THE RAMSEY NUMBERS FOR STARS AND STRIPES＊

Zhang Kemin（张克民）
Department of Mathematics，Nanjing University，Nanjing 210093，China
Zhang Shusheng（张树生）
Guhou Middle School，Ningdu 342814，China

Abstract

Let $\Sigma=\sum_{i=1}^{t}\left(n_{i}-1\right)$ and $\Lambda=\sum_{j=1}^{s}\left(m_{j}-1\right)$ ．This paper considers the generalized Ramsey number $R\left(K_{1, n_{1}}, \cdots, K_{1, n_{t}}, m_{1} K_{2}, \cdots, m_{s} K_{2}\right)$ for any Σ and Λ ．And the authors get their exact values if $1 \leqslant \Lambda \leqslant \Sigma$ and their upper bounds if $\Lambda>\Sigma$ ．

Key words Ramsey number；Stars；Stripes．
2000 MR Subject Classification 05C55；05D10

1 Introduction and Lemmas

All graphs will be finite and undirected without loops or multiple edges．All undefined terms see $[2] . \beta(G)$ is denoted the number of edges in the maximum matching of graph G ．Let $\Sigma=\sum_{i=1}^{t}\left(n_{i}-1\right)$ and $\Lambda=\sum_{j=1}^{s}\left(m_{j}-1\right)$ ，where m_{i}, n_{i} are positive integers．Let $G_{1}, G_{2}, \cdots, G_{m}$ be simple graphs．The generalized Ramsey number $R\left(G_{1}, G_{2}, \cdots, G_{m}\right)$ is the smallest integer n such that every m－edge coloring $\left(E_{1}, E_{2}, \cdots, E_{m}\right)$ of K_{n} contains，for some i ，a subgraph isomorphic to G_{i} in color i ．The problem of the generalized Ramsey number about the stars or stripes is interesting for many people such as［1］，［3］，［5］and［6］．

Theorem $\mathbf{A}^{[1]}$（i）If Σ is odd，then $R\left(K_{1, n_{1}}, \cdots, K_{1, n_{t}}\right)=\Sigma+2$ ；
（ii）If Σ is even and all n_{i} are odd，then $R\left(K_{1, n_{1}}, \cdots, K_{1, n_{t}}\right)=\Sigma+2$ ；
（iii）If Σ is even and at least one n_{i} is even，then $R\left(K_{1, n_{1}}, \cdots, K_{1, n_{t}}\right)=\Sigma+1$ ．
Theorem $\mathbf{B}^{[3]}$ Let $m_{1}, m_{2}, \cdots, m_{s}$ be integers and $m_{1}=\max \left\{m_{1}, m_{2}, \cdots, m_{s}\right\}$ ．Then $R\left(m_{1} K_{2}, m_{2} K_{2}, \cdots, m_{s} K_{2}\right)=m_{1}+1+\Lambda$.

In this paper，we consider the generalized form such as $R\left(K_{1, n_{1}}, \cdots, K_{1, n_{t}}, m_{1} K_{2}, \cdots\right.$ ， $\left.m_{s} K_{2}\right)$ ．For this purpose，we need the following Lemmas：

Lemma $1^{[4]} \quad$ Let G be a connected graph with $|V(G)|>2 \delta(G)$ ，then G contains a path with length $\geqslant 2 \delta(G)$ ．

Lemma $2^{[4]}$ Let G be a 2 －connected graph with $|V(G)| \geqslant 2 \delta(G)$ ，then G contains a cycle with length $\geqslant 2 \delta(G)$ ．

[^0]Lemma 3 Let G be a connected graph, then $\beta(G) \geqslant \min \{|V(G)| / 2, \delta(G)\}$.
Proof If $\delta(G) \geqslant|V(G)| / 2$, thus G contains a Hamilton cycle. Hence $\beta(G)=[|V(G)| / 2]$. If $\delta(G)<|V(G)| / 2$, thus $|V(G)|>2 \delta(G)$. Hence $\beta(G) \geqslant \delta(G)$ by Lemma 1 .

2 Theorems and Their Proofs

Theorem 1 Let $R=: R\left(K_{1, n_{1}}, \cdots, K_{1, n_{t}}, m K_{2}\right)$, thus

$$
R= \begin{cases}2 m & \text { if } m \geqslant \Sigma+1 ; \\ m+\Sigma+1 & \text { if } m<\Sigma+1 \text { and } 2 \backslash \Sigma \text { or } 2 \mid \Sigma \text { and all of } n_{i} \text { are odd; } \\ m+\Sigma & \text { if } m<\Sigma+1 \text { and } 2 \mid \Sigma \text { and at least one of } n_{i} \text { is even. }\end{cases}
$$

Proof (1) $m \geqslant \Sigma+1$. Let all of edges of $K_{2 m-1}$ have color α_{t+1}. Thus there is neither $m K_{2}$ in color α_{t+1} nor $K_{1, n_{i}}(i=1,2, \cdots, t)$ in color α_{i} on $K_{2 m-1}$. Hence we have $R \geqslant 2 m$. On the other hand, let $K_{2 m}$ be colored by colors $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{t+1}$. If there is no $K_{1, n_{i}}$ in color $\alpha_{i}(i=1,2, \cdots, t)$, we consider an edge induced subgraph H_{1} by all of edges in color α_{t+1}. Clearly, $\delta\left(H_{1}\right) \geqslant 2 m-1-\Sigma \geqslant m$. Thus H_{1} has a Hamilton cycle. So $\beta\left(H_{1}\right)=m$. Hence $R \leqslant 2 m$. Therefore $R=2 m$ if $m \geqslant \Sigma+1$.
(2) $m<\Sigma+1$ and Σ is odd or Σ is even and all of n_{i} are odd. Since Theorem A(i) and (ii), $G=K_{\Sigma+1} \cup K_{m-1}$ can be colored by colors $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{t}$ such that G does not contain $K_{1, n_{i}}$ in color $\alpha_{i}(i=1,2, \cdots, t)$. And G^{c} is colored by color α_{t+1}. It is easy to get $\beta\left(G^{c}\right)=m-1<m$. Hence $R \geqslant m+\Sigma+1$.

On the other hand, let $K_{m+\Sigma+1}$ be colored by colors $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{t+1}$. If there is no $K_{1, n_{i}}$ in color $\alpha_{i}(i=1,2, \cdots, t)$, we consider the edges induced subgraph H_{2} by all of edges in color α_{t+1}. Clearly, $\delta\left(H_{2}\right) \geqslant(m+\Sigma)-\Sigma=m$. If H_{2} is connected, by Lemma 3, $\beta\left(H_{2}\right) \geqslant$ $\min \{[(m+\Sigma+1) / 2], m\}=m$. If H_{2} isn't connected, thus let C_{1}, C_{2} be two components of H_{2}. Since $\delta\left(C_{i}\right) \geqslant \delta\left(H_{2}\right) \geqslant m(i=1,2) . \beta\left(H_{2}\right) \geqslant \beta\left(C_{1}\right)+\beta\left(C_{2}\right) \geqslant \min \left\{\left[\left|V\left(C_{1}\right)\right| / 2\right], \delta\left(C_{1}\right)\right\}+$ $\min \left\{\left[\left|V\left(C_{2}\right)\right| / 2\right], \delta\left(C_{2}\right)\right\} \geqslant 2 \min \{[(m+1) / 2], m\} \geqslant m$ by Lemma 3 . Hence $R \leqslant m+\Sigma+1$. Therefore $R=m+\Sigma+1$ if $m<\Sigma+1$ and Σ is odd or Σ is even and all of n_{i} are odd.
(3) $m<\Sigma+1$ and Σ is even and at least one of n_{i} is even. By Theorem A(iii), using an analogous to the proof of (2), we can get $R \geqslant m+\Sigma$.

Now we prove the reverse inequality. Let the edges of $K_{m+\Sigma}$ be colored by colors $\alpha_{1}, \alpha_{2}, \cdots$, α_{t+1}. If there is no edges of $K_{1, n_{i}}$ in color $\alpha_{i}(i=1,2, \cdots, t)$, we consider the edge induced subgraph H_{3} by all of edges in color α_{t+1}. Thus $\delta\left(H_{3}\right) \geqslant(m+\Sigma-1)-\Sigma=m-1$.

If H_{3} has at least three components, say C_{1}, C_{2}, C_{3}. Thus we have $\delta\left(C_{i}\right) \geqslant \delta\left(H_{3}\right)(i=$ $1,2,3)$. For $m=1,2,3$, it is easy to get $\beta\left(H_{3}\right) \geqslant m$. For $m \geqslant 4$, by Lemma $3, \beta\left(H_{3}\right) \geqslant$ $\beta\left(C_{1}\right)+\beta\left(C_{2}\right)+\beta\left(C_{3}\right) \geqslant \sum_{i=1}^{3} \min \left\{\left[\left|V\left(C_{i}\right)\right| / 2\right], \delta\left(C_{i}\right)\right\} \geqslant 3 \min \{[m / 2], m-1\}=3[m / 2] \geqslant m$. If H_{3} has exactly two components C_{1}, C_{2}, thus $\left|V\left(C_{1}\right)\right| \geqslant m,\left|V\left(C_{2}\right)\right| \geqslant m$. If $\left|V\left(C_{1}\right)\right|=\left|V\left(C_{2}\right)\right|=m$, then $m=\Sigma=$ even and C_{1}, C_{2} are complete graphs. Hence $\beta\left(H_{3}\right)=m / 2+m / 2=m$.

If $\max \left\{\left|V\left(C_{1}\right)\right|,\left|V\left(C_{2}\right)\right|\right\} \geqslant m+1$, say $\left|V\left(C_{1}\right)\right| \geqslant m+1$. By Lemma 3, we have $\beta\left(H_{3}\right)=$ $\beta\left(C_{1}\right)+\beta\left(C_{2}\right) \geqslant \sum_{i=1}^{2} \min \left\{\left[\left|V\left(C_{i}\right)\right| / 2\right], \delta\left(C_{i}\right)\right\} \geqslant \min \{[(m+1) / 2], m-1\}+\min \{[m / 2], m-1\}=$ $[(m+1) / 2]+[m / 2]=m$. If H_{3} is connected with a cut vertex v and if $H_{3}-v$ has at
least three components, say D_{1}, D_{2}, D_{3}. For $m=1,2,3,4$, it is easy to get $\beta\left(H_{3}\right) \geqslant m$. For $m \geqslant 5$, by Lemma $3, \beta\left(H_{3}\right) \geqslant \beta\left(D_{1}\right)+\beta\left(D_{2}\right)+\beta\left(D_{3}\right) \geqslant \sum_{i=1}^{3} \min \left\{\left[\left|V\left(D_{i}\right)\right| / 2\right], \delta\left(D_{i}\right)\right\} \geqslant$ $3 \min \{[(m-1) / 2], m-2\}=3[(m-1) / 2] \geqslant m$. If $H_{3}-v$ has exactly two components, say D_{1}, D_{2}, thus we can assume that $\mid\left(V\left(D_{1}\right)\left|\geqslant m,\left|V\left(D_{2}\right)\right| \geqslant m-1\right.\right.$ and $| V\left(D_{1}\right)\left|\geqslant\left|V\left(D_{2}\right)\right|\right.$ since $\left|V\left(H_{3}-v\right)\right|=m+\Sigma-1 \geqslant 2 m-1, \delta\left(D_{1}\right) \geqslant m-2$ and $\delta\left(D_{2}\right) \geqslant m-2$. It is easy to prove $\beta\left(H_{3}\right) \geqslant m$ if $m \leqslant 3$. If $\Sigma=m$, then $\left|V\left(D_{1}\right)\right|=m$ and $\left|V\left(D_{2}\right)\right|=m-1$. For $m \geqslant 4$, there are Hamilton cycles in D_{1} and D_{2} respectively. Since $N(v) \cap V\left(D_{2}\right) \neq \emptyset$ and $m=\Sigma=$ even, $\beta\left(H_{3}\right)=\beta\left(D_{1}\right)+\beta\left(H_{3}\left[V\left(D_{2}\right) \cup\{v\}\right]\right)=m / 2+m / 2=m$. If $\Sigma=m+1$, thus m is odd. i.e., $m \geqslant 5$. Using an analogous method as above, we can get $\beta\left(H_{3}\right) \geqslant m$. If $\Sigma \geqslant m+2$ and $m \geqslant 4$, thus $\left|V\left(D_{1}\right)\right|+\left|V\left(D_{2}\right)\right|=\Sigma+m-1 \geqslant 2 m+1$. Hence we always have $\left[\left|V\left(D_{1}\right)\right| / 2\right]+\left[\left|V\left(D_{2}\right)\right| / 2\right] \geqslant m$. Note that $\delta\left(D_{1}\right)+\delta\left(D_{2}\right) \geqslant 2(m-2) \geqslant m, \delta\left(D_{1}\right)+$ $\left[\left|V\left(D_{2}\right)\right| / 2\right] \geqslant m-2+[(m-1) / 2] \geqslant m$ if $m \geqslant 5$ and $\left[\left|V\left(D_{1}\right)\right| / 2\right]+\delta\left(D_{2}\right) \geqslant[m / 2]+m-2 \geqslant m$. Therefore, by Lemma $3, \beta\left(H_{3}\right) \geqslant \beta\left(D_{1}\right)+\beta\left(D_{2}\right)=\sum_{i=1}^{2} \min \left\{\left[\left|V\left(D_{i}\right)\right| / 2\right], \delta\left(D_{i}\right)\right\} \geqslant m$ if $m \geqslant 5$ or $m=4$ and $\left|V\left(D_{2}\right)\right| \geqslant m$. Hence the remaining case is $D_{2}=K_{3}$. At this time, we have $\beta\left(H_{3}\right)=\beta\left(D_{1}\right)+\beta\left(H_{3}\left[V\left(D_{2}\right) \cup\{v\}\right]\right) \geqslant m$.

If H_{3} is 2-connected and if $\delta\left(H_{3}\right) \geqslant(m+\Sigma) / 2$, thus there is a hamilton cycle in H_{3}. Hence $\beta\left(H_{3}\right) \geqslant m$. If $\delta\left(H_{3}\right)<(m+\Sigma) / 2$, then $m+\Sigma>2 \delta\left(H_{3}\right) \geqslant 2(m-1)$. By Lemma 2, there is a cycle C in H_{3} with length $\geqslant 2(m-1)$. If there is a cycle in H_{3} with length $\geqslant 2 m$, then $\beta\left(H_{3}\right) \geqslant m$. If there is a cycle C in H_{3} with length $2 m-1$, thus there is a vertex $x \notin C$ which is adjacent with C. So $\beta\left(H_{3}\right) \geqslant m$. If the length of the longest cycle C is $2 m-2$, say $C=\left(x_{1}, x_{2}, \cdots, x_{2 m-2}\right)$, then $\beta\left(H_{3}\right) \geqslant m$. In fact, otherwise $\beta\left(H_{3}\right)=m-1$, thus $V\left(H_{3}\right)-V(C)=\left\{y_{1}, y_{2}, \cdots, y_{\Sigma-m+2}\right\}$ is an independent set of H_{3}. Since C is a longest cycle in H_{3} and $\delta\left(H_{3}\right) \geqslant m-1$, we can assume that $N\left(y_{1}\right)=N\left(y_{2}\right)=\cdots=N\left(y_{\Sigma-m+2}\right)=$ $\left\{x_{1}, x_{3}, \cdots, x_{2 m-3}\right\}$. And then $\left\{x_{2}, x_{4}, \cdots, x_{2 m-2}\right\} \cup\left(V\left(H_{3}\right)-V(C)\right)$ is an independent set of H_{3} with size $(\Sigma-m+2)+(m-1)=\Sigma+1$. Hence, by Theorem A(iii) on $K_{m+\Sigma}$, there is a subgraph $K_{1, n_{i}}$ in color α_{i}, a contradiction.

Theorem 2 If $\Lambda<\Sigma$, then

$$
\begin{aligned}
R & =: R\left(K_{1, n_{1}}, K_{1, n_{2}}, \cdots, K_{1, n_{t}}, m_{1} K_{2}, m_{2} K_{2}, \cdots, m_{s} K_{2}\right) \\
& =\left\{\begin{array}{l}
\Lambda+\Sigma+2 \text { if } \Sigma \text { is odd or } \Sigma \text { is even and all of } n_{i} \text { are odd, } \\
\Lambda+\Sigma+1 \text { if } \Sigma \text { is even and at least one of } n_{i} \text { is even. }
\end{array}\right.
\end{aligned}
$$

Proof (1) Σ is odd or Σ is even and all of n_{i} are odd. Since Theorem $\mathrm{A}(\mathrm{i})$ and (ii), $G=K_{\Sigma+1} \cup K_{\Lambda}$ can be colored by colors $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{t}$ such that G does not contain $K_{1, n_{i}}$ in color $\alpha_{t}(i=1,2, \cdots, t)$. And then let $G^{c}=(X ; Y ; E)$ be a complete bipartite graph, where $|X|=\Lambda$ and $|Y|=\Sigma+1$. Let $\left(X_{1}, X_{2}, \cdots, X_{s}\right)$ be a partition of X with $\left|X_{j}\right|=$ $m_{j}-1(j=1,2, \cdots, s)$. And let the edge of E, which is incident with a vertex in X_{j}, be colored by colors $\alpha_{t+j}(j=1,2, \cdots, s)$. Clearly G^{c} does not contain a subgraph $m_{j} K_{2}$ in color $\alpha_{t+j}(j=1,2, \cdots, s)$. Hence $R \geqslant \Lambda+\Sigma+2$.

Now we prove the reverse inequality. Let $K_{\Lambda+\Sigma+2}$ be colored by colors $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{t+s}$. If there is no $K_{1, n_{i}}$ in color $\alpha_{i}(i=1,2, \cdots, t)$. By Theorem 1 , there exists a $(\Lambda+1) K_{2}\left(\subseteq K_{\Lambda+\Sigma+2}\right)$ such that which edges in colors $\alpha_{t+j}(j=1,2, \cdots, s)$. So there is some $m_{j} K_{2}(1 \leqslant j \leqslant s)$ in color α_{t+j}. Hence $R \leqslant \Lambda+\Sigma+2$. i.e., $R=\Lambda+\Sigma+2$.
(2) Σ is even and at least one of n_{i} is even. Using an analogous method of (1), we can get $R=\Lambda+\Sigma+1$. \#

Theorem 3 If $\Lambda \geqslant \Sigma$, and let $m_{1}=\max \left\{m_{1}, m_{2}, \cdots, m_{s}\right\}, R=: R\left(K_{1, n_{1}}, \cdots, K_{1, n_{t}}\right.$, $m_{1} K_{2}, \cdots, m_{s} K_{2}$), we have:
(i) Σ is odd or Σ is even and all of n_{i} are odd, thus $\max \left\{m_{1}+\Lambda+1, \Lambda+\Sigma+2\right\} \leqslant R \leqslant$ $2(\Lambda+1) ;$
(ii) Σ is even and at least one of n_{i} is even, then $\max \left\{m_{1}+\Lambda+1, \Lambda+\Sigma+1\right\} \leqslant R \leqslant 2(\Lambda+1)$.

Proof When Σ is odd, let $K_{2 \Lambda+2}$ be colored by colors $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{t+s}$. If there is no $K_{1, n_{i}}$ in color $\alpha_{i}(i=1,2, \cdots, t)$. By Theorem 1, there exists a $(\Lambda+1) K_{2}\left(\subseteq K_{2 \Lambda+2}\right)$ whose edges is colored by color $\alpha_{t+j} \quad(j=1,2, \cdots, s)$. So, there is some $m_{j} K_{2}(1 \leqslant j \leqslant s)$ in color α_{t+j}. Hence $R \leqslant 2(\Lambda+1)$. By Theorem B, we have $R \geqslant m_{1}+\Lambda+1$. Hence in the following, we will prove that $R \geqslant \Lambda+\Sigma+2$. Let $G=K_{\Lambda+\Sigma+1}$ and let $\left(V_{1}, V_{2}, \cdots, V_{s}, V_{s+1}\right)$ be a partition on $V(G)$ with $\left|V_{i}\right|=m_{i}-1(i=1,2, \cdots, s)$ and $\left|V_{s+1}\right|=\Sigma+1 . \quad G$ is colored by colors $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{t+s}$ as follows: let $e=x y \in G$. (1) $x, y \in V_{1}$, thus e is colored by color α_{1}; (2) $x \in V_{i}, y \in V_{j}$ and $i \leqslant j$, thus e is colored by color $\alpha_{j}(j=2,3, \cdots, s) ;(3) x \in V_{i}(i=1,2, \cdots, s)$ and $y \in V_{s+1}$, thus e is colored by color α_{i}; (4) by Theorem $\mathrm{A}(\mathrm{i}) K_{\left|V_{s+1}\right|}$ can be colored by colors $\alpha_{s+1}, \cdots, \alpha_{s+t}$ such that there is no $K_{1, n_{i}}$ in color $\alpha_{s+i}(i=1,2, \cdots, t)$. Clearly, G is no $m_{j} K_{2}(j=1,2, \cdots, s)$ in color α_{j}. Hence $R \geqslant \Lambda+\Sigma+2$.

Using an analogous method as above, we can prove the remains part of (i) and (ii).
Theorem 4 If $\Lambda=\Sigma$, and $R=: R\left(K_{1, n_{1}}, \cdots, K_{1, n_{t}}, m_{1} K_{2}, \cdots, m_{s} K_{2}\right), m_{j} \geqslant 2(j=$ $1,2, \cdots, s)$, then

$$
R= \begin{cases}\Lambda+2 & \begin{array}{l}
\text { If } s=1 \text { or } \Sigma \text { is odd or } \Sigma \text { is even and all of } n_{i} \text { are odd; or } \\
\text { if } 2 \mid \Sigma \text { and at least one } n_{i} \text { is even and } s=2 \text { with } m_{1}=m_{2}
\end{array} \\
2 \Lambda+1 & \text { If } 2 \mid \Sigma \text { and at least one } n_{i} \text { is even and } s=2 \text { with } m_{1} \neq m_{2} \\
& \text { or } s \geqslant 3\end{cases}
$$

Proof By Theorem 1, we get $R=2 \Lambda+2$ if $s=1$. By Theorem 3(i), we get $R=2 \Lambda+2$ if Σ is odd or Σ is even and all of n_{i} are odd.

Now, we consider the case that Σ is even and at least one n_{i} is even and $s=2$ with $m_{1}=m_{2}$. By Theorem 3, we have $R \leqslant 2 \Lambda+2$. On the other hand, let $V\left(K_{2 \Lambda+1}\right)=$ $\left\{x_{1}, x_{2}, \cdots, x_{\Lambda}, y_{1}, y_{2}, \cdots, y_{\Lambda}, z\right\}, X=\left\{x_{1}, x_{2}, \cdots, x_{\Lambda}\right\}$ and $Y=\left\{y_{1}, y_{2}, \cdots, y_{\Lambda}\right\}$. Clearly, $G=K_{|X|,|Y|}$ is 1-factorable. $\left(F_{1}, F_{2}, \cdots, F_{t}\right)$ is a partition of these Λ 1-factors with $\left|F_{i}\right|=n_{i}-1$. All of edges in F_{i} are colored by color $\alpha_{i}(i=1,2, \cdots, t)$, every edges of complete graph on $X \cup\{z\}$ is colored by color α_{t+1}, and every edge of the complete graph on $Y \cup\{z\}$ is colored by color α_{t+2}. Thus there is no $K_{1, n_{i}}$ in color $\alpha_{i}(i=1,2, \cdots, t)$ on $K_{2 \Lambda+1}$, and there is also no $m_{j} K_{2}$ in color $\alpha_{t+j}(j=1,2)$ on $K_{2 \Lambda+1}$. Thus $R \geqslant 2 \Lambda+2$. Therefore $R=2 \Lambda+2$ if Σ is even and $s=2$ with $m_{1}=m_{2}$.

In the following, we prove that $R=2 \Lambda+1$ if Σ is even and at least one n_{i} is even and $s \geqslant 3$ or $s=2$ with $m_{1} \neq m_{2}$. By Theorem 3 , we get $R \geqslant 2 \Lambda+1$. On the other hand, let $K_{2 \Lambda+1}$ be colored by colors $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{t+s}$. If there is no $K_{1, n_{i}}$ in color $\alpha_{i}(i=1,2, \cdots, t)$, and let H be an edge induced subgraph by all of edges which colored by colors $\alpha_{t+1}, \alpha_{t+2}, \cdots, \alpha_{t+s}$, thus $\delta(H) \geqslant 2 \Lambda-\Sigma=\Lambda$. Clearly, H is connected, otherwise at least one component C with
$\delta(C)<\Lambda$, a contradiction. If there is a cut vertex v of H, then $H-v$ has exactly two components D_{1}, D_{2} with $H\left[V\left(D_{1}\right) \cup\{v\}\right]=H\left[V\left(D_{2}\right) \cup\{v\}\right]=K_{\Lambda+1}$. Let C_{1}, C_{2} be Hamilton cycles in D_{1}, D_{2} respectively. For every j, let E_{j} be the set of edges with color α_{t+j} in $C_{1} \cup C_{2}$. And let $a_{j}=\left|E_{j}\right|$, the edge induced subgraph $H_{j}=\left(C_{1} \cup C_{2}\right)\left[E_{j}\right]$. Thus we have $\beta_{j}=: \beta\left(H_{j}\right) \geqslant\left\{a_{j} / 2\right\}$. If there is an odd number a_{j}, then there is another odd number a_{k} since $C_{1} \cup C_{2}$ has $2 \Lambda+2$ edges. Thus we have $\sum_{j=1}^{s} \beta_{j} \geqslant \sum_{j=1}^{s}\left\{a_{j} / 2\right\} \geqslant\left(\sum_{j=1}^{s}\left(a_{j} / 2\right)+1\right)=\Lambda+1$. So there is some $m_{j_{0}} K_{2}\left(1 \leqslant j_{0} \leqslant s\right)$ in color $\alpha_{t+j_{0}}$. Hence in the following we always assume that $a_{j}(1 \leqslant j \leqslant s)$ are even. Using an analogous method as above, we can get that every component of $H_{j}(1 \leqslant j \leqslant s)$ has even number of edges. Thus we have $\beta_{j} \geqslant a_{j} / 2$ for every $j(1 \leqslant j \leqslant s)$, and then $\sum_{j=1}^{s} \beta_{j} \geqslant \sum_{j=1}^{s} a_{j} / 2=\Lambda$. If only one color, say α_{t+1}, appears on $C_{1} \cup C_{2}$, then there is $m_{1} K_{2}$ with color α_{t+1} in H. If only two colors, say $\alpha_{t+1}, \alpha_{t+2}$, appear on $C_{1} \cup C_{2}$, thus when $s \geqslant 3$ there is $m_{1} K_{2}$ in color α_{t+1} or $m_{2} K_{2}$ in color α_{t+2} since $\beta\left(C_{1} \cup C_{2}\right)=\Lambda \geqslant\left(m_{1}-1\right)+\left(m_{2}-1\right)+1$. Hence we only need to consider the case that at least three colors appear on $C_{1} \cup C_{2}$. When $s=2$, note that $m_{1} \neq m_{2}$. So we can assume that there are at least two colors appear on C_{1}. Let v_{1} be a common vertex of two monochromatic paths on C_{1}. Since $v_{1} v$ must be colored by one of color $\alpha_{t+j}(1 \leqslant j \leqslant s)$, there always exists some $m_{j_{0}} K_{2}$ in color $\alpha_{t+j_{0}}\left(1 \leqslant j_{0} \leqslant s\right)$.

If H is 2 -connected, by Lemma 2 , then H contains a cycle with length $\geqslant 2 \Lambda$. If there is a cycle with length $2 \Lambda+1$, thus it always contains a monochromatic odd component in this cycle. So it is easy to see that there is a $m_{j} K_{2}(1 \leqslant j \leqslant s)$ in color α_{t+j}. If the length of the longest cycle C is 2Λ in H. Let $V(H)-V(C)=\{u\}$. Clearly, since $d_{H}(u) \geqslant \delta(H) \geqslant \Lambda$, $d_{H}(u)=\Lambda$. In this case, if there is no $m_{j} K_{2}$ in color α_{t+j} for any $j \in\{1,2, \cdots, s\}$, we can prove as above that every component of H_{j} in C is even. Let $C=\left(x_{1}, x_{2}, \cdots, x_{2 \Lambda}, x_{1}\right)$, and let $N_{H}(u)=\left\{x_{1}, x_{3}, \cdots, x_{2 \Lambda-1}\right\}$. Clearly, $V(C)-N_{H}(u)$ contains all of the common vertices of components of $H_{j}(1 \leqslant j \leqslant s)$. If there is an edge $x_{2 i} x_{2 j} \in E(H)(1 \leqslant i<j \leqslant \Lambda)$, then there is a $(2 \Lambda+1)$-cycle in H, a contradiction. Hence $\left\{u, x_{2}, x_{4}, \cdots, x_{2 \Lambda}\right\}$ is an independent set in H. By Theorem A (iii), there exists a $K_{1, n_{i}}$ in color $\alpha_{i}(1 \leqslant i \leqslant t)$. Combining all of these cases, we have $R \leqslant 2 \Lambda+1$. So $R=2 \Lambda+1$ if Σ is even and at least one n_{i} is even and $s \geqslant 3$ or $s=2$ with $m_{1} \neq m_{2}$. This completes the proof of Theorem 4.

References

[^1]
关于星和条的 Ramsey 数

张克民
（南京大学数学系 南京 210093）
张树生
（固厚中学 宁都 342814）

摘要：令 $\Sigma=\sum_{i=1}^{t}\left(n_{i}-1\right)$ 和 $\Lambda=\sum_{j=1}^{s}\left(m_{j}-1\right)$ 。该文研究了广义Ramsey 数 $R\left(K_{1, n_{1}}, \cdots, K_{1, n_{t}}\right.$ ， $\left.m_{1} K_{2}, \cdots, m_{s} K_{2}\right)$ ．当 $1 \leqslant \Lambda \leqslant \Sigma$ 时，得到了它们的精确值；当 $\Sigma>\Lambda$ 时，得到了它们的上界。
关键词：Ramsey 数；星；条。
MR（2000）主题分类：05C55；05D10 中图分类号：O157．1 文献标识码：A
文章编号：1003－3998（2005）07－1067－06

[^0]: ＊Received April 16，2001；revised October 2003．The project supported by NSFC
 E－mail：zkmf＠nju．edu．cn

[^1]: 1 Burr S A, Roberts J A. On Ramsey numbers for stars. Utilitas Math, 1973, 4: 217-220
 2 Bondy J A, U S R Murty. Graph Theory with Applications. London and Basingstorke: The Macmillan Press Ltd, 1976,
 3 Cockayne E J, Lorimer P J. The Ramsey nember for stripes. J Austral Math Soc Ser A, 1975, 19: 252-256
 4 Dirac G A. Some theorems on abstract graphs. Proc London Math Soc, 1952, 3(2): 69-81
 5 Lorimer P. The Ramsey numbers for stripes and one complete graph. J of Graph Theory, 1984, 8: 177-184
 6 Lorimer P, Solomon W. The Ramsey numbers for stripes and complete graphs 1. Disc Math, 1992, 104: 91-97

