电荷和另外多个点电荷产生的静电力可以通过叠加原理求得,所以对于观测 原子与邻近原子产生的静电力可用方程(3)来近似表达:

$$F = \sum_{m=1}^{M} \frac{Q_i Q_m}{DR^2} \tag{3}$$

(3)式中 F 为观测原子与近邻原子之间的静电作用力, M 表示与观测原子键连的骨架原子数目; Q_i 表示观测原子所带的部分净电荷, Q_m 表示与观测原子键连的骨架原子所带的部分净电荷, D 为介电常数, 对于给定体系而言 D 可视为定值; R 为观测原子与键连骨架原子的距离, 实际上精确计算 F 非常困难, 本文只计算与观测原子直接键连的原子产生的静电引力, 并粗略地将 R 设定为一个单位长度, 因而方程(3)可以简化为:

$$F = k_2 \times \sum_{m=1}^{M} Q_i Q_m \tag{4}$$

(4)式中, k2 为比例常数.

仍以 3-甲基丁醇为例,其相应骨架原子与近邻骨架原子的静电作用力为:

 $F_{C1} = k_2 \times [Q_{C1} \times Q_{C2} + Q_{C1} \times Q_0] = k_2 \times [0.19 \ k_1 \times (-0.7 \ k_1) + 0.19 \ k_1 \times (-2.13 \ k_1)] = -0.5377 \ k_2 \times k_1^2$

 $F_{C2} = k_2 \times [Q_{C2} \times Q_{C1} + Q_{C2} \times Q_{C3}] = k_2 \times [-0.7 \ k_1 \times 0.19 \ k_1 + (-0.7 \ k_1) \times (-0.35 \ k_1)] = 0.112 \ 0 \ k_2 \times k_1^2$

 $F_{C3} = k_2 \times [Q_{C3} \times Q_{C2} + Q_{C3} \times Q_{C4} + Q_{C3} \times Q_{C5}] = k_2 \times [-0.35 \ k_1 \times (-0.7 \ k_1) + (-0.35 \ k_1) \times (-1.05 \ k_1) + (-0.35 \ k_1) \times (-1.05 \ k_1)] = 0.980 \ 0 \ k_2 \times k_1^2$

 $F_{C4} = F_{C5} = k_2 \times Q_{C4} \times Q_{C3} = k_2 \times Q_{C5} \times Q_{C3} = k_2 \times [(-1, 05 \ k_1) \times (-0, 35 \ k_1)] = 0.367 \ 5 \ k_2 \times k_1^2$

1.3 极化效应

Abraham 等人认为观测原子和近邻原子极化度对观测原子的化学位移值有较大影响^[16],极化效应对化学位移的影响可能包括两个方面:一方面,在电磁场中,观测原子 核外电子云发生形变的程度能直接影响屏蔽效应的大小,而分子中同种原子核外电子云 能形变的程度可用近邻原子的极化度(*P*₁)大小来粗略估算:

$$P_1 = \Sigma \alpha_x \tag{5a}$$

另一方面,根据极化效应原理^[22],由于观测原子带有部分净电荷,它必然会对近邻原子 产生一个诱导偶极(µ_{ind})

$$\mu_{\rm ind} = E \times \alpha \tag{5b}$$

(5b)式中 E 是电场强度, α 是原子极化度.

假定观测原子 Q_i 产生的电场 E 正比于 Q_i , 即 $\mu_{ind} = k_3 Q_i \alpha$, 那么近邻原子对观测原 子总的极化效应可按下式计算:

$$P = P_1 + \mu_{\text{ind}} = \Sigma \alpha_x + k_3 Q_i \Sigma \alpha_x \tag{5}$$

上述各式中 k_3 为比例系数, $\Sigma \alpha_x$ 为近邻原子的极化度之和,其计算方式按文献[17,23]介绍的方法,对于 3-甲基丁醇而言,其观测原子相应的近邻原子极化度之和计算如下(相关原子的极化度和极化效应增量见表 1 和表 2):

 $\Sigma \alpha_{\rm C1} = (2 \times \alpha_{\rm H} + \alpha_{\rm O} + \alpha_{\rm C}) + (2 \times \alpha_{\rm H} + \alpha_{\rm C} + \alpha_{\rm H}) \times \Delta PEI = (2 \times 0.666793 + 0.802 + 1.76) + (3 \times 0.666793 + 1.76) \times 0.140526 = 4.4240039$

 $\sum_{\alpha_{C2}} = (2 \times_{\alpha_{H}} + 2 \times_{\alpha_{C}}) + (2 \times_{\alpha_{C}} +_{\alpha_{H}} + 2 \times_{\alpha_{H}} +_{\alpha_{O}}) \times \Delta PEI = (2 \times 0.\ 666\ 793 + 2 \times 1.\ 75) + (3 \times 0.\ 666\ 793 + 2 \times 1.\ 76 + 0.\ 802) \times 0.\ 140\ 526 = 5.\ 742\ 022\ 6$

 $\Sigma_{\alpha_{\rm C3}} = (\alpha_{\rm H} + 3 \times \alpha_{\rm C}) + (3 \times \alpha_{\rm H} + 3 \times \alpha_{\rm H} + 2 \times \alpha_{\rm H} + \alpha_{\rm C}) \times \Delta PEI = (0.666793 + 3 \times 1.75) + (8 \times 0.666793 + 1.76) \times 0.140526 = 6.9437081$

 $\sum_{\alpha_{C4}} = \sum_{\alpha_{C5}} = (3 \times \alpha_{H} + \alpha_{C}) + (2 \times \alpha_{C} + \alpha_{H}) \times \Delta PEI = (3 \times 0.666793 + 1.75) + (2 \times 1.76 + 0.666793) \times 0.140526 = 4.3487177$

表 1 C、H、O 原子的电负性 χ_p (Pauling 标度)和原子极化度 α

Table1 The values of the electronegativity χ_{P} (Pauling scale) and atomic

polarizability α for the carbon, hydrogen, and oxygen atoms^[24]

Atom	Н	С	0
χ _P	2.20	2.55	3.44
$\alpha/10^{-24}\mathrm{cm}^3$	0.666 793	1.76	0.802

表 2 相距中心原子 N_i 个键的原子(基团)对中心原子极化效应的增量

Table 2 $\triangle PEI$ values of the N_i th atoms (group) from the central atom^[25,26]

N_i	ΔPEI	N_i	ΔPEI	N_i	ΔPEI
1	1.000 000	2	0.140 526	3	0.048 132

1.4 立体效应

大量的研究表明,¹³C 化学位移容易受到分子内几何因素的影响^[1-3],一方面邻近原 子的大小及拥挤程度对中心原子核外电子云密度分布带来影响,另一方面处于γ位的原 子因为空间上接近中心原子引起其电子密度有所增加而使化学位移移向高场^[2].经研究 发现可以选择 α、γ位上连有的 H 原子数目以及γ位羟基的数目作为表征立体效应的参 数.

$$S = f_0 N_{\rm H}^{\alpha} + g_0 N_{\rm H}^{\gamma} + h_0 N_{\rm OH}^{\gamma}$$
(6)

方程(6)中, $N_{\rm H}^{\alpha}$, $N_{\rm H}^{\gamma}$, $N_{\rm OH}^{\gamma}$ 分别表示 α-、γ-位连有的 Η 原子数目和 γ-位-OH 的数 目; f_0 , g_0 , h_0 为系数.

将方程(5)和(6)带入方程(1)中就得到计算脂肪醇¹³C 化学位移的 7 参数数学模型: $\delta_{\rm C} = a_0 + b_0 Q + c_0 F + d_0 \Sigma \alpha_x + e_0 Q_i \Sigma \alpha_x + f_0 N_{\rm H}^{\alpha} + g_0 N_{\rm H}^{\gamma} + h_0 N_{\rm OH}^{\gamma}$ (7)

2 结果与讨论

用以上介绍的方法,将计算得到 120 个化合物的 747 个碳原子的相关参数值和实验 测定的¹³C NMR 化学位移值(部分数据见表 3)带入方程(7),得到如下回归方程:

 $\delta_{\rm C} = 42.9479 + 63.0640 Q_i - 3.6286F + 5.1213\Sigma_{\alpha_x} - 6.5848 Q_i \Sigma_{\alpha_x}$

 $-4.8427N_{\rm H}^{\alpha}-0.5855N_{\rm H}^{\gamma}-4.1046N_{\rm OH}^{\gamma}$

(R = 0.9981 R₂ = 0.9961 S = 1.14 F = 27 125.2 n = 747) (8)
 其中, R、R²、S、F、n分别为相关系数、复相关系数、标准偏差、Fischer 值和样本
 数. 方程(8)的相关性非常好,其标准偏差 S 只有 1.14,Q 项前面的系数为正,表明观测
 原子所带的部分正电荷越多,则化学位移会移向低场(δ_c 越大).但由于诱导偶极(Q_iΣα_x

参数项前为负)的作用,使得其化学位移移向低场的幅度略有下降,而带的部分负电荷

越多则会移向高场(δ_c 越小).同样由于诱导偶极的原因会使得其化学位移移向高场的幅度也有所下降,这是符合极化效应原理的; Σ α_x 参数前系数为正,说明观测原子核外电子云越容易变形,则其化学位移越大; *F* 前面的系数为负,表示观测原子与键连原子所带部分电荷同号,则使 δ_c 减小,具体作用机理还不太清楚;一般地,脂肪化合物中,取代烷基越大、越具分支,被取代的碳原子的 δ 也越大^[1], $N_{\rm H}^{\alpha}$ 的数目能较好地表征这一立体结构信息,当观测原子所带部分净电荷一定时, $N_{\rm H}^{\alpha}$ 个数越少则观测原子周围烷基会相对较多,观测原子化学位移值移向低场,这与通常的实验观察结果一致;由于脂肪链可以旋转,处于 γ-位的原子(基团)会"挤压"观测原子上处于相同构象的原子(H原子),使 C-H 键的电子移向观测原子,故共振移向高场,经时间平均效应后,仍为高场位移(δ_c 减小)^[1,2],而当 γ-位连有电负性较大的原子(N,O,F)时,观测原子的高场位移比烷基取代更为明显^[1],方程(8)中 $N_{\rm H}^{\alpha}$ 较好地表征了处于 γ-位烷基的大小,而 $N_{\rm H}^{\alpha}$, $N_{\rm OH}^{\alpha}$ 两项前面的系数值的大小及符号均较直观地反映了 γ-效应对观测原子化学位移的影响.

为检验式(8)的稳定性和预测能力,对方程(8)进行留一法(leave-one-out,简称 LOO)交叉验证,得到 $R_{ev}=0.9980$, $R_{ev}^2=0.9960$, $S_{ev}=1.16$,用方程(8)计算得到的估 算值对实验值作图得图 2,以预测残差值对实验值作图得图 3,从 R_{ev} 、 S_{ev} 值以及图 2 和 图 3 可以看出方程(8)有良好的预测能力和稳定性.进一步利用方程(8)对样本外 5 个脂 肪醇(包括直链脂肪烃端基醇,直链脂肪烃非端基醇,支链脂肪烃端基醇,支链脂肪烃非 端基醇以及二元醇)的 69 个碳原子之¹³C NMR 进行预测(见表 4),将预测值对实验值作 图(见图 4),结果表明预测值与实验值符合很好,平均绝对偏差为 $\delta0.75$,以上说明式 (8)可以用于估算脂肪醇中碳的 δ_c .

图 2 747 个碳原子¹³C NMR 化学位移的估算值对实验 值作图

Fig. 2 Plot of the predicted ^{13}C NMR chemical shifts δ_C vs. the experimental δ_C for the 747 carbon atoms

图 3 747 个碳原子¹³C NMR 化学位移预测残差值对实验值作图

Fig. 3 Plot of the residuals vs. the experimental ${}^{13}C$ chemical shifts for the 747 carbon atoms

文献[12] 曾对 37 个脂肪一元醇的 187 个碳原子进行分析,建立了 4 类等价碳的 5 参数化学位移线性模型,模型的相关系数分别为 0.987 6、0.997 2、0.998 7、0.998 8, 均方根误差分别为 ∂ 0.960、∂ 0.968、∂ 0.888、∂ 0.908;如将样本数增加至 44 个脂肪一 元醇的 207 个碳原子时模型的相关系数分别为 0.968 3、0.991 9、0.996 8、0.996 8,均 表 3 部分脂肪醇分子的¹³C NMR 化学位移计算值和实验值以及相关参数值

Table 3 $\,$ The comparison of calculated results of 13 C NMR chemical shifts and their experimental values in some aliphatic Alcohols, as well as the model parameters

Compounds	$N_{\mathrm{o}}{}^{\mathrm{a}}$	Q	F	$\Sigma \alpha_x$	$Q_i \Sigma \alpha_x$	$N_{\rm H}^{\rm a}$	$N_{\rm H}^{\gamma}$	$N_{\rm OH}^{\gamma}$	$\delta_{\rm cal}{}^{\rm b}$	$\delta_{\exp}{}^{c}$	$\Delta \delta^{\rm d}$
C1—OH	1	-0.16	0.340 8	2.896 1	-0.463 4	0	0	0	49.50	50.05	0.55
	1	0.19	-0.604 2	4.270 4	0.811 4	3	0	0	59.12	57.79	-1.33
C2—C1—OH	2	-1.05	-0.199 5	4.060 5	-4.2635	2	0	0	16.64	18.13	1.49
	1	0.19	-0.5377	4.424 0	0.840 6	2	0	0	64.32	64.25	-0.07
C3—C2—C1—OH	2	-0.70	0.602 0	5.434 8	-3.804 3	5	0	0	25.29	25.89	0.60
	3	-1.05	0.735 0	4.195 1	-4.404 9	2	0	1	10.76	10.28	-0.48
011											
	1	-1.05	-0.1995	4.214 1	-4.424 8	1	0	0	23.33	25.29	1.96
C1—C2—C1	2	0.54	-2.2842	5.644 7	3.048 1	6	0	0	65.07	64.04	-1.03
	1	-1.05	-0.5670	4.214 1	-4.424 8	1	3	0	22.91	22.83	-0.08
OH	2	0.54	-2.0952	5.798 3	3.131 1	5	0	0	69.47	69.28	-0.19
C4—C3—C2—C1	3	-0.70	0.357 0	5.588 4	-3.9119	4	0	0	32.52	32.07	-0.45
	4	-1.05	0.735 0	4.195 1	-4.404 9	2	3	1	9.01	10.01	1.00
	1	0.19	-0.4712	4.5776	0.8697	1	0	0	69.51	69.47	-0.04
C3-C2-C1-OH	2	-0.35	0.668 5	6.809 1	-2.3832	8	0	0	30.27	30.84	0.57
Ċ3	3	-1.05	0.367 5	4.348 7	-4.566 2	1	0	1	18.79	18.99	0.20
C1											
	1	-1.05	-0.934 5	4.367 7	-4.5861	0	0	0	32.69	31.23	-1.46
	2	0.89	-4.699 2	7.019 0	6.246 9	9	0	0	67.35	69.05	1.70
ÓН											
	1	-1.05	-0.1995	4.214 1	-4.4248	1	2	0	22.16	23.38	1.22
ОН	2	0.54	-2.0952	5.798 3	3.131 1	5	3	0	67.71	67.69	-0.02
	3	-0.70	0.112 0	5.742 0	-4.0194	3	0	0	39.74	41.59	1.85
C5—C4—C3—C2—C1	4	-0.70	1.225 0	5.569 4	-3.8986	5	3	1	18.48	19.03	0.55
	5	-1.05	0.735 0	4.195 1	-4.404 9	2	1	0	14.28	14.11	-0.17
OH	1	-1.05	0.735 0	4.195 1	-4.4049	2	2	1	9.59	10.10	0.51
	2	-0.70	0.357 0	5.588 4	-3.911 9	4	3	0	30.76	29.70	-1.06
$C_1 - C_2 - C_3 - C_2 - C_1$	3	0.54	-1.9062	5.951 9	3.214 0	4	0	0	73.87	74.50	0.63
C3	1	0.19	-0.4047	4.731 2	0.898 9	0	0	0	74.71	73.16	-1.55
C3-C2-C1-OH	2	0.00	0.000 0	8.183 4	0.000 0	11	0	0	31.59	32.62	1.03
 C3	3	-1.05	0.000 0	4.502 3	-4.7275	0	0	1	26.81	26.11	-0.70
	1	0.19	-0.5377	4.424 0	0.8406	2	2	0	63.15	62.80	-0.35
	2	-0.70	0.357 0	5.588 4	-3.9119	4	2	0	31.34	32.79	1.45
	3	-0.70	0.980 0	5.723 0	-4.006 1	4	3	1	25.70	25.59	-0.11
C6—C5—C4—C3—C2—C1	4	-0.70	0.980 0	5.723 0	-4.006 1	4	2	0	30.39	31.80	1.41
	5	-0.70	1.225 0	5.569 4	-3.8986	5	2	0	23.17	22.75	-0.42
	6	-1.05	0.735 0	4.195 1	-4.404 9	2	2	0	13.70	14.07	0.37
	1	-1.05	0.735 0	4.1951	-4.4049	2	2	1	9.59	9.93	0.34
	2	-0.70	0.357 0	5.588 4	-3.911 9	4	2	0	31.34	30.23	-1.11
OH	3	0.54	-1.906 2	5.951 9	3.214 0	4	3	0	72.11	73.00	0.89
C1 - C2 - C3 - C4 - C5 - C6	4	-0.70	0.112 0	5.742 0	-4.0194	3	3	0	37.99	39.25	1.26
	5	-0.70	1.225 0	5.5694	-3.8986	5	2	1	19.06	18.94	-0.12
	6	-1.05	0.735 0	4.195 1	-4.404 9	2	1	0	14.28	14.18	-0.10
	1	-1.05	0.735 0	4.195 1	-4.404 9	2	5	0	11.94	11.29	-0.65
	2	-1.05	0.367 5	4.3487	-4.566 2	1	5	0	19.97	19.18	-0.79
C2	3	-0.70	0.980 0	5.723 0	-4.006 1	4	2	0	30.39	29.68	-0.71
C1—C3—C4—C5—C6—OH	4	-0.35	0.857 5	7.097 3	-2.4841	7	0	1	32.47	31.20	-1.27
	5	-0.70	0.112 0	5.742 0	-4.019 4	3	3	0	37.99	39.53	1.54
	6	0.19	-0.5377	4.424 0	0.840 6	2	5	0	61.39	60.94	-0.45

Compounds	$N_{\mathrm{o}}{}^{\mathrm{a}}$	Q	F	$\Sigma \alpha_x$	$Q_i \Sigma \alpha_x$	$N_{\rm H}^{\rm a}$	$N_{\rm H}^{\gamma}$	$N_{\rm OH}^{\gamma}$	$\delta_{\rm cal}{}^{\rm b}$	$\delta_{\exp}{}^{c}$	$\Delta \delta^{\rm d}$
	1	0.19	-0.471 2	4.577 6	0.8697	1	2	0	68.34	68.23	-0.11
	2	-0.35	0.546 0	6.962 7	-2.4369	7	3	0	34.94	35.63	0.69
C6	3	-0.70	0.735 0	5.876 6	-4.1137	3	0	1	34.69	35.63	0.94
C5—C4—C2—C2—C1—OH	4	-0.70	1.225 0	5.569 4	-3.8986	5	5	0	21.41	20.19	-1.22
	5	-1.05	0.735 0	4.195 1	-4.4049	2	1	0	14.28	14.38	0.10
	6	-1.05	0.367 5	4.348 7	-4.5662	1	2	1	17.62	16.65	-0.97
	1	-1.05	0.735 0	4.1951	-4.4049	2	1	1	10.18	10.37	0.19
OH	2	-0.70	0.357 0	5.588 4	-3.911 9	4	6	0	29.00	27.00	-2.00
C5—C4—C3—C2—C1	3	0.54	-1.7172	6.105 5	3.297 0	3	0	0	78.26	78.20	-0.06
	4	-0.35	0.546 0	6.9627	-2.4369	7	3	0	34.94	33.22	-1.72
C	5	-1.05	0.367 5	4.348 7	-4.566 2	1	2	1	17.62	17.24	-0.38
	1	-1.05	-0.034.5	4 367 7	-1 586 1	0	2	0	21 52	20 20	-2 32
C1	2	0.89	-4 387 7	7 172 6	6 383 6	8	3	0	69 20	70.98	1 78
C5-C4-C3-C2-C1	3	-0.70	-0 133 0	5 895 6	-4 126 9	2	0	0	46 97	46 46	-0.51
	4	-0.70	1 225 0	5 569 4	-3 808 6	5	6	1	16 72	17 67	0.95
OH	5	-1.05	0 735 0	4 195 1	-4 404 9	2	0	0	14 87	14 68	-0.19
	0	1,00	0.155 0	4,155 1	1.101 3	2	0	0	14.07	14.00	0.15
	1	-1.05	-0.5670	4.214 1	-4.424 8	1	9	0	19.39	17.89	-1.50
	2	0.54	-1.7172	6.105 5	3.297 0	3	0	0	78.26	75.58	-2.68
C4—C3—C2—C1	3	0.00	0.000 0	8.337 0	0.000 0	10	0	0	37.22	34.92	-2.30
L C4	4	-1.05	0.000 0	4.502 3	-4.7275	0	3	1	25.06	25.47	0.41
	5	-1.05	0.367 5	4.348 7	-4.566 2	1	6	1	15.28	12.66	-2.62
ОН	1	-1.05	-0.5670	4.214 1	-4.424 8	1	6	0	21.15	19.93	-1.22
	2	0.54	-1.906 2	5.951 9	3.214 0	4	0	0	73.87	72.69	-1.18
C4—C3—C2—C1	3	-0.35	0.546 0	6.9627	-2.4369	7	0	0	36.70	35.08	-1.62
Ċ	4	-1.05	0.367 5	4.3487	-4.5662	1	3	1	17.03	18.06	1.03
	1	-1.05	-0.5670	4.214 1	-4.4248	1	5	0	21.74	20.25	-1.49
C6	2	0.54	-1.9062	5.951 9	3.214 0	4	3	0	72.11	71.31	-0.80
	3	-0.35	0.423 5	7.116 3	-2.4907	6	0	0	43.13	41.80	-1.33
C5—C4—C3—C2—C1	4	-0.70	0.980 0	5.723 0	-4.0061	4	3	1	25.70	25.36	-0.34
OH	5	-1.05	0.735 0	4.1951	-4.4049	2	4	0	12.53	11.79	-0.74
	6	-1.05	0.367 5	4.348 7	-4.5662	1	6	1	15.28	14.03	-1.25
	1	1 05	0.505.0	4 105 1		0	0	1	0 50	0.05	
	1	-1.05	0.735 0	4,1951	-4.404 9	4	2	1	9.59	9.95	0.35
	2	-0.70	0.3570	5.051.0	- 5, 911 9	4	2	0	31.34	30.20	-1.14
C7—C6—C5—C4—C3—C2—C1	3	0.54	-1.906 2	5.9519	3.214 0	4	2 C	0	12.10	13.24	0.54
OH	4	-0.70	0.112.0	5.742.0	-4.019 4	3	0	1	30.23	30,73	0.52
	5	-0.70	0.980 0	5.723 0	-4.006 1	4	1	1	26.29	28,01	1.72
	6	-0.70	1.225 0	5.569 4	-3.898 6	5	1	0	23.75	22.91	-0.84
	7	-1.05	0.735 0	4.195 1	-4.404 9	Z	Z	0	13.70	14.12	0.42
	1	-1.05	0.735 0	4.195 1	-4.4049	2	1	0	14.28	14.14	-0.14
OH	2	-0.70	0.735 0	5.5694	-3.8986	5	2	1	20.84	18.90	-1.94
C1—C2—C3—C4—C3—C2—C1	3	-0.70	0.112 0	5.742 0	-4.0194	3	2	0	38.57	39.84	1.27
	4	0.54	-1.906 2	5.951 9	3.214 0	4	6	0	70.35	71.45	1.10
	1	-1.05	-0.1995	4.214 1	-4.4248	1	5	0	20.40	20.20	-0.20
	2	0.54	-1.906 2	5.951 9	3.214 0	4	2	0	72.70	71.50	-1.20
C7	3	-0.35	0.423 5	7.116 3	-2.4907	6	3	0	41.37	39.80	-1.57
C6—C5—C4—C3—C2—OH	- 4	-0.70	0,735 0	5.876 6	-4.1137	3	3	1	32.93	35.20	2.27
	5	-0.70	1,225 0	5.569 4	-3.898 6	5	4	0	22.00	20.60	-1.40
CI	6	-1.05	0.735 0	4.1951	-4.404 9	2	1	0	14.28	14.50	0.22
	7	-1.05	0.367 5	4.348 7	-4.566 2	1	5	1	15.86	14.90	-0.96

_

续表3

Compounds	$N_{ m o}{}^{ m a}$	Q	F	$\Sigma \alpha_x$	$Q_i \Sigma \alpha_x$	$N_{\rm H}^{\rm a}$	$N_{\rm H}^{\gamma}$	N_{OH}^{γ}	$\delta_{\rm cal}{}^{\rm b}$	$\delta_{\exp}{}^{c}$	$\Delta \delta^{\rm d}$
	1	0.19	-0.471 2	4.577 6	0.869 7	1	5	0	66.59	66.73	0.14
	2	-0.35	0.423 5	7.116 3	-2.490 7	6	3	0	41.37	40.61	-0.76
C7	3	-0.35	0.735 0	7.250 9	-2.5378	6	0	1	38.89	36.64	-2.25
C5-C4-C3-C2-C1-C1	4	-0.70	0.980 0	5.723 0	-4.006 1	4	5	0	28.64	27.73	-0.91
	5	-1.05	0.735 0	4.195 1	-4.404 9	2	4	0	12.53	11.94	-0.59
0	6	-1.05	0.367 5	4.348 7	-4.5662	1	8	0	18.21	16.48	-1.73
	7	-1.05	0.367 5	4.348 7	-4.5662	1	5	1	15.86	13.84	-2.02
	1	-1.05	-0.567 0	4.214 1	-4.424 8	1	2	0	23.49	23.47	-0.02
OH	Z	0.54	-2.095 2	5.798 3	3.1311	5	1	0	68.88	68.41	-0.47
C6-C5-C4-C3-C1	3	-0.70	0.357 0	5.742 0	-4.019 4	3	6	0	35.34	37.25	1.91
	4	-0.70	0.735 0	5.876 6	-4.1137	3	3	1	32.93	35.02	2.09
00	5	-0.35	0.980 0	6.9437	-2.430 3	8	1	0	29.56	28.17	-1.39
	0	-1.05	0.307 0	4.340 /	-4.000 2	1	2	0	21,72	22.02	0.90
OH	1	-1.05	0.367 5	4.3487	-4.5662	1	1	1	18.20	16.98	-1.22
 C1—C2—C3—C2—C1	2	-0.35	0.546.0	6 962 7	-2 436 9	7	6	0	33 10	30.64	-2 55
	2	0.50	-1 528 2	6 250 2	2 200 0	, 9	0	0	00.15	01.01	_1 22
C C	3	0.54	1.328 2	0.2392	3.300 0	2	0	0	02.00	01.00	1.55
	1	-1.07	0.749 0	4.255 0	-4.5529	2	0	0	14.84	15.10	0.26
C5	2	-0.70	1.225 0	5.569 4	-3.8986	5	8	0	19.65	17.20	-2.45
	3	-0.70	0.490 0	6.030 3	-4.2212	2	0	1	41.91	41.50	-0.41
C1—C2—C3—C4—C6—OH	4	0.00	0.000 0	8.337 0	0.000 0	10	3	0	35.46	35.20	-0.26
Ċ5	5	-1.05	0.000 0	4.502 3	-4.7275	0	2	1	25.64	24.00	-1.64
	6	0.19	-0.404 7	4.731 2	0.898 9	0	2	0	73.54	71.80	-1.74
	1	-1.05	0.735 0	4.1951	-4.404 9	2	4	0	12.53	12.00	-0.53
ОН	2	-0.70	0.980 0	5.723 0	-4.006 1	4	2	1	26.29	25.00	-1.29
l	3	-0.35	0.423 5	7.116 3	-2.490 7	6	3	0	41.37	40.60	-0.77
C6—C5—C4—C3—C2—C1	4	0.54	-1.717 2	6.105 5	3.297 0	3	3	0	76.51	77.30	0.79
Ċ7	5	-0.70	0.357 0	5.341 1	-3.738 8	4	5	0	27.18	27.40	0.22
	6	-1.05	0.735 0	4.154 2	-4.361 9	2	1	1	9.69	10.60	0.91
	7	-1.05	0.367 5	4.348 7	-4.566 2	1	5	1	15.86	14.90	-0.96
	1	-1.05	0.735 0	4.195 1	-4.404 9	2	0	1	10.76	11.63	0.87
C5	2	-0.70	0.357 0	5.588 4	-3.9119	4	9	0	27.25	24.44	-2.81
C1—C2—C3—C4—C5	3	0.54	-1.528 2	6.259 2	3.380 0	2	0	0	82.66	81.81	-0.85
 OH_C5	4	0.00	0.000 0	8.337 0	0.000 0	10	3	0	35.46	35.06	-0.40
011 00	5	-1.05	0.000 0	4.502 3	-4.7275	0	2	1	25.64	25.82	0.18
	1	-1 05	0.367.5	4.3487	-4.566°	1	2	1	17.62	17.18	-0.44
011	2	-0.35	0.546.0	6 962 7	-2 436 9	7	2	0	35 53	33 63	-1 90
	3	0.54	-1 717 2	6 105 5	3 297 0	3	3	0	76 51	76 54	0.03
C6—C5—C4—Ċ3—C2—C1	4	-0.70	0 112 0	5 742 0	-4 019 4	3	6	0	36 23	36 51	0.28
Ċ	5	-0.70	1 225 0	5 569 4	-3 898 6	5	1	1	19 65	19 31	-0.34
	6	-1.05	0 735 0	4 195 1	-4 404 9	2	1	0	14 28	14 17	-0.11
	5					-	*	-			
	1	0.19	-0.5377	4.424 0	0.840 6	2	5	0	61.39	60.98	-0.41
	2	-0.70	0.112 0	5.742 0	-4.019 4	3	2	0	38.57	39.98	1.41
C7	3	-0.35	0.857 5	7.097 3	-2.4841	7	3	1	30.71	29.37	-1.34
 С6—С5—С4—С3—С2—С1—ОН	4	-0.70	0.735 0	5.876 6	-4.1137	3	2	0	37.62	39.56	1.94
$c_0 c_0 c_1 c_1 c_2 c_1 - 0 \pi$	5	-0.70	1.225 0	5.569 4	-3.8986	5	5	0	21.41	19.63	-1.78
	6	-1.05	0.735 0	4.1951	-4.404 9	2	1	0	14.28	14.35	0.07
	7	-1.05	0.367 5	4.348 7	-4.5662	1	4	0	20.55	20.09	-0.46

Compounds	$N_{ m o}{}^{ m a}$	Q	F	$\Sigma \alpha_x$	$Q_i \Sigma \alpha_x$	$N_{\rm H}^{\rm a}$	$N_{\rm H}^{\gamma}$	Nγ _{OH}	$\delta_{\rm cal}{}^{\rm b}$	$\delta_{\mathrm{exp}}{}^{\mathrm{c}}$	$\Delta \delta^{\rm d}$
	1	-1.05	0.735 0	4.195 1	-4.404 9	2	5	0	11.94	11.25	-0.69
	2	-0.70	0.980 0	5.876 6	-4.1137	4	1	0	32.47	30.22	-2.25
OH C7	3	-0.35	0.857 5	7.097 3	-2.4841	7	3	1	30.71	31.16	0.45
	4	-0.70	-0.1330	5.895 6	-4.1269	2	3	0	45.21	46.68	1.47
C6-C5-C4-C3-C2-C1	5	0.54	-2.095 2	5.798 3	3.1311	5	5	0	66.54	65.89	-0.65
	6	-1.05	-0.5670	4.214 1	-4.424 8	1	1	0	24.08	24.34	0.26
	7	-1.05	0.367 5	4.3487	-4.5662	1	4	0	20.55	19.05	-1.50
	1	-1.05	0.735 0	4.195 1	-4.404 9	2	4	0	12.53	11.09	-1.44
	2	-0.70	0.980 0	5.475 7	-3.8330	4	2	1	23.88	23.43	-0.45
	3	-1.05	0.735 0	4.195 1	-4.404 9	2	2	0	13.70	14.12	0.42
C3—C4—C5—C6—C7—C8—OH	4	-0.70	1.225 0	5.569 4	-3.8986	5	1	0	23.75	23.19	-0.56
C2—C1	5	-0.70	0.980 0	5.723 0	-4.0061	4	4	0	29.22	29.24	0.02
	6	-0.70	0.735 0	5.876 6	-4.1137	3	6	1	31.17	30.23	-0.94
	7	-0.35	0.490 0	7.116 3	-2.4907	6	2	0	41.72	42.07	0.35
	8	0.19	-0.471 2	4.577 6	0.8697	1	5	0	66.59	65.15	-1.44
	1	1 05	0.267 5	4 949 7	1 566 9	1	0	0	99 90	94 97	1 40
	1	-1.05	0.307 3	4.3407	-4.000 2	1	0	0	22.09	24.37	1.40
C5	2	-0.35	0.980 0	0.9437	-2.430 3	0	0	1	40.14	47.70	-1.37
C1-C2-C3-C4-C6-OH	3	-0.70	0.245 0	0.103 9	-4.3287	10	c	1	49.14	47.70	-1.44
	4	1.05	0.000 0	0.0070	0.000 0	10	1	1	33.70	33.77	2.07
	э с	-1.05	0.000 0	4.502.5	-4.727 5	0	1	1	20.23	23.40	-0.77
	0	0.19	0.404 /	4.731 2	0.090 9	0	1	0	74.12	12.42	1.70
	1	-1.05	0.367 5	4.348 7	-4.5662	1	1	0	22.31	22.96	0.65
	2	-0.35	0.980 0	6.943 7	-2.4303	8	4	0	27.80	25.47	-2.33
C1 C2 C3 C4 C7 OH	3	-0.70	0.490 0	6.030 3	-4.2212	2	3	1	40.16	39.60	-0.56
	4	-0.35	0.423 5	7.116 3	-2.4907	6	6	0	39.62	40.28	0.66
Č Č5—C6	5	-0.70	0.980 0	5.723 0	-4.006 1	4	1	1	26.88	26.39	-0.49
	6	-1.05	0.735 0	4.1951	-4.4049	2	4	0	12.53	10.93	-1.60
	7	0.19	-0.5377	4.5776	0.8697	1	4	0	67.41	65.28	-2.13
	1	-1.05	0.000 0	4.502 3	-4.7275	0	1	0	30.33	29.96	-0.37
C1	2	0.00	0.000 0	8.318 0	0.000 0	11	5	0	29.35	30.88	1.53
C1-C2-C3-C4-C6-OH	3	-0.70	0.245 0	6.183 9	-4.3287	1	0	1	49.14	47.24	-1.90
	4	-0.35	0.546 0	6.9627	-2.4369	7	9	0	31.43	32.26	0.83
	5	-1.05	0.367 5	4.348 7	-4.5662	1	0	1	18.79	19.58	0.79
	6	0.19	-0.471 2	4.577 6	0.8697	1	0	0	69.51	69.29	-0.22
	1	-1.05	0.735 0	4.195 1	-4.4049	2	1	0	14.28	14.07	-0.21
C6	2	-0.70	1.225 0	5.5694	-3.8986	5	0	1	20.23	20.15	-0.08
	3	-0.70	0.112 0	5.742 0	-4.0194	3	9	0	34.47	33.72	-0.75
C1-C2-C3-C4-C5-C6	4	0.54	-1.5282	6.165 5	3.329 4	2	3	0	80.76	79.68	-1.08
OH C6	5	0.00	0.000 0	8.337 0	0.000 0	10	2	0	36.05	34.84	-1.21
	6	-1.05	0.000 0	4.502 3	-4.7275	0	2	1	25.64	25.67	0.03
	1	-1.05	0.735 0	4.195 1	-4.404 9	2	1	1	10.18	10.70	0.52
	2	-0.70	0.357 0	5.588 4	-3.911 9	4	5	0	29.59	27.40	-2.19
C8	3	0.54	-1.7172	6.011 9	3.246 4	3	2	0	76.95	77.50	0.55
C7-C6-C5-C4-C3-C2-C1	4	-0.35	0.423 5	7.116 3	-2.4907	6	6	0	39.62	38.60	-1.02
	5	-0.70	0.735 0	5.876 6	-4.1137	3	2	1	33.52	35.90	2.38
OH	6	-0.70	1.225 0	5.569 4	-3.8986	5	4	0	22.00	20.60	-1.40
	7	-1.05	0.735 0	4.195 1	-4.404 9	2	1	0	14.28	14.40	0.12
	8	-1.05	0.367 5	4.348 7	-4.566 2	1	4	1	16.45	15.50	-0.95

Compounds	$N_{ m o}{}^{ m a}$	Q	F	$\Sigma \alpha_x$	$Q_i \Sigma \alpha_x$	$N_{\rm H}^{\rm a}$	$N_{\rm H}^{\gamma}$	$N_{\rm OH}^{\gamma}$	$\delta_{\rm cal}{}^{\rm b}$	$\delta_{\exp}{}^{c}$	$\Delta \delta^{\rm d}$
	1	0.54	-2.095 2	5.798 3	3.131 1	5	1	0	68.88	68.51	-0.37
	2	-0.70	0.112 0	5.742 0	-4.019 4	3	5	0	36.81	36.92	0.11
	3	-0.70	0.735 0	5.876 6	-4.1137	3	6	1	31.17	32.63	1.46
C7 C8	4	-0.35	0.857 5	7.097 3	-2.4841	7	1	0	35.98	34.56	-1.42
C6-C5-C4-C3-C2-C1-OH	5	-0.70	0.980 0	5.723 0	-4.0061	4	2	0	30.39	29.48	-0.91
	6	-1.05	0.735 0	4.195 1	-4.404 9	2	5	0	11.94	11.37	-0.57
	7	-1.05	0.367 5	4.348 7	-4.5662	1	5	0	19.97	19.22	-0.75
	8	-1.05	-0.5670	4.214 1	-4.424 8	1	2	0	23.49	23.49	0.00
	1	-1.05	0.735 0	4.1951	-4.4049	2	1	0	14.28	14.20	-0.08
	2	-0.70	1.225 0	5.5694	-3.8986	5	1	1	19.65	19.50	-0.15
OH	3	-0.70	0.112 0	5.742 0	-4.0194	3	5	0	36.81	37.00	0.19
	4	0.54	-1.717 2	6.105 5	3.297 0	3	6	0	74.75	75.40	0.65
C1—C2—C3—C4—C5—C6—C7	5	-0.35	0.423 5	7.116 3	-2.4907	6	2	0	41.96	41.00	-0.96
C8	6	-0.70	0.980 0	5.723 0	-4.0061	4	2	1	26.29	26.20	-0.09
	7	-1.05	0.735 0	4.195 1	-4.4049	2	4	0	12.53	11.90	-0.63
	8	-1.05	0.367 5	4.348 7	-4.5662	1	5	1	15.86	14.80	-1.06
	1	1 05	0 267 5	4 949 7	4 566 9	1	0	1	17 69	17 99	0.40
	1	-1.05	0.307 3	4.3407	- 4. 000 2	1	2	1	25 52	22 64	- 0.40
	2	0.53	-1 717 2	6 105 5	2.430 9	2	2	0	77 00	76 80	-0.20
ОН С	3	-0.70	0 112 0	5 742 0	-4 010 4	2	8	0	35.06	24 21	-0.75
	4	-0.70	0.112.0	5 722 0	-4.019 4	4	4	1	25 12	25 80	0.73
18 - 17 - 16 - 15 - 14 - 13 - 12 - 11	6	-0.70	0.980.0	5 723 0	-4.006.1	4	1	0	20.08	20.00	1 16
	7	-0.70	1 225 0	5.7250	4.000 1	4	1	0	30.90 92 17	32.14 22.70	-0.20
	2 2	-1.05	0.735.0	1 105 1	-1 404 0	2	2	0	13 70	14 00	0.39
	0	1.05	0.755.0	4.155 1	4.404 5	2	2	0	15.70	14.05	0.33
OH	1	0.19	-0.3021	4.443 0	0.844 2	1	0	0	68.38	67.75	-0.63
	2	0.54	-1.6146	5.570 0	3.007 8	5	0	0	67.37	68.28	0.91
С3—С2—С1—ОН	3	-1.05	-0.5670	4.214 1	-4.424 8	1	0	1	20.56	18.78	-1.78
	1	0.19	-0.5377	4.424 0	0.840 6	2	0	1	60.21	61.76	1.55
OH—C1—C2—C1—OH	2	-0.70	-0.2660	5.453.8	-3.8176	4	0	0	33.47	34.13	0.66
	1	0.54	-2.095 2	5.798 3	3.131 1	5	0	1	65.36	66.72	1.36
C4	2	-0.70	-0.511 0	5.607 4	-3.925 2	3	0	0	40.69	40.54	-0.15
OH—C3—C2—C1—OH	3	0.19	-0.5377	4.424 0	0.840 6	2	3	1	58.46	60.37	1.91
	4	-1.05	-0.5670	4.214 1	-4.424 8	1	2	0	23.49	23.52	0.03
						_					
OH-C1-C2-C2-C1-OH	1	0.19	-0.5377	4.424 0	0.840 6	2	2	0	63.15	62.55	-0.60
	2	-0.70	0.357 0	5.588 4	-3.9119	4	0	1	28.41	29.84	1.43
$C^2 = C^2$			1 .05 -	F 015 -			_	~	71 01	Po 00	
	1	0.54	-1.425 6	5.8173	3.141 3	4	0	0	71.91	70.98	-0.93
OH—C1—C1—OH	2	-1.05	-0.5670	4.214 1	-4.424 8	1	3	1	18.80	16.96	-1.84
<u>C2</u>	1	0.19	-0.4712	4.5776	0.8697	1	0	1	65.41	66.29	0.88
	2	-0.35	-0.133 0	6.828 1	-2.389 8	7	0	0	38.16	37.41	-0.75
НО—С1—С2—С1—ОН	3	-1.05	0.367 5	4.348 7	-4.566 2	1	0	2	14.68	13.32	-1.36
	1	0.19	-0.302 1	4.443 0	0.844 2	1	2	0	67.21	66.76	-0.45
HO	2	0.54	-1.425 6	5.817 3	3.141 3	4	3	0	70.15	72.15	2.00
C5—C4—C3—C2—C1—OH	3	-0.70	0.112 0	5.742 0	-4.019 4	3	0	1	35.64	35.26	-0.38
	4	-0.70	1.225 0	5.569 4	-3.898 6	5	2	1	19.06	18.85	-0.21
	5	-1.05	0.735 0	4.195 1	-4.404 9	2	1	0	14.28	14.10	-0.18

Continuation of the Table 3

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Compounds	$N_{ m o}{}^{ m a}$	Q	F	$\Sigma \alpha_x$	$Q_i \Sigma \alpha_x$	$N_{\rm H}^{\rm a}$	$N_{\rm H}^{\gamma}$	N_{OH}^{γ}	$\delta_{\rm cal}{}^{\rm b}$	$\delta_{\exp}{}^{c}$	$\Delta \delta^{\rm d}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	0.19	-0.5377	4.424 0	0.840 6	2	1	0	63.73	62.42	-1.31
$ \begin{array}{c} \begin{array}{c} 1 \\ C_{3} = C_{4} = C_{3} = C_{2} = C_{4} = O_{1} \\ C_{3} = C_{4} = C_{3} = C_{2} = C_{4} = C_{3} = C_{4} \\ C_{4} = C_{4} = C_{4} C_{4} \\ C_{4} = C_{4} \\ C_{4} \\ C_{4} = C_{4} \\ C_{4}$	OH	2	-0.70	0.357 0	5.588 4	-3.911 9	4	3	1	26.65	29.01	2.36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3	-0.70	0.112 0	5.742 0	-4.0194	3	0	1	35.64	36.09	0.45
$ \begin{array}{c} 5 & -1.65 & -0.567 & 0 & 4.214 & 1 & -4.424 & 8 & 1 & 2 & 0 & 23.49 & 23.35 & -0.14 \\ 1 & 0.19 & -0.471 & 2 & 4.577 & 6 & 0.889 & 7 & 1 & 2 & 0 & 68.34 & 61 & -0.53 \\ 2 & -0.55 & -0.564 & 0 & 6.926 & 7 & -2.488 & 7 & 1 & 0 & 13 & 2.60 & 33.69 & 1.09 \\ 3 & -0.70 & 0.112 & 5.742 & 0 & -1.019 & 3 & 0 & 1 & 35.64 & 37.16 & 1.52 \\ 4 & 0.19 & -0.537 & 4.424 & 0 & 0.840 & 6 & 2 & 5 & 0 & 61.38 & 60.52 & -0.57 \\ 5 & -1.65 & -0.875 & 4.214 & 1 & -4.424 & 8 & 1 & 1 & 0 & 24.08 & 23.45 & -0.63 \\ 2 & -0.54 & -2.965 & 2 & 5.746 & -3.080 & 5 & 5 & 3 & 1 & 63.46 & 44.88 & 1.43 \\ 2 & 0.54 & -2.079 & -2.756 & 5.781 & -4.027 & 2 & 0 & 1 & 70.66 & 70.43 & -0.17 \\ 0 & -1.65 & -0.077 & -0.756 & 5.781 & -4.027 & 2 & 0 & 1 & 70.66 & 70.43 & -0.17 \\ 1 & -0.19 & -0.0377 & 4.242 & 0 & 8.089 & 9 & 0 & 0 & 1 & 70.66 & 70.43 & -0.17 \\ 1 & 0.19 & -0.3377 & 4.742 & 0 & 0.880 & 9 & 0 & 0 & 1 & 70.66 & 70.43 & -0.17 \\ 1 & 0.19 & -0.3377 & 4.742 & 0 & 0.880 & 9 & 0 & 0 & 2 & 22.71 & 1.38 & -1.38 \\ 1 & 0.19 & -0.3377 & 4.742 & 0 & 0.880 & 9 & 0 & 0 & 2 & 22.71 & -0.88 \\ 1 & 0.19 & -0.3377 & 4.742 & 0 & 0.881 & 9 & 2 & 0 & 0 & 3.15 & 62.61 & -0.54 \\ 1 & 0.19 & -0.3377 & 4.742 & 0 & -0.881 & 9 & 2 & 0 & 0 & 7.21 & 6.79 & -0.42 \\ 2 & 0.70 & 0.380 & 0 & 5.733 & -4.0061 & 4 & 2 & 1 & 26.29 & 27.78 & -0.88 \\ 2 & 0.54 & -1.72 & 5.548 & -3.811 & 9 & 4 & 2 & 0 & 70.74 & 71.49 & 1.75 \\ 1 & 0.19 & -0.3021 & 4.443 & 0 & 8.842 & 1 & 9 & 0 & 63.11 & 63.28 & 0.17 \\ 2 & 0.54 & -1.65 & 0.730 & 0.112 & 5.742 & -4.0061 & 4 & 2 & 1 & 26.29 & 27.78 & -0.88 \\ 4 & -0.70 & 0.380 & 0 & 5.733 & -4.0061 & 4 & 2 & 1 & 0.52.77 & -0.88 \\ 4 & -0.70 & 0.380 & 0 & 5.733 & -4.0061 & 4 & 2 & 1 & 0.78 & 0.85 & -0.57 \\ 1 & 0.19 & -0.3921 & 4.443 & 0 & 8.846 & 5 & 1 & 0 & 23.76 & 2.77 & -0.88 \\ 4 & -0.70 & 0.380 & 0 & 5.733 & -4.0061 & 4 & 2 & 1 & 0 & 0.88 & 0.97 \\ 1 & 0.19 & -0.472 & 4.577 & -4.5861 & 0 & 6 & 1 & 25.07 & 24.87 & -0.20 \\ 2 & -0.56 & -0.750 & -0.385 & 4.3877 & -4.5861 & 0 & 6 & 1 & 25.07 & 24.87 & -0.20 \\ 2 & -0.56 & -0.750 & -0.385 & 4.3877 & -4.586 & 1 & 0 $	C5—C4—C3—C2—C1—OH	4	0.54	-2.095 2	5.610 9	3.029 9	5	2	0	68.00	67.64	-0.36
$ \begin{array}{c} 1 & 0.19 & -0.471 & 2 & 4.577 & 6 & 0.869 & 7 & 1 & 2 & 0 & 68.34 & 67.81 & -0.53 \\ 2 & -0.35 & 0.546 & 0 & 6.92 & 7 & -2.436 & 97 & 0 & 1 & 32.64 & 3.46 & 1.52 \\ 2 & -0.7 & 0 & 0.120 & 5.742 & -0.104 & 3 & 0 & 1 & 35.64 & 3.768 & 1.52 \\ -0.7 & -0.7 & 0.125 & 5.777 & 4.424 & 0 & -0.840 & 6 & 2 & 5 & 0 & 61.39 & 60.52 & -0.87 \\ 5 & -1.05 & 0.3875 & 4.348 & 7 & -4.566 & 2 & 1 & 2 & 1 & 17.66 & -0.43 \\ 0 & -1.05 & -0.570 & -0.214 & 1 & -1.424 & 8 & 1 & 1 & 0 & 24.08 & 21.45 & -0.63 \\ 0 & -1.05 & -0.570 & 0 & 2.141 & -1.424 & 8 & 1 & 0 & 24.08 & 21.45 & -0.63 \\ 0 & -1.05 & -0.570 & 0 & 2.141 & -1.424 & 8 & 1 & 0 & 24.08 & 21.45 & -0.63 \\ 0 & -0.70 & -0.750 & 0 & 5.761 & -4.032 & 7 & 2 & 0 & 1 & 43.82 & 46.32 & 25.64 \\ 0 & -0.70 & -0.750 & 0 & 5.761 & -4.032 & 7 & 2 & 0 & 1 & 43.82 & 46.32 & 25.64 \\ 1 & 0.19 & -0.404 & 4 & 73.12 & 0.060 & 0 & 10 & 0 & 0 & 35.57 & 36.53 & 0.96 \\ -1.05 & 0.000 & 0 & 4.502 & 3 & -4.727 & 5 & 0 & 0 & 2 & 22.71 & 21.39 & -1.32 \\ 1 & 0.19 & -0.537 & 4.424 & 0 & 0.806 & 1 & 4 & 2 & 1 & 25.29 & 25.54 & -0.75 \\ 1 & 0.19 & -0.70 & 0.3800 & 5.723 & 0 & -4.0061 & 4 & 2 & 1 & 25.29 & 25.54 & -0.75 \\ 1 & 0.19 & -0.302 & 1 & 4.443 & 0 & 0.844 & 2 & 1 & 2 & 0 & 70.41 & 7.72 \\ 0 & -0.7 & 0 & .9800 & 5.723 & 0 & -4.0061 & 4 & 2 & 1 & 25.29 & 25.54 & -0.75 \\ 1 & 0.19 & -0.302 & 1 & 4.443 & 0 & 0.844 & 2 & 1 & 2 & 0 & 70.47 & 7.72 \\ 0 & -0.7 & 0 & .9800 & 5.723 & 0 & -4.0061 & 4 & 2 & 1 & 25.29 & 25.54 & -0.75 \\ 1 & 0.19 & -0.302 & 1 & 4.443 & 0 & 0.844 & 2 & 1 & 2 & 0 & 70.47 & 7.72 \\ 0 & -0.7 & 0 & .9800 & 5.723 & 0 & -4.0061 & 4 & 2 & 1 & 25.98 & 32.94 & -0.90 \\ 0 & -0.7 & 0 & .9800 & 5.723 & 0 & -4.0061 & 4 & 2 & 1 & 25.98 & 32.94 & -0.81 \\ 0 & -0.7 & 0 & .9800 & 5.723 & 0 & -4.0061 & 4 & 2 & 1 & 25.64 & 25.88 & 0.84 \\ 0 & -0.7 & 0 & .1220 & 5.5694 & -3.8986 & 5 & 1 & 0 & 33.80 & 33.68 & -0.56 \\ 0 & -1.05 & 0.7350 & 4.1951 & -4.4949 & 2 & 1 & 0 & 53.74 & -0.74 \\ 0 & -0.7 & 0 & .1220 & 5.5694 & -3.8986 & 5 & 1 & 0 & 23.74 & -3.74 & -3.74 \\ 0 & -0.7 & 0 & .1320 & 5.8354 & -4.0081 & 4 & 0 & 37$		5	-1.05	-0.5670	4.214 1	-4.4248	1	2	0	23.49	23.35	-0.14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	0 10	-0 471 2	4 577 6	0 860 7	1	2	0	69 24	67 01	-0.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	0.19	0.471 2	4.377 0	0.0097	1	2	1	22 60	22 60	1.00
$\begin{array}{c} c_{1-OH} & 3 & -0, 10 & 0, 112 & 0 & 37 & 4, 42 & 0 & -1, 019 & 4 & 3 & 0 & 1 & 1 & 3, 10 & 1, 10 & 2 & 0, 10 & 0 & 0, 10 & 0 & 0, 10 & 0 & 0, 10 & 0 & 0, 10 & 0 & 0, 10 & 0 & 0, 10 & 0 & 0, 10 & 0 & 0, 10 & 0 & 0, 10 & 0 & 0, 10 & 0 & 0, 10 & 0, 0, 0 & 0, 0 & 0, 0 & 0, 0 & 0, 0 & 0 &$	C5-C4-C3-C2	2	-0.35	0.546 0	0.902 / 5.742 0	-2.430 9	2	0	1	32.60	33.09	1.09
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C1—OH	3	-0.70	0.112.0	5.742.0	-4.019 4	ა ი	0	1	33.04	37.10	1.52
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4	0.19	-0.5377	4.424 0	0.840 6	2	э о	0	61.39	60.52	-0.87
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5	-1.05	0.367 5	4.3487	-4.566 2	1	Z	1	17.62	17.15	-0.47
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	ОН ОН	1	-1.05	-0.5670	4.214 1	-4.424 8	1	1	0	24.08	23.45	-0.63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	0.54	-2.0952	5.704 6	3.080 5	5	3	1	63.46	64.89	1.43
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	€—€3—€2—€1	3	-0.70	-0.7560	5.761 0	-4.0327	2	0	1	43.82	46.32	2.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C3	1	0 19	-0 404 7	4 731 2	0 898 9	0	0	1	70 60	70 43	-0.17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	0.00	0.000.0	8 015 0	0,000,0	10	0	-	25 57	26 52	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HO-CI-C2-CI-OH	2	0.00	0.000 0	8.015 0	0.000 0	10	0	0	30.07	30.00	0.96
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ċ3	3	-1.05	0.000 0	4.502 3	-4.7275	0	0	2	22.71	21.39	-1.32
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	0.19	-0.5377	4.424 0	0.840 6	2	2	0	63.15	62.61	-0.54
$ \begin{array}{c} 3 & -0.70 & 0.980 & 5.723 & 0 & -4.006 & 1 & 4 & 2 & 1 & 26.29 & 25.54 & -0.75 \\ 1 & 0.19 & -0.302 & 1 & 4.43 & 0 & 0.844 & 2 & 1 & 2 & 0 & 67.21 & 66.79 & -0.42 \\ 2 & 0.54 & -1.425 & 6 & 5.817 & 3 & 3.141 & 3 & 4 & 2 & 0 & 70.74 & 72.49 & 1.75 \\ 3 & -0.70 & 0.120 & 5.742 & 0 & +0.019 & 4 & 3 & 3 & 1 & 33.88 & 32.94 & -0.94 \\ 4 & -0.70 & 0.980 & 5.742 & 0 & +0.194 & 3 & 3 & 1 & 33.88 & 32.94 & -0.94 \\ 4 & -0.70 & 0.980 & 5.742 & 0 & +0.194 & 3 & 3 & 1 & 33.88 & 32.94 & -0.94 \\ 4 & -0.70 & 1.225 & 5.569 & 4 & -3.898 & 6 & 5 & 1 & 0 & 23.75 & 22.77 & -0.98 \\ 6 & -1.05 & 0.735 & 4.195 & 1 & -4.404 & 9 & 2 & 2 & 0 & 13.70 & 13.98 & 0.28 \\ \hline \\ C4 & C4 & C4 & 1 & 0.19 & -0.302 & 1 & 4.443 & 0 & 0.844 & 2 & 1 & 9 & 0 & 63.11 & 63.28 & 0.17 \\ 2 & 0.54 & -1.047 & 6 & 6.184 & 5 & 3.339 & 6 & 2 & 0 & 0 & 80.80 & 79.85 & -0.95 \\ 3 & 0.00 & 0.0000 & 8.337 & 0 & 0.000 & 10 & 0 & 1 & 33.11 & 33.65 & 0.54 \\ C4 & CH & 4 & -1.05 & -0.934 & 5 & 4.367 & -4.586 & 1 & 0 & 6 & 1 & 25.07 & 24.87 & -0.20 \\ 2 & 0.89 & -2.972 & 6 & 7.345 & 2 & 6.537 & 3 & 6 & 0 & 0 & 75.41 & 75.16 & -0.25 \\ \hline \\ OH & OH \\ C1 & -C2 & -C2 & -C1 & -C1 & 2 & 0.89 & -2.972 & 6 & 7.345 & 2 & 6.537 & 3 & 6 & 0 & 0 & 75.41 & 75.16 & -0.25 \\ OH & -C4 & -C7 & -C8 & 7 & -0.012 & 5.742 & -4.019 & 4 & 3 & 4 & 0 & 37.40 & 37.81 & 0.41 \\ C6 & -C5 & -C4 & -C3 & -C2 & -C1 & -CH & 1 & -1.077 & 0.122 & 5.749 & -7.00 & 1 & 42 & 2 & 22.19 & 21.70 & 1.76 \\ OH & -C7 & -C8 & 7 & -0.70 & 0.120 & 5.723 & 0 & -0.014 & 4 & 2 & 22.19 & 21.70 & -0.74 \\ 1 & 0.19 & -0.407 & 7.315 & -0.406 & 1 & 4 & 2 & 22.19 & 21.70 & -0.74 \\ 1 & 0.19 & -0.407 & 7.315 & -0.408 & 4 & 0 & 37.40 & 37.81 & 0.41 \\ 5 & -0.70 & 0.120 & 5.723 & 0 & -0.014 & 4 & 2 & 22.19 & 21.8 & 21.49 & -0.76 \\ -C5 & -C4 & -C3 & -C2 & -C1 & -CH & -CH & 1 & -1.55 & -0.934 & 5.4387 & -4.568 & 1 & 0 & 1 & 18.79 & 19.74 & 0.95 \\ 6 & -1.05 & 0.375 & 4.3487 & -4.568 & 1 & 0 & 1 & 18.79 & 19.74 & 0.95 \\ 6 & -1.05 & 0.3875 & 5.3845 & -4.3887 & 7 & -1.568 & 1 & 0 & 0 & 22.89 & 23.34 & 0.45 \\ OH & OH & C & -1.05 & -0.9345 & 5.88$	НО-С1-С2-С3-С3-С2-С1-ОН	2	-0.70	0.357 0	5.588 4	-3.911 9	4	2	0	31.34	32.62	1.28
$ \begin{array}{c} 1 & 0.19 & -0.302 & 1 & 4.43 & 0 & 0.844 & 2 & 1 & 2 & 0 & 67.21 & 66.79 & -0.42 \\ 2 & 0.54 & -1.425 & 6 & 5.817 & 3 & 3.141 & 3 & 4 & 2 & 0 & 70.74 & 72.49 & 1.75 \\ 3 & -0.70 & 0.120 & 5.742 & 0 & -4.019 & 3 & 3 & 1 & 33.88 & 32.94 & -0.94 \\ 4 & -0.70 & 0.980 & 5.723 & 0 & -4.061 & 4 & 2 & 1 & 26.29 & 27.87 & 1.58 \\ 5 & -0.70 & 1.225 & 5.569 & 4 & -3.898 & 6 & 5 & 1 & 0 & 23.75 & 22.77 & -0.98 \\ 6 & -1.05 & 0.735 & 0 & 4.195 & 1 & -4.404 & 9 & 2 & 2 & 0 & 13.70 & 13.98 & 0.28 \\ \hline C4 & -3 & -2 & -C1 & -OH & 1 & 0.19 & -0.302 & 1 & 4.443 & 0 & 0.844 & 2 & 1 & 9 & 0 & 63.11 & 63.28 & 0.17 \\ C4 & -3 & -2 & -C1 & -OH & 1 & 0.19 & -0.302 & 1 & 4.443 & 0 & 0.844 & 2 & 1 & 9 & 0 & 63.11 & 63.28 & 0.17 \\ \hline C4 & -3 & -2 & -C1 & -OH & 1 & 0.19 & -0.302 & 1 & 4.443 & 0 & 0.844 & 2 & 1 & 9 & 0 & 63.11 & 63.28 & 0.17 \\ \hline C4 & -1.05 & 0.000 & 0 & 4.502 & 3 & -4.727 & 5 & 0 & 2 & 1 & 25.64 & 25.98 & 0.34 \\ \hline OH & OH & -1.05 & 0.000 & 0 & 4.502 & 3 & -4.727 & 5 & 0 & 2 & 1 & 25.64 & 25.98 & 0.34 \\ \hline OH & OH & -1.05 & -0.934 & 5 & 4.367 & -4.586 & 1 & 0 & 6 & 1 & 25.07 & 24.87 & -0.20 \\ \hline OH & -1.05 & -0.010 & 5 & 7.135 & -2.497 & 4 & 5 & 2 & 0 & 48.52 & 46.20 & -2.32 \\ OH & 3 & 0.54 & -1.717 & 2 & 4.577 & 6 & 0.869 & 7 & 1 & 5 & 1 & 62.48 & 63.97 & 1.49 \\ \hline C6 & -C5 & -C4 & -C3 & -C2 & -C1 & -OH & 4 & -0.70 & 0.112 & 0 & 5.742 & 0 & -4.019 & 4 & 3 & 4 & 0 & 37.40 & 37.81 & 0.41 \\ \hline C6 & -C5 & -C4 & -C3 & -C2 & -C1 & -OH & 5 & -0.735 & 4.195 & 1 & -4.049 & 2 & 1 & 0 & 14.28 & 14.16 & -0.12 \\ \hline C & -C6 & -C6 & -C6 & -C7 $		3	-0.70	0.980 0	5.723 0	-4.006 1	4	2	1	26.29	25.54	-0.75
$\begin{array}{c} 1 & 0.136 & 1 & 1.36 & 1 & 0.136 & 1 & 1.36 & 1.016 & 1 & 0.011$		1	0 19	-0.302.1	4 443 0	0 844 2	1	2	0	67 21	66 79	-0.42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	0.54	-1 425 6	5 817 3	3 141 3	4	2	0	70 74	72 49	1 75
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C6-C5-C4-C3-C2-C1-OH	3	-0.70	0 112 0	5 742 0	-4 0194	3	3	1	33 88	32 94	-0.94
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4	-0.70	0 980 0	5 723 0	-4 006 1	4	2	1	26 29	27 87	1 58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OH	5	-0.70	1 225 0	5 569 4	-3 898 6	5	1	0	23 75	22 77	-0.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	-1.05	0.735 0	4. 195 1	-4.4049	2	2	0	13.70	13.98	0.28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	0.10	0.000 1			1	0		20.11	20.00	0.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	1	0.19	-0.302 1	4.4430	0.844 2	1	9	0	63.11	63.28	0.17
$\begin{array}{ccccccc} & 3 & 0.00 & 0.000 & 0.337 & 0 & 0.000 & 10 & 0 & 1 & 33.11 & 33.65 & 0.54 \\ & C4 & OH & 4 & -1.05 & 0.000 & 4.502 & 3 & -4.727 & 5 & 0 & 2 & 1 & 25.64 & 25.98 & 0.34 \\ & OH & OH & \\ & C1 & C2 & -C2 & -C1 & 2 & 0.89 & -2.972 & 6 & 7.345 & 2 & 6.537 & 3 & 6 & 0 & 0 & 75.41 & 75.16 & -0.25 \\ & C1 & C1 & 2 & 0.89 & -2.972 & 6 & 7.345 & 2 & 6.537 & 3 & 6 & 0 & 0 & 75.41 & 75.16 & -0.25 \\ & OH & 1 & 0.19 & -0.471 & 2 & 4.577 & 6 & 0.8697 & 1 & 5 & 1 & 62.48 & 63.97 & 1.49 \\ & 2 & -0.35 & -0.010 & 5 & 7.135 & 3 & -2.497 & 4 & 5 & 2 & 0 & 48.52 & 46.20 & -2.32 \\ & 3 & 0.54 & -1.717 & 2 & 6.105 & 5 & 3.297 & 0 & 3 & 6 & 0 & 74.75 & 74.92 & 0.17 \\ & 4 & -0.70 & 0.112 & 0 & 5.742 & 0 & -4.019 & 4 & 3 & 4 & 0 & 37.40 & 37.81 & 0.41 \\ & 5 & -0.70 & 1.225 & 0 & 5.569 & 4 & -3.898 & 6 & 5 & 1 & 1 & 19.65 & 19.03 & -0.62 \\ & C7 & -C8 & 6 & -1.05 & 0.735 & 0 & 4.195 & 1 & -4.404 & 9 & 2 & 1 & 0 & 14.28 & 14.16 & -0.12 \\ & 7 & -0.70 & 0.980 & 0 & 5.723 & 0 & -4.0061 & 4 & 2 & 2 & 22.19 & 21.49 & -0.70 \\ & 8 & -1.05 & 0.735 & 0 & 4.195 & 1 & -4.404 & 9 & 2 & 3 & 0 & 13.11 & 12.37 & -0.74 \\ & 1 & 0.19 & -0.404 & 7 & 4.731 & 2 & 0.898 & 9 & 1 & 1 & 70.02 & 73.30 & 3.28 \\ & C5 & -C4 & -C3 & -C2 & -C1 & -OH \\ & OH & C & 3 & 0.54 & -1.339 & 2 & 6.412 & 8 & 3.462 & 9 & 1 & 0 & 1 & 82.95 & 83.14 & 0.19 \\ & -0.35 & 0.546 & 0 & 6.962 & 7 & -2.436 & 9 & 7 & 8 & 0 & 32.02 & 29.18 & -2.84 \\ & 0H & OH & C & 5 & -1.05 & 0.367 & 5 & 4.348 & 7 & -4.566 & 2 & 1 & 0 & 1 & 18.79 & 19.74 & 0.95 \\ & 6 & -1.05 & 0.367 & 5 & 4.348 & 7 & -4.566 & 2 & 1 & 0 & 1 & 18.79 & 19.74 & 0.95 \\ & 6 & -1.05 & 0.367 & 5 & 4.348 & 7 & -4.566 & 2 & 1 & 0 & 1 & 18.79 & 19.74 & 0.95 \\ & 6 & -1.05 & 0.367 & 5 & 4.348 & 7 & -4.566 & 2 & 1 & 0 & 0 & 22.89 & 23.34 & 0.45 \\ & OH & OH & 1 & -1.05 & -0.934 & 5 & 4.367 & 7 & -1.566 & 1 & 0 & 0 & 22.89 & 23.34 & 0.45 \\ & OH & OH & 1 & -1.05 & -0.934 & 5 & 4.367 & 7 & -1.566 & 2 & 1 & 0 & 0 & 22.89 & 23.34 & 0.45 \\ & OH & OH & 0H & 1 & -1.05 & -0.934 & 5 & 4.367 & 7 & -1.266 & 2 & 1 & 39.35 & 37.78 & -1.57 \\ & OH &$	C4—C3—C2—C1—OH	Z	0.54	-1.047 6	6.184 5	3.339.6	Z	0	0	80.80	79.85	-0.95
$\begin{array}{cccccccc} OH & 4 & -1, 05 & 0.000 & 4, 502 & 3 & -4, 727 & 5 & 0 & 2 & 1 & 25, 64 & 25, 98 & 0.34 \\ OH & OH & & & & & & & & & & & & & & & &$		3	0.00	0.000 0	8.337 0	0.000 0	10	0	1	33.11	33.65	0.54
$\begin{array}{c} OH \\ C1 \\ C2 \\ C2 \\ C1 \\ C1 \\ C1 \\ C1 \\ C1$	C4 OH	4	-1.05	0.000 0	4.502 3	-4.727 5	0	2	1	25.64	25.98	0.34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OH OH											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1 - C2 - C2 - C1	1	-1.05	-0.934 5	4.3677	-4.586 1	0	6	1	25.07	24.87	-0.20
$\begin{array}{cccccccc} C6 \\ C5 \\ C4 \\ C7 \\ C8 \\ C6 \\ C5 \\ C4 \\ C7 \\ C8 \\ C6 \\ C5 \\ C4 \\ C7 \\ C6 \\ C6 \\ C5 \\ C4 \\ C7 \\ C6 \\ C6 \\ C5 \\ C4 \\ C7 \\ C6 \\ C6 \\ C5 \\ C4 \\ C7 \\ C6 \\ C6 \\ C5 \\ C4 \\ C7 \\ C6 \\ C6 \\ C5 \\ C4 \\ C7 \\ C6 \\ C6 \\ C5 \\ C4 \\ C7 \\ C6 \\ C6 \\ C5 \\ C4 \\ C6 \\ C5 \\ C4 \\ C6 \\ C5 \\ C4 \\ C7 \\ C6 \\ C6 \\ C5 \\ C4 \\ C6 \\ C6 \\ C5 \\ C6 \\ C6 \\ C6 \\ C6 \\ C5 \\ C6 \\ C6$		2	0.89	-2.9726	7.345 2	6.537 3	6	0	0	75.41	75.16	-0.25
$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $												
$\begin{array}{c} 2 & -0.35 & -0.0105 & 7.135 & 3 & -2.497 & 4 & 5 & 2 & 0 & 48.52 & 46.20 & -2.32 \\ 3 & 0.54 & -1.717 & 2 & 6.105 & 5 & 3.297 & 0 & 3 & 6 & 0 & 74.75 & 74.92 & 0.17 \\ 4 & -0.70 & 0.112 & 0 & 5.742 & 0 & -4.019 & 4 & 3 & 4 & 0 & 37.40 & 37.81 & 0.41 \\ 5 & -0.70 & 1.225 & 0 & 5.694 & -3.898 & 6 & 5 & 1 & 1 & 19.65 & 19.03 & -0.62 \\ 6 & -1.05 & 0.735 & 0 & 4.195 & 1 & -4.404 & 9 & 2 & 1 & 0 & 14.28 & 14.16 & -0.12 \\ 7 & -0.70 & 0.980 & 0 & 5.723 & 0 & -4.006 & 1 & 4 & 2 & 2 & 22.19 & 21.49 & -0.70 \\ 8 & -1.05 & 0.735 & 0 & 4.195 & 1 & -4.404 & 9 & 2 & 3 & 0 & 13.11 & 12.37 & -0.74 \\ 1 & 0.19 & -0.404 & 7 & 4.731 & 2 & 0.898 & 9 & 0 & 1 & 1 & 70.02 & 73.30 & 3.28 \\ C & C6 & 1 & 0.19 & -0.404 & 7 & 4.731 & 2 & 0.898 & 9 & 0 & 1 & 1 & 70.02 & 73.30 & 3.28 \\ C & C6 & 2 & 0.00 & 0.000 & 8.356 & 0 & 0.000 & 9 & 6 & 0 & 38.64 & 39.12 & 0.48 \\ 3 & 0.54 & -1.339 & 2 & 6.412 & 8 & 3.462 & 9 & 1 & 0 & 1 & 82.95 & 83.14 & 0.19 \\ 4 & -0.35 & 0.546 & 0 & 6.962 & 7 & -2.436 & 9 & 7 & 8 & 0 & 32.02 & 29.18 & -2.84 \\ 5 & -1.05 & 0.367 & 5 & 4.348 & 7 & -4.566 & 2 & 1 & 0 & 1 & 18.79 & 19.74 & 0.95 \\ 6 & -1.05 & 0.367 & 5 & 4.348 & 7 & -4.566 & 2 & 1 & 0 & 0 & 22.89 & 23.34 & 0.45 \\ \end{array}$		1	0.19	-0.4712	4.577 6	0.8697	1	5	1	62.48	63.97	1.49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	-0.35	-0.010 5	7.135 3	-2.4974	5	2	0	48.52	46.20	-2.32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OH	3	0.54	-1.7172	6.105 5	3.297 0	3	6	0	74.75	74.92	0.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—С5—С4—С3—С2—С1—ОН	4	-0.70	0.112 0	5.742 0	-4.0194	3	4	0	37.40	37.81	0.41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	-0.70	1.225 0	5.569 4	-3.8986	5	1	1	19.65	19.03	-0.62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Č7—C8	6	-1.05	0.735 0	4.195 1	-4.404 9	2	1	0	14.28	14.16	-0.12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7	-0.70	0.980 0	5.723 0	-4.0061	4	2	2	22.19	21.49	-0.70
$ \begin{array}{c} C & C6 \\ \downarrow & \downarrow \\ C5 - C4 - C3 - C2 - C1 - OH \\ \downarrow & \downarrow \\ OH & C \end{array} \right) \begin{array}{c} 1 & 0.19 & -0.404 & 7 & 4.731 & 2 & 0.898 & 9 & 0 & 1 & 1 & 70.02 & 73.30 & 3.28 \\ 2 & 0.00 & 0.000 & 0 & 8.356 & 0 & 0.000 & 9 & 6 & 0 & 38.64 & 39.12 & 0.48 \\ 3 & 0.54 & -1.339 & 2 & 6.412 & 8 & 3.462 & 9 & 1 & 0 & 1 & 82.95 & 83.14 & 0.19 \\ 4 & -0.35 & 0.546 & 0 & 6.962 & 7 & -2.436 & 9 & 7 & 8 & 0 & 32.02 & 29.18 & -2.84 \\ 5 & -1.05 & 0.367 & 5 & 4.348 & 7 & -4.566 & 2 & 1 & 0 & 1 & 18.79 & 19.74 & 0.95 \\ 6 & -1.05 & 0.367 & 5 & 4.348 & 7 & -4.566 & 2 & 1 & 0 & 0 & 22.89 & 23.34 & 0.45 \\ \end{array} \right) $		8	-1.05	0.735 0	4.195 1	-4.4049	2	3	0	13.11	12.37	-0.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	0.19	-0.4047	4.731 2	0.898 9	0	1	1	70.02	73.30	3.28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C C6	2	0.00	0.000 0	8.356 0	0.000 0	9	6	0	38.64	39.12	0.48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	0.54	-1.339 2	6.412 8	3.462 9	1	0	1	82.95	83.14	0.19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—C3—C2—C1—OH	4	-0.35	0.546 0	6.9627	-2.436 9	7	8	0	32.02	29.18	-2.84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OH C	5	-1.05	0.367 5	4.348 7	-4.5662	1	0	1	18.79	19.74	0.95
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	-1.05	0,367 5	4.348 7	-4.5662	1	0	0	22.89	23.34	0.45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	он он	-	1 0 7					-		01 50		0.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	-1.05	-0.934 5	4.3677	-4.5861	0	2	0	31.52	29.41	-2.11
$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 3 \\ -0.70 \end{bmatrix}$ $\begin{bmatrix} -0.133 \\ -0.70 \end{bmatrix}$ $\begin{bmatrix} 5.895 \\ -4.126 \end{bmatrix}$ $\begin{bmatrix} 2 \\ -4.126 \end{bmatrix}$ $\begin{bmatrix} 2 \\ -6 \end{bmatrix}$ $\begin{bmatrix} 3.9.35 \\ -37.78 \end{bmatrix}$ $\begin{bmatrix} -1.57 \\ -1.57 \end{bmatrix}$	C1-C2-C3-C3-C3-C2-C1	2	0.89	-4.3877	7.172 6	6.383 6	8	0	0	70.95	70.51	-0.44
61 61		3	-0.70	-0.1330	5.895 6	-4.1269	2	6	1	39.35	37.78	-1.57

a. Focused carbon atom, b. Calculated by eqn(8), c. Taken from ref [20, 21], d. $\Delta \delta = \delta_{exp} - \delta_{cal}$

表 4 样本外 5 个脂肪醇化合物 69 个碳原子的¹³C NMR 化学位移预测值和实验值

Table 4 $\,$ The predicted and experimental values of $^{13}\,C$ NMR chemical shifts for 69 carbon atoms in 5 external alcohols

Compounds	$N_{\mathrm{o}}{}^{\mathrm{a}}$	Q	F	$\Sigma \alpha_{x}$	$Q_i \Sigma \alpha_x$	$N_{\rm H}^{\rm a}$	$N_{\rm H}^{\gamma}$	$N_{\rm OH}^{\gamma}$	$\delta_{\rm cal}{}^{\rm b}$	$\delta_{\exp}{}^{c}$	$\Delta \delta^{\rm d}$
	1	0.19	-0.5377	4.424 0	0.840 6	2	2	0	63.15	62.85	-0.30
	2	-0.70	0.357 0	5.588 4	-3.9119	4	2	0	31.34	32.86	1.52
	3	-0.70	0.980 0	5.723 0	-4.006 1	4	2	1	26.29	25.91	-0.38
	4	-0.70	0.980 0	5.723 0	-4.006 1	4	4	0	29.22	29.59	0.37
	5	-0.70	0.980 0	5.723 0	-4.006 1	4	4	0	29.22	29.79	0.57
	6	-0.70	0.980 0	5.723 0	-4.006 1	4	4	0	29.22	29.79	0.57
C10_C0_C8_C7_C6_C5_C4_C2_C2_C1_OH	7	-0.70	0.980 0	5.723 0	-4.006 1	4	4	0	29.22	29.79	0.57
 C11—C12—C13—C14	8	-0.70	0.980 0	5.723 0	-4.006 1	4	4	0	29.22	29.79	0.57
	9	-0.70	0.980 0	5.723 0	-4.006 1	4	4	0	29.22	29.79	0.57
	10	-0.70	0.980 0	5.723 0	-4.006 1	4	4	0	29.22	29.79	0.57
	11	-0.70	0.980 0	5.723 0	-4.006 1	4	5	0	28.64	29.47	0.83
	12	-0.70	0.980 0	5.723 0	-4.006 1	4	2	0	30.39	32.03	1.64
	13	-0.70	1.225 0	5.569 4	-3.8986	5	2	0	23.17	22.77	-0.40
	14	-1.05	0.735 0	4.195 1	-4.404 9	2	2	0	13.70	14.13	0.43
	1	-1.05	-0.5670	4.214 1	-4.424 8	1	2	0	23.49	23.47	-0.02
	2	0.54	-2.0952	5.798 3	3.131 1	5	2	0	68.30	68.13	-0.17
	3	-0.70	0.112 0	5.742 0	-4.019 4	3	2	0	38.57	39.47	0.90
	4	-0.70	0.980 0	5.723 0	-4.006 1	4	5	1	24.53	25.86	1.33
	5	-0.70	0.980 0	5.723 0	-4.006 1	4	3	0	29.81	29.73	-0.08
	6	-0.70	0.980 0	5.723 0	-4.006 1	4	4	0	29.22	29.73	0.51
OH	7	-0.70	0.980 0	5.723 0	-4.006 1	4	4	0	29.22	29.73	0.51
C10—C9—C8—C7—C6—C5—C4—C3—C2—C1	8	-0.70	0.980 0	5.723 0	-4.006 1	4	4	0	29.22	29.73	0.51
C11—C12—C13—C14	9	-0.70	0.980 0	5.723 0	-4.006 1	4	4	0	29.22	29.73	0.51
	10	-0.70	0.980 0	5.723 0	-4.006 1	4	4	0	29.22	29.73	0.51
	11	-0.70	0.980 0	5.723 0	-4.006 1	4	5	0	28.64	29.43	0.79
	12	-0.70	0.980 0	5.723 0	-4.006 1	4	2	0	30.39	31.99	1.60
	13	-0.70	1.225 0	5.569 4	-3.8986	5	2	0	23.17	22.75	-0.42
	14	-1.05	0.735 0	4.195 1	-4.404 9	2	2	0	13.70	14.13	0.43
			- 505 -					_	40.5-		
	1	-1.05	0.735 0	4.1951	-4.404 9	2	2	0	13.70	14.07	0.37
	2	-0.70	1.225 0	5.569 4	-3.898 6	5	2	0	23, 17	22.69	-0.48
	3	-0.70	0.980 0	5.723 0	-4.006 1	4	z	0	30.39	31.90	1.51
	4	-0.70	0.980 0	5.723 0	-4.006 1	4	4	0	29.22	29.74	0.52
	5	-0.70	0.980 0	5.723 0	-4.006 1	4	4	1	25.12	25.71	0.59
	6	-0.70	0.112 0	5.742 0	-4.019 4	3	4	0	37.40	37.58	0.18
C_{12} $-C_{13}$ $-C_{14}$ OH	7	0.54	-1.906 2	5.951 9	3.214 0	4	4	0	71.52	72.04	0.52
$c_{11} - c_{10} - c_{9} - c_{8} - c_{7} - c_{6} - c_{5} - c_{4} - c_{3}$	8	-0.70	0.112 0	5.742 0	-4.0194	3	4	0	37.40	37.58	0.18
C1—C2	9	-0.70	0.980 0	5.723 0	-4.006 1	4	4	1	25.12	25.71	0.59
	10	-0.70	0.980 0	5.723 0	-4.006 1	4	3	0	29.81	29.44	-0.37
	11	-0.70	0.980 0	5.723 0	-4.006 1	4	5	0	28.64	29.35	0.71
	12	-0.70	0.980 0	5.723 0	-4.006 1	4	2	0	30.39	31.90	1.51
	13	-0.70	1.225 0	5.569 4	-3.898 6	5	2	0	23.17	22.69	-0.48
	14	-1.05	0.735 0	4.195 1	-4.4049	2	2	0	13.70	14.07	0.37

Continuation of the Table 4

Compounds	$N_{\mathrm{o}}{}^{\mathrm{a}}$	Q	F	$\Sigma \alpha_x$	$Q_i \Sigma \alpha_x$	$N_{\rm H}^{\rm a}$	$N_{\rm H}^{\gamma}$	$N_{ m OH}^{\gamma}$	$\delta_{\mathrm{cal}}{}^{\mathrm{b}}$	$\delta_{\exp}{}^{c}$	$\Delta \delta^{\rm d}$
	1	-1.05	0.367 5	4.348 7	-4.5662	1	1	0	22.31	22.60	0.29
	2	-0.35	0.980 0	6.943 7	-2.4303	8	2	1	24.87	24.64	-0.23
	3	-0.70	-0.1330	5.895 6	-4.1269	2	2	0	45.80	46.78	0.98
	4	0.54	-1.9062	5.951 9	3.214 0	4	7	0	69.77	70.43	0.66
	5	-0.70	0.112 0	5.742 0	-4.0194	3	5	0	36.81	35.16	-1.65
C13	6	-0.70	0.735 0	5.876 6	-4.1137	3	7	1	30.59	29.01	-1.58
C12 C	7	-0.35	0.735 0	7.250 9	-2.5378	6	3	0	41.24	38.91	-2.33
C9 - C8 - C7 - C6 - C5 - C4 - C3 - C2 - C1	8	-0.70	0.735 0	5.876 6	-4.1137	3	8	0	34.11	32.87	-1.24
C10—C11 OH	9	-0.70	0.980 0	5.723 0	-4.0061	4	4	0	29.22	28.93	-0.29
	10	-0.70	1.225 0	5.569 4	-3.8986	5	1	0	23.75	23.16	-0.59
	11	-1.05	0.735 0	4.195 1	-4.4049	2	2	0	13.70	14.18	0.48
	12	-0.70	0.980 0	5.723 0	-4.0061	4	4	0	29.22	25.90	-3.32
	13	-1.05	0.735 0	4.195 1	-4.404 9	2	4	0	12.53	10.89	-1.64
	1	0.19	-0.3021	4.443 0	0.844 2	1	2	0	67.21	66.75	-0.46
	2	0.54	-1.425 6	5.817 3	3.141 3	4	2	0	70.74	72.42	1.68
	3	-0.70	0.112 0	5.742 0	-4.0194	3	2	1	34.47	33.21	-1.26
	4	-0.70	0.980 0	5.723 0	-4.0061	4	4	1	25.12	25.73	0.61
	5	-0.70	0.980 0	5.723 0	-4.0061	4	3	0	29.81	29.74	-0.07
	6	-0.70	0.980 0	5.723 0	-4.0061	4	4	0	29.22	29.74	0.52
OH	7	-0.70	0.980 0	5.723 0	-4.0061	4	4	0	29.22	29.74	0.52
C9—C8—C7—C6—C5—C4—C3—C2—C1—OH	8	-0.70	0.980 0	5.723 0	-4.0061	4	4	0	29.22	29.74	0.52
C10-C11-C12-C13-C14	9	-0.70	0.980 0	5.723 0	-4.0061	4	4	0	29.22	29.74	0.52
	10	-0.70	0.980 0	5.723 0	-4.0061	4	4	0	29.22	29.74	0.52
	11	-0.70	0.980 0	5.723 0	-4.0061	4	5	0	28.64	29.42	0.78
	12	-0.70	0.980 0	5.723 0	-4.0061	4	2	0	30.39	31.97	1.58
	13	-0.70	0.980 0	5.569 4	-3.8986	5	2	0	24.06	22.73	-1.33
	14	-1.05	0.735 0	4.195 1	-4.404 9	2	2	0	13.70	14.11	0.41

a. Focused carbon atom, b. Predicted by eqn(8), c. Taken from ref [20], d. The error between predicted and experimental ¹³C NMR chemical shifts of 5 external alcohols

Fig. 4 Plot of the predicted ¹³C NMR chemical shifts δ_C vs. the experimental δ_C for the 69 carbon atoms

方根误差 δ 2.63、δ 2.42、δ 1.97、δ 2.20^[13];文献[14]用 8 个参数统一于一 个模型中对 64 个脂肪一元醇的 348 个 碳原子的化学位移进行预测其复相关系 数为 0.991 4,标准偏差 S 值未提供,从 文献[14]列出的 71 个样本看其平均绝 对偏差为δ 1.38,本文为δ 0.89;本文 所列样本数比上述文献多、而相关性以 及预测精度优于文献[13,14]的报道, 且本文提出的模型更为直观,物理意义 更为明确,该模型亦适用于脂肪二元醇 的化学位移预测,由于绝大多数饱和多 元醇不溶于氘代氯仿试剂,其¹³C NMR 化学位移通常在其它溶剂中测定^[16],因 涉及溶剂校正,本文未作进一步探讨.

应该指出,本文在计算部分净电荷 Q值、静电力 F 值时只考虑了直接键连的原子, 计算极化度 Σα_x 时也仅涉及与观测原子相邻的两个原子,这是有一定依据的. Taft^[18,19] 曾经指出:"现行的实验和理论证据表明,电负性效应只有在与取代基键连的原子间起 重要作用,通常超过两个原子则可以忽略",Meiler^[10]也认为:其他原子对观测原子化学 位移的影响主要通过两种途径,一种是通过共价键的电子作用,另一种是通过空间的电 子作用,而通常只有在距离非常近的情况下,通过空间的电子作用才会对化学位移产生 一定影响.本文的计算结果也表明,这种简化计算有一定的合理性.

3 结论

从核磁共振的原理出发,探讨了影响脂肪醇¹³C化学位移的主要结构因素,利用基本的物理化学参数,构建了预测脂肪一(二)元醇¹³C化学位移的数学模型,即方程(8),并用实验测定值验证了其适用性.方程(8)中各项参数物理意义比较明确,计算结果与实验(文献)值符合很好,方程(8)是否适用于多元醇及其它化合物体系,还有待深入研究,但是它为进一步结合其它效应(例如共轭效应)更好地选择表征立体化学的参数来建模更加复杂化合物的¹³C NMR 化学位移奠定了良好基础.

参考文献:

- [1] Ning Yong-cheng (宁永成). Structure Identifying of Organic Compound and Organic Spectroscopy (有机化合物 结构鉴定与有机波谱学). 2nd ed(第二版)[M]. Beijing (北京): Science Press (科学出版社), 2000: 8, 98, 102 106.
- [2] Zhu Hui-wu (朱淮武). Spectral Analysis of Organic Molecular Structure (有机分子结构波谱解析) [M]. Beijing (北京): Chemical Industry Press (化学工业出版社), 2005: 84, 135-148.
- [3] Shoolery J N. The development of experimental and analytical high resolution NMR [J]. Prog Nucl Mag Res Spe, 1995, 28: 37-52.
- [4] Duley H W, Ian F. Spectroscopic Method in Organic Chemistry (有机化学中的光谱方法). 5th ed(第五版).
 Wang Jian-bo(王剑波), Shi Wei-feng(施卫峰), Trans(译)[M]. Beijing(北京): Peking University Press(北京 大学出版社), 2001, 12, 54-58.
- [5] Wang Nai-xin (王乃兴). Nuclear Magnetic Resonance Spectroscopy-Application in Organic Chemistry (核磁共振谱学一在有机化学中的应用) [M]. Beijing (北京): Chemical Industry Press (化学工业出版社), 2006: 15, 35.
- [6] Grant D M, Paul E G. Carbon-13 magnetic resonance. II. chemical shift data for the alkanes [J]. J Am Chem Soc, 1964, 86: 2 984-2 990.
- [7] Fürst A, Pretsch E, Robien W. Comprehensive parameter set for the prediction of the ¹³C NMR chemical shifts of sp³-hybridized carbon atoms in organic compounds [J]. Anal Chim Acta, 1990, 233: 213-222.
- [8] Pretsch E, Fürst A, Robien W. Parameter set for the prediction of the ¹³C NMR chemical shifts of sp²- and sphybridized carbon atoms in organic compounds [J]. Anal Chim Acta, 1991, 248: 415-428.
- [9] Nuzillard J M. Computer-assisted structure determination of organic molecules [J]. J Chim Phys-Chim Biol, 1998, 95: 169-177.
- [10] Meiler J, Meusinger R, Will M. Fast determination of ¹³C NMR chemical shifts using artificial neural networks
 [J]. J Chem Inf Comp Sci, 2000, 40: 1 169-1 176.

- [11] Xu Lu (许禄), Hu Jian-qiang (胡建强). Prediction of ¹³C NMR chemical shifts for aliphatic amines (脂肪胺类 化合物的¹³C 核磁共振波谱模拟)[J]. Chinese J Anal Chem (分析化学), 2001, 29 (8): 936-940.
- [12] Liu Shu-sheng(刘树生), Xia Zhi-ning(夏之宁), Yu Ban-mei(余般梅), et al. Atomic electronegative distance vector of acyclic alcohol and chemical shift simulation of ¹³C NMR spectroscopy (无环醇原子电距矢量及核磁共 振碳谱化学位移模拟) [J]. Chinese J Magn Reson (波谱学杂志), 1999, 16(5): 429-440.
- [13] Liu Shu-shen(刘树深), Xu Hong(徐红), Liu Hai-ling(刘海玲), et al. Structural expression of chemical environment and ¹³C NMR chemical shift for carbons in alcohols(脂肪醇分子碳环境结构表征与碳谱化学位移) [J]. Computers and Applied Chemistry(计算机与应用化学), 2000, 17(2): 188.
- [14] Li Mei-ping(李美萍), Zhang Sheng-wan(张生万), Kou Jian-ren(寇建仁), et al. Relationship between Ionicity and polarizability effect indices of alcoholic compounds and their ¹³C NMR chemical shifts (离子性指数、极化效 应指数与醇¹³C NMR δ_c 的关系) [J]. Chinese J Magn Reson (波谱学杂志), 2005, 22(2): 173-179.
- [15] Nie Chang-ming(聂长明), Wen Song-nian (文松年). Equilibrium electronegativity and ¹³C NMR chemical shift of alkanes (平衡电负性与烷烃核磁共振碳谱位移) [J]. Chinese J Magn Reson (波谱学杂志), 2001, 18 (1): 45-50.
- [16] Abraham R J, Byrne J J, Griffiths Lee, et al. ¹H chemical shifts in NMR: Part 22 -Prediction of the ¹H chemical shifts of alcohols, diols and inositols in solution, a conformational and salvation investigation[J]. Magn Reson Chem, 2005, 43: 611-624.
- [17] Cao C Z. Determination of carbon 1s core ionization energies in saturated molecules[J]. QSAR Comb Sci 2008, 27: 147-156.
- [18] Taft R, W, Topsom R D. The nature and analysis of substituent electronic effects[J]. Prog Phys Org Chem, 1987, 16, 1-83.
- [19] Cao Chen-zhong(曹晨忠). Substituent Effects in Organic Chemistry (有机化学中的取代基效应) [M]. Beijing (北京): Science Press(科学出版社), 2003: 38.
- [20] National institute of advanced industrial science and technology (AIST), Japan. Spectral database for organic compounds SDBS[EB/OL]. http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi.
- [21] Sadtler Research Laboratories Inc. Sadtler Standard Carbon-13 NMR Spectra[M]. Phila delphia: Sadtler Research Laboratories Inc, 1980: 1-800.
- [22] Gasteiger J, Hutchings M G. Quantitative of effective polarizability. Applications to studies of X-ray photoelectron spectroscopy and alkylamine protonation [J]. J Chem Soc, Perkin Trans II, 1984, 3: 559-564.
- [23] Cao C Z. Slater-like model for carbon 1s core ionization energies of halomethanes[J]. Chem Phys Chem, 2006, 7: 658.
- [24] David R L. CRC Handbook of Chemistry and Physics (84nd, ed) [M]. Florida: CRC Press, 2003-2004; 9-74, 10-165.
- [25] Cao C Z, Li Z L. Molecular Polarizability. 1. Relationship to water solubility of alkanes and alcohols [J]. J Chem Inf Comput Sci, 1998, 38: 1-7.
- [26] Cao C Z, Lin Y B. Correlation between the glass transition temperatures and repeating unit structure for high molecular weight polymers [J]. J Chem Inf Comput Sci, 2003, 43: 643-650.

Influence of Substituent Effects on the ¹³C NMR Chemical Shifts of Aliphatic Alcohols

YI Gui-yuan, CAO Chen-zhong *

(School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

Abstract: An empirical model for calculating ¹³C chemical shifts of aliphatic alcohols was proposed, in which the parameters describing the chemical environment of the focused carbon atoms are in were used as the independent variables. The parameters included electronegativity, atomic polarizability and those representing the steric effects. The experimentally-measured ¹³C NMR chemical shifts of 747 carbon atoms in 120 model compounds (91 alcohols and 29 diols) were used as the training set to derive the weights for the independent variables. The correlation coefficient *R* of the model was found to be 0.998. Leave-one-out cross-validation demonstrated good predictive ability and stability of the model. The model proposed was used to calculate the ¹³C chemical shifts of 69 different carbon atoms in 5 compounds that were not included in the training set, and the results proven to be satisfactory. The proposed model may be useful for calculating ¹³C NMR chemical shifts in alcohols with complex structures.

Key words: NMR, ¹³C chemical shift, electronegativity, atomic polarizability, steric effect, alcohol

^{*} Corresponding author: Cao Chen-zhong, Tel: 0732-8291336, E-mail: czcao@hnust.edu.cn.