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Abstract Let Σ =
tP

i=1

(ni−1) and Λ =
sP

j=1

(mj−1). This paper considers the generalized

Ramsey number R(K1,n1
, · · · , K1,nt

, m1K2, · · · , msK2) for any Σ and Λ. And the authors

get their exact values if 1 6 Λ 6 Σ and their upper bounds if Λ > Σ.
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1 Introduction and Lemmas

All graphs will be finite and undirected without loops or multiple edges. All undefined

terms see [2]. β(G) is denoted the number of edges in the maximum matching of graph G. Let

Σ =
t

∑

i=1

(ni − 1) and Λ =
s

∑

j=1

(mj − 1), where mi, ni are positive integers. Let G1, G2, · · ·, Gm

be simple graphs. The generalized Ramsey number R(G1, G2, · · ·, Gm) is the smallest integer

n such that every m-edge coloring (E1, E2, · · ·, Em) of Kn contains, for some i, a subgraph

isomorphic to Gi in color i. The problem of the generalized Ramsey number about the stars or

stripes is interesting for many people such as [1], [3], [5] and [6].

Theorem A[1] (i) If Σ is odd, then R(K1,n1
, · · ·, K1,nt

) = Σ + 2;

(ii) If Σ is even and all ni are odd, then R(K1,n1
, · · ·, K1,nt

) = Σ + 2;

(iii) If Σ is even and at least one ni is even, then R(K1,n1
, · · ·, K1,nt

) = Σ + 1.

Theorem B[3] Let m1, m2, · · ·, ms be integers and m1 = max{m1, m2, · · ·, ms}. Then

R(m1K2, m2K2, · · ·, msK2) = m1 + 1 + Λ.

In this paper, we consider the generalized form such as R(K1,n1
, · · ·, K1,nt

, m1K2, · · ·,

msK2). For this purpose, we need the following Lemmas:

Lemma 1[4] Let G be a connected graph with |V (G)| > 2δ(G), then G contains a path

with length > 2δ(G).

Lemma 2[4] Let G be a 2-connected graph with |V (G)| > 2δ(G), then G contains a cycle

with length > 2δ(G).
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Lemma 3 Let G be a connected graph, then β(G) > min{|V (G)|/2, δ(G)}.

Proof If δ(G) > |V (G)|/2, thus G contains a Hamilton cycle. Hence β(G) = [|V (G)|/2].

If δ(G) < |V (G)|/2, thus |V (G)| > 2δ(G). Hence β(G) > δ(G) by Lemma 1.

2 Theorems and Their Proofs

Theorem 1 Let R =: R(K1,n1
, · · · , K1,nt

, mK2), thus

R =















2m if m > Σ + 1;

m + Σ + 1 if m < Σ + 1 and 2 6 |Σ or 2|Σ and all of ni are odd;

m + Σ if m < Σ + 1 and 2|Σ and at least one of ni is even.

Proof (1) m > Σ + 1. Let all of edges of K2m−1 have color αt+1. Thus there is neither

mK2 in color αt+1 nor K1,ni
(i = 1, 2, · · · , t) in color αi on K2m−1. Hence we have R > 2m.

On the other hand, let K2m be colored by colors α1, α2, · · · , αt+1. If there is no K1,ni
in color

αi (i = 1, 2, · · · , t), we consider an edge induced subgraph H1 by all of edges in color αt+1.

Clearly, δ(H1) > 2m − 1 − Σ > m. Thus H1 has a Hamilton cycle. So β(H1) = m. Hence

R 6 2m. Therefore R = 2m if m > Σ + 1.

(2) m < Σ+1 and Σ is odd or Σ is even and all of ni are odd. Since Theorem A(i) and (ii),

G = KΣ+1∪Km−1 can be colored by colors α1, α2, · · · , αt such that G does not contain K1,ni
in

color αi (i = 1, 2, · · · , t). And Gc is colored by color αt+1. It is easy to get β(Gc) = m− 1 < m.

Hence R > m + Σ + 1.

On the other hand, let Km+Σ+1 be colored by colors α1, α2, · · · , αt+1. If there is no K1,ni

in color αi (i = 1, 2, · · · , t), we consider the edges induced subgraph H2 by all of edges in

color αt+1. Clearly, δ(H2) > (m + Σ) − Σ = m. If H2 is connected, by Lemma 3, β(H2) >

min{[(m + Σ + 1)/2], m} = m. If H2 isn’t connected, thus let C1, C2 be two components of

H2. Since δ(Ci) > δ(H2) > m (i = 1, 2). β(H2) > β(C1) + β(C2) > min{[|V (C1)|/2], δ(C1)} +

min{[|V (C2)|/2], δ(C2)} > 2 min{[(m + 1)/2], m} > m by Lemma 3. Hence R 6 m + Σ + 1.

Therefore R = m + Σ + 1 if m < Σ + 1 and Σ is odd or Σ is even and all of ni are odd.

(3) m < Σ + 1 and Σ is even and at least one of ni is even. By Theorem A(iii), using an

analogous to the proof of (2), we can get R > m + Σ.

Now we prove the reverse inequality. Let the edges of Km+Σ be colored by colors α1, α2, · · ·,

αt+1. If there is no edges of K1,ni
in color αi (i = 1, 2, · · · , t), we consider the edge induced

subgraph H3 by all of edges in color αt+1. Thus δ(H3) > (m + Σ − 1) − Σ = m − 1.

If H3 has at least three components, say C1, C2, C3. Thus we have δ(Ci) > δ(H3) (i =

1, 2, 3). For m = 1, 2, 3, it is easy to get β(H3) > m. For m > 4, by Lemma 3, β(H3) >

β(C1)+β(C2)+β(C3) >
3
∑

i=1

min{[|V (Ci)|/2], δ(Ci)} > 3 min{[m/2], m−1} = 3[m/2] > m. If H3

has exactly two components C1, C2, thus |V (C1)| > m, |V (C2)| > m. If |V (C1)| = |V (C2)| = m,

then m = Σ = even and C1, C2 are complete graphs. Hence β(H3) = m/2 + m/2 = m.

If max{|V (C1)|, |V (C2)|} > m + 1, say |V (C1)| > m + 1. By Lemma 3, we have β(H3) =

β(C1) + β(C2) >
2
∑

i=1

min{[|V (Ci)|/2], δ(Ci)} > min{[(m + 1)/2], m− 1}+ min{[m/2], m− 1} =

[(m + 1)/2] + [m/2] = m. If H3 is connected with a cut vertex v and if H3 − v has at
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least three components, say D1, D2, D3. For m = 1, 2, 3, 4, it is easy to get β(H3) > m.

For m > 5, by Lemma 3, β(H3) > β(D1) + β(D2) + β(D3) >
3

∑

i=1

min{[|V (Di)|/2], δ(Di)} >

3 min{[(m − 1)/2], m − 2} = 3[(m − 1)/2] > m. If H3 − v has exactly two components, say

D1, D2, thus we can assume that |(V (D1)| > m, |V (D2)| > m − 1 and |V (D1)| > |V (D2)|

since |V (H3 − v)| = m + Σ − 1 > 2m − 1, δ(D1) > m − 2 and δ(D2) > m − 2. It is easy

to prove β(H3) > m if m 6 3. If Σ = m, then |V (D1)| = m and |V (D2)| = m − 1. For

m > 4, there are Hamilton cycles in D1 and D2 respectively. Since N(v) ∩ V (D2) 6= ∅ and

m = Σ = even, β(H3) = β(D1) + β(H3[V (D2) ∪ {v}]) = m/2 + m/2 = m. If Σ = m + 1,

thus m is odd. i.e., m > 5. Using an analogous method as above, we can get β(H3) > m. If

Σ > m + 2 and m > 4, thus |V (D1)| + |V (D2)| = Σ + m − 1 > 2m + 1. Hence we always

have [|V (D1)|/2] + [|V (D2)|/2] > m. Note that δ(D1) + δ(D2) > 2(m − 2) > m, δ(D1) +

[|V (D2)|/2] > m−2+ [(m−1)/2] > m if m > 5 and [|V (D1)|/2]+ δ(D2) > [m/2]+m−2 > m.

Therefore, by Lemma 3, β(H3) > β(D1) + β(D2) =
2
∑

i=1

min{[|V (Di)|/2], δ(Di)} > m if m > 5

or m = 4 and |V (D2)| > m. Hence the remaining case is D2 = K3. At this time, we have

β(H3) = β(D1) + β(H3[V (D2) ∪ {v}]) > m.

If H3 is 2-connected and if δ(H3) > (m + Σ)/2, thus there is a hamilton cycle in H3.

Hence β(H3) > m. If δ(H3) < (m + Σ)/2, then m + Σ > 2δ(H3) > 2(m − 1). By Lemma

2, there is a cycle C in H3 with length > 2(m − 1). If there is a cycle in H3 with length

> 2m, then β(H3) > m. If there is a cycle C in H3 with length 2m − 1, thus there is a

vertex x 6∈ C which is adjacent with C. So β(H3) > m. If the length of the longest cycle C

is 2m − 2, say C = (x1, x2, · · · , x2m−2), then β(H3) > m. In fact, otherwise β(H3) = m − 1,

thus V (H3) − V (C) = {y1, y2, · · · , yΣ−m+2
} is an independent set of H3. Since C is a longest

cycle in H3 and δ(H3) > m − 1, we can assume that N(y1) = N(y2) = · · · = N(y
Σ−m+2

) =

{x1, x3, · · · , x2m−3}. And then {x2, x4, · · · , x2m−2} ∪ (V (H3) − V (C)) is an independent set of

H3 with size (Σ − m + 2) + (m − 1) = Σ + 1. Hence, by Theorem A(iii) on Km+Σ, there is a

subgraph K1,ni
in color αi, a contradiction.

Theorem 2 If Λ < Σ, then

R =: R(K1,n1
, K1,n2

, · · · , K1,nt
, m1K2, m2K2, · · · , msK2)

=







Λ + Σ + 2 if Σ is odd or Σ is even and all of ni are odd,

Λ + Σ + 1 if Σ is even and at least one of ni is even.

Proof (1) Σ is odd or Σ is even and all of ni are odd. Since Theorem A(i) and (ii),

G = KΣ+1 ∪ KΛ can be colored by colors α1, α2, · · · , αt such that G does not contain K1,ni

in color αt (i = 1, 2, · · · , t). And then let Gc = (X ; Y ; E) be a complete bipartite graph,

where |X | = Λ and |Y | = Σ + 1. Let (X1, X2, · · · , Xs) be a partition of X with |Xj | =

mj − 1 (j = 1, 2, · · · , s). And let the edge of E, which is incident with a vertex in Xj, be

colored by colors αt+j (j = 1, 2, · · · , s). Clearly Gc does not contain a subgraph mjK2 in color

αt+j (j = 1, 2, · · · , s). Hence R > Λ + Σ + 2.

Now we prove the reverse inequality. Let KΛ+Σ+2 be colored by colors α1, α2, · · · , αt+s. If

there is no K1,ni
in color αi (i = 1, 2, · · · , t). By Theorem 1, there exists a (Λ+1)K2(⊆ KΛ+Σ+2)

such that which edges in colors αt+j (j = 1, 2, · · · , s). So there is some mjK2 (1 6 j 6 s) in

color αt+j . Hence R 6 Λ + Σ + 2. i.e., R = Λ + Σ + 2.
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(2) Σ is even and at least one of ni is even. Using an analogous method of (1), we can get

R = Λ + Σ + 1. #

Theorem 3 If Λ > Σ, and let m1 = max{m1, m2, · · · , ms}, R =: R(K1,n1
, · · ·, K1,nt

,

m1K2, · · ·, msK2), we have:

(i) Σ is odd or Σ is even and all of ni are odd , thus max{m1 + Λ + 1, Λ + Σ + 2} 6 R 6

2(Λ + 1);

(ii) Σ is even and at least one of ni is even, then max{m1+Λ+1, Λ+Σ+1} 6 R 6 2(Λ+1).

Proof When Σ is odd, let K2Λ+2 be colored by colors α1, α2, · · · , αt+s. If there is no

K1,ni
in color αi (i = 1, 2, · · · , t). By Theorem 1, there exists a (Λ + 1)K2(⊆ K2Λ+2) whose

edges is colored by color αt+j (j = 1, 2, · · · , s). So, there is some mjK2 (1 6 j 6 s) in color

αt+j . Hence R 6 2(Λ + 1). By Theorem B, we have R > m1 + Λ + 1. Hence in the following,

we will prove that R > Λ+Σ+2. Let G = KΛ+Σ+1 and let (V1, V2, · · · , Vs, Vs+1) be a partition

on V (G) with |Vi| = mi − 1 (i = 1, 2, · · · , s) and |Vs+1| = Σ + 1. G is colored by colors

α1, α2, · · · , αt+s as follows: let e = xy ∈ G. (1) x, y ∈ V1, thus e is colored by color α1; (2)

x ∈ Vi, y ∈ Vj and i 6 j, thus e is colored by color αj (j = 2, 3, · · · , s); (3) x ∈ Vi (i = 1, 2, · · · , s)

and y ∈ Vs+1, thus e is colored by color αi; (4) by Theorem A(i) K|Vs+1| can be colored by

colors αs+1, · · · , αs+t such that there is no K1,ni
in color αs+i (i = 1, 2, · · · , t). Clearly, G is no

mjK2 (j = 1, 2, · · · , s) in color αj . Hence R > Λ + Σ + 2.

Using an analogous method as above, we can prove the remains part of (i) and (ii).

Theorem 4 If Λ = Σ, and R =: R(K1,n1
, · · · , K1,nt

, m1K2, · · · , msK2), mj > 2 (j =

1, 2, · · · , s), then

R =































Λ + 2
If s = 1 or Σ is odd or Σ is even and all of ni are odd; or

if 2|Σ and at least one ni is even and s = 2 with m1 = m2

2Λ + 1
If 2|Σ and at least one ni is even and s = 2 with m1 6= m2

or s > 3.

Proof By Theorem 1, we get R = 2Λ + 2 if s = 1. By Theorem 3(i), we get R = 2Λ + 2

if Σ is odd or Σ is even and all of ni are odd.

Now, we consider the case that Σ is even and at least one ni is even and s = 2 with

m1 = m2. By Theorem 3, we have R 6 2Λ + 2. On the other hand, let V (K2Λ+1) =

{x1, x2, · · · , xΛ, y1, y2, · · · , yΛ, z}, X = {x1, x2, · · · , xΛ} and Y = {y1, y2, · · · , yΛ}. Clearly,

G = K|X|,|Y | is 1-factorable. (F1, F2, · · · , Ft) is a partition of these Λ 1-factors with |Fi| = ni−1.

All of edges in Fi are colored by color αi (i = 1, 2, · · · , t), every edges of complete graph on

X ∪ {z} is colored by color αt+1, and every edge of the complete graph on Y ∪ {z} is colored

by color αt+2. Thus there is no K1,ni
in color αi (i = 1, 2, · · · , t) on K2Λ+1, and there is also

no mjK2 in color αt+j (j = 1, 2) on K2Λ+1. Thus R > 2Λ + 2. Therefore R = 2Λ + 2 if Σ is

even and s = 2 with m1 = m2.

In the following, we prove that R = 2Λ + 1 if Σ is even and at least one ni is even and

s > 3 or s = 2 with m1 6= m2. By Theorem 3, we get R > 2Λ + 1. On the other hand, let

K2Λ+1 be colored by colors α1, α2, · · · , αt+s. If there is no K1,ni
in color αi (i = 1, 2, · · · , t), and

let H be an edge induced subgraph by all of edges which colored by colors αt+1, αt+2, · · · , αt+s,

thus δ(H) > 2Λ − Σ = Λ. Clearly, H is connected, otherwise at least one component C with
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δ(C) < Λ, a contradiction. If there is a cut vertex v of H , then H−v has exactly two components

D1, D2 with H [V (D1) ∪ {v}] = H [V (D2) ∪ {v}] = KΛ+1. Let C1, C2 be Hamilton cycles in

D1, D2 respectively. For every j, let Ej be the set of edges with color αt+j in C1 ∪C2. And let

aj = |Ej |, the edge induced subgraph Hj = (C1∪C2)[Ej ]. Thus we have βj =: β(Hj) > {aj/2}.

If there is an odd number aj , then there is another odd number ak since C1∪C2 has 2Λ+2 edges.

Thus we have
s

∑

j=1

βj >
s

∑

j=1

{aj/2} > (
s

∑

j=1

(aj/2)+1) = Λ+1. So there is some mj0K2 (1 6 j0 6 s)

in color αt+j0 . Hence in the following we always assume that aj (1 6 j 6 s) are even. Using an

analogous method as above, we can get that every component of Hj (1 6 j 6 s) has even number

of edges. Thus we have βj > aj/2 for every j (1 6 j 6 s), and then
s

∑

j=1

βj >
s

∑

j=1

aj/2 = Λ. If

only one color, say αt+1, appears on C1 ∪C2, then there is m1K2 with color αt+1 in H . If only

two colors, say αt+1, αt+2, appear on C1 ∪ C2, thus when s > 3 there is m1K2 in color αt+1 or

m2K2 in color αt+2 since β(C1 ∪ C2) = Λ > (m1 − 1) + (m2 − 1) + 1. Hence we only need to

consider the case that at least three colors appear on C1∪C2. When s = 2, note that m1 6= m2.

So we can assume that there are at least two colors appear on C1. Let v1 be a common vertex

of two monochromatic paths on C1. Since v1v must be colored by one of color αt+j (1 6 j 6 s),

there always exists some mj0K2 in color αt+j0 (1 6 j0 6 s).

If H is 2-connected, by Lemma 2, then H contains a cycle with length > 2Λ. If there is

a cycle with length 2Λ + 1, thus it always contains a monochromatic odd component in this

cycle. So it is easy to see that there is a mjK2 (1 6 j 6 s) in color αt+j . If the length of

the longest cycle C is 2Λ in H . Let V (H) − V (C) = {u}. Clearly, since dH(u) > δ(H) > Λ,

dH(u) = Λ. In this case, if there is no mjK2 in color αt+j for any j ∈ {1, 2, · · · , s}, we can

prove as above that every component of Hj in C is even. Let C = (x1, x2, · · · , x2Λ, x1), and let

NH(u) = {x1, x3, · · · , x2Λ−1}. Clearly, V (C) − NH(u) contains all of the common vertices of

components of Hj (1 6 j 6 s). If there is an edge x2ix2j ∈ E(H) (1 6 i < j 6 Λ), then there is

a (2Λ + 1)-cycle in H , a contradiction. Hence {u, x2, x4, · · · , x2Λ} is an independent set in H .

By Theorem A (iii), there exists a K1,ni
in color αi (1 6 i 6 t). Combining all of these cases,

we have R 6 2Λ + 1. So R = 2Λ + 1 if Σ is even and at least one ni is even and s > 3 or s = 2

with m1 6= m2. This completes the proof of Theorem 4.
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