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Abstract

Transit agencies are looking for analytical tools to improve their rolling stock mainte-
nance programs and fleet size. If agencies underestimate the number of buses out of 
service for maintenance at any given time, they cannot adequately cover all sched-
uled service. If agencies overestimate the number of buses requiring maintenance, 
they overcapitalize the rolling stock fleet, resulting in an inefficient allocation of 
scarce funds. This article presents a methodology for using a fully parametric dura-
tion model to determine the expected amount of time a vehicle is in service and out 
of service. Additionally, the transition probabilities are calculated using the hazard 
data to determine the probability of transitioning from an in-service state to an 
out-of-service state at a given point in time. An empirical analysis is conducted using 
data from the San Francisco Municipal Transit Agency and duration models used to 
identify the transition probabilities from in-service to out-of-service states and the 
optimum fleet size.

Introduction
Transit operators have a responsibility to ensure full service throughout their sys-
tems at all scheduled times. Many times, service is not fully covered for a variety 
of reasons, including dispatch error, inefficient route planning, driver absenteeism, 
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and vehicles being out of service. This article focuses on the latter. Controlling 
and predicting the number of vehicles out of service enables transit operators to 
effectively cover the entire service area. The time between required maintenance 
operations and the time it takes to service the bus are stochastic processes. That 
is, breakdowns and service requirements occur at nonfixed intervals and the time 
spent out of service varies depending on the type of service and the capacity of the 
maintenance facility. This article attempts to understand these processes and to 
make accurate predictions of the number of additional vehicles needed to provide 
full route coverage as well as have vehicles out of service for maintenance. A dura-
tion model is calculated to find the expected time out of service, and from those 
results, a proportion of extra vehicles is calculated. The parameters are then used 
to predict the transition probabilities from an operational state to an in-opera-
tional state. This article examines literature relevant to modeling approaches for 
determining transit rolling stock deterioration and maintenance. It also discusses 
the methodology used to develop the model. An application is presented using 
San Francisco Municipal Transit Agency bus maintenance data. Finally, conclu-
sions and recommendations are provided. 

Literature Review
This article focuses on the development of a statistical model to evaluate transit 
fleet size to ensure adequate route and schedule coverage as well as include those 
vehicles that are out of service for maintenance. Specifically, any maintenance 
or repair that a bus must encounter requires the bus to be out of service, and a 
replacement bus must take its place to ensure continuous service to customers. 
Few models have been developed to predict failure and time out of service, and, 
ultimately, the amount of extra vehicles needed to cover the schedule. There are 
systems from which comparisons and concepts can be drawn. Namely, absentee-
ism among transit operators is a similar problem for which transit operators must 
hire extraboard operators to cover the schedule in the event of unscheduled oper-
ator absences. While there are similarities, direct translation of the concepts of 
extraboard scheduling cannot be transferred to the extra fleet vehicle problem. 

A few models have been developed to predict the condition of transit rolling 
stock or optimize a maintenance schedule. Dutta et al. (1986) developed early 
simulation models to evaluate scheduling enhancements on the performance 
of the maintenance system. Haghani et al. (2002) developed a mathematical 
programming approach to optimize the scheduling of maintenance operations, 
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given a daily demand for maintenance activities. Schiavone (1997) and Lederer et 
al. (1990) investigate maintenance performance indicators often used by transit 
operators. They found that maintenance cost per mile is one of the highest ranking 
performance indicators among transit agencies. Obeng (1988) regressed main-
tenance cost per mile on different causal variables. Obeng found that fleet size 
most significantly increases maintenance cost per mile. These analyses show that 
minimizing fleet size is essential to decrease maintenance cost per mile, and thus 
increase the performance of the maintenance system. 

A few authors have investigated vehicle reliability. Puntis et al. (1986) qualita-
tively identified and developed reliability techniques in an attempt to balance the 
amount of maintenance required and the time to failure of rail cars. The authors 
identify the need to accurately model reliability to determine how many spare 
fleet vehicles are needed. The authors specify that reliability is dependent on the 
duty cycle, maintenance regime, and climatic conditions. Rolling stock condition 
is one of the primary precursors to the amount of time a bus is receiving scheduled 
maintenance or is broken down. Karlaftis and Sinha (1997) and Karlaftis (1997) 
developed ordered probit models that predict the deterioration of a bus using 
ordinal condition ratings. The authors found that the factors affecting the rate of 
bus deterioration were age, mileage, capacity, engine type, and climate. 

Fukuoka (1987) noted that one of the difficulties when dealing with reliability 
data is the left truncated and right censored data. Datasets often are missing data 
for the beginning of the life of the bus, which occurs before the study period. 
Additionally, the datasets do not record the failure after the study period. This 
difficulty must be addressed when using reliability data in order to calculate unbi-
ased estimators. The author went on to develop a maximum likelihood estimation 
model and a nonparametric hazard model to predict failure of rolling stock, both 
addressing the issues of censoring and truncation. 

A parallel system is that of operator absenteeism and extraboard scheduling. 
Historically, transit agencies have hired extraboard operators based on histori-
cal absentee rates (Perry 1983) and dispatcher error rates (Perry and Long 1984). 
However, this is generally not an optimum solution. MacDorman (1982, 1985) 
found that transit agencies overstaff their extraboard personnel by more than 7 
percent of the optimum assignment. He developed models to balance extraboard 
and overtime personnel to minimize the cost to the transit agency. Hickman et 
al. (1988) and Koutsopoulos (1990) later developed strategic and tactical/opera-
tional models based on this previous work that could be applied by transit agen-
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cies. While there are several similarities that can be drawn from the comparison 
of extraboard personnel and extra fleet vehicles, there are also several differences 
that make this comparison fall short. It is clear that historical data on absentee-
ism and dispatcher error are inaccurate and relying on these measures results in 
overstaffing. This could be true and much more costly in the event of overcapital-
izing a rolling stock fleet, resulting in vehicles being underutilized. Development of 
prediction models has the potential to optimize this solution. A main difference is 
labor rules, which is a big driver of open work scheduling and can make extraboard 
scheduling problematic. Fortunately, rolling stock is not limited by labor rules and 
can be utilized to the maximum extent possible. 

Methodology
To estimate fleet size, a model must be developed to evaluate the number of 
vehicles out of service at any given time. Managers can then use these results to 
plan for extra vehicles to provide full service to the system. To this end, a hazard-
based duration model (Washington et al. 2003) can be developed to predict the 
failure of a vehicle and the time spent out of service. Using this duration model, a 
transit operator can predict the time to failure of an individual bus and aggregate 
the predictions over the entire fleet to determine the total number of buses out 
of service at a given time.

The hazard function is the rate at which the failures occur. A fully parametric dura-
tion model is used for this analysis. The time between maintenance operations, 
while the bus is in service intuitively, has a monotonically increasing hazard func-
tion. That is, as the length of time from the last failure increases, the probability 
of failing in the next time step increases. To test this assumption, one can observe 
the nonparametric hazard function. The nonparametric solution assumes noth-
ing about the functional form of the hazard function. Plotting the nonparametric 
hazard function of time until maintenance is required confirms the assumption 
of a monotonically increasing hazard function for the time required until a main-
tenance operation is performed. Likewise, one might expect a negative duration 
dependence for time spent out of service, while a maintenance operation is 
being performed, since many of the longer durations are out of service because 
of unavailability of parts or qualified labor. The longer the bus is out of service, 
the lower the likelihood of coming back into service in the next time step. This 
assumption is confirmed by a visual inspection of the increasing nonparametric 
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hazard function of time taken to come back into service, given the bus has been 
out of service for a certain period of time. 

A Weibull probability distribution function produces a closed form estimation of 
the hazard function that accounts for increasing, decreasing, or constant duration 
dependence. By visual inspection, the Weibull distribution most closely matches 
the nonparametric solutions of both the interval of time between maintenance 
operations and the duration of time taken to perform the maintenance operation. 
The form of this equation is: 

λ(t) = pλpt p-1   (1)

where: 

λ and p are estimated parameters.

The parameter λ is replaced by e-βX  for a model with covariate data; however, this 
model will not include any covariates and thus all unobserved causal variables are 
included in the λ term. The parameter p is the factor that determines the shape of 
the PDF. When p=1, there is no duration dependence and the hazard rate is con-
stant and follows an exponential distribution. This indicates a Markovian process 
whereby the probability of changing states is not dependent on the amount of 
time in that state. When p>1, there is positive duration dependence, indicating 
that the probability of changing states increases as more time is spent in that state. 
When 0<p<1, there is negative duration dependence, indicating that the prob-
ability of changing states decreases as more time is spent in that state. 

Once the parameters are estimated, the expected time until failure can be cal-
culated. The expected duration of the Weibull duration can be calculated by the 
following equation: 

E[T] = λ-p   (2)

The survival function is the probability of the time of failure being greater than the 
time in question. This is important as it indicates the percentage of observations 
that have a longer duration than the time that a vehicle has already been in service. 
The functional form of the survival function for a Weibull distribution is: 

S(t) = P(T>t) = 1-F(t) = exp[-(λt)p]  (3)

The condition of the buses can be identified in one of two states, in service or 
out of service. A useful tool for a transit operator is to understand the transition 
probabilities of moving from an in-service state to an out-of-service state within 
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a given time step. Mishalani et al. (2002) developed a methodology to calculate 
a discrete time, state-based model for infrastructure deterioration. The transition 
probability equation is:

R (t, Δ) =  (4)

where:

F(t)  equals the cumulative distribution function of the duration  
random variable T;

S(t)=1-F(t)  is the survival function; and

Δ  is the discrete time period. 

When utilizing the hazard rate function, the probability of transitioning from the 
state 1 (in service) to state 0 (out of service) equation becomes: 

P1, 0 = R (t, Δ) = 1-  (5)

Once the transition probabilities are calculated for the change of state from in 
service to out of service are calculated, the expected value of the repair time must 
be calculated. Once the transition probabilities and the expected time out of 
service have been calculated, the expected number of vehicles out of service at 
any particular time is calculated. This has very important implications for transit 
managers as it aids in scheduled maintenance decisions as well as in acquisition of 
new rolling stock. 

Empirical Analysis
Data
The data used in this analysis were supplied by the San Francisco Municipal Transit 
Agency. The data include maintenance records for two fleets, the diesel engine 
fleet and the electric engine fleet. Both of these datasets are assumed to have 
different characteristics between them, but they are assumed to be homogenous 

F(t + Δ) - F(t)
S(t)

exp[-λp(t + Δ) p]
exp[-(λt) p]
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within themselves, even though the buses most certainly have different character-
istics (age, routes served, mileage, size, manufacturer, etc.). Unfortunately, these 
data are not available and cannot be included in the model. The data include 
the vehicle identification number, date a work order started, date the work order 
ended, maintenance category, and the specific maintenance operation performed. 
The discrete time-step interval is one day, since that is the precision of the data. 
Buses are considered out of service between the time the work order starts and 
finishes. Buses are considered available for service during the time between the 
end of a work order and the beginning of the following work order. There are three 
categories of service: road calls, corrective maintenance, and preventative mainte-
nance. This dataset includes not only corrective maintenance, but also scheduled 
maintenance, which occurs every 1,000 miles for each bus. Since this model is 
concerned only with vehicles in service or out of service, it considers all of these 
types of maintenance operations as failures, even though they have very different 
characteristics from an operational perspective. 

The original dataset consisted of 528 electric buses receiving more than 22,000 
maintenance operations between September 12, 2003, and April 30, 2004, as well 
as 555 diesel engine buses receiving more than 28,000 maintenance operations 
between August 26, 2003, and April 30, 2004. This totals a fleet of 1,083 buses 
with more than 50,000 maintenance operations over this nine-month period. In 
an attempt to remove some of the heterogeneity within the fleets, all buses that 
were not in full-time service were removed and many of them were retired dur-
ing the observation interval, according to the maintenance manager of the San 
Francisco Municipal Transit Agency. Particularly, many of the buses in a certain 
range of vehicle identification numbers were removed. All obvious data entry 
errors (e.g., end date is before start date) were removed. Additionally, many of the 
maintenance operations occurred within the span of a previous operation. That 
is, they conducted many separate work orders at once or consecutively. Since this 
analysis is only concerned with the time in and out of service, all observations that 
were completed at once are modeled as one observation. After all of these adjust-
ments, the final dataset consisted of 3,200 electric bus operations and 7,100 diesel 
bus operations. 

A common issue associated with duration data is that many of the observations 
can be either right or left censored. Some of the observations used in this analysis 
are right censored. The data consists of a series of complete observations, with 
work order start and end dates for each vehicle. The end of the study period was 
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April 30, so all buses have one censored observation on their last interval in or out 
of service. All observations start at a different date for each bus, so there is no left 
censoring. This censoring was accounted for in the statistical model.

Survival and Hazard Model Estimation
The data for each type of bus were modeled separately using LIMDEP econometric 
software to identify if there are differences between the diesel fleet and the electric 
fleet. A model was developed for the interval of time that the bus was available 
for service and a separate model was developed for the duration of time the bus 
was out of service. Each of these models is a fully parametric model with a Weibull 
distribution. Table 1 shows the parameter estimations for p and λ. 

Table 1. Duration Model Parameter Estimates

From these parameters one can see that the two populations are different. The λ 
and p parameters are significantly different from each other, as displayed by them 
being outside of the other’s confidence intervals. For instance, the diesel fleet’s 
p=1.2220 is above the confidence interval of the electric fleet’s p value. The p val-
ues are also significantly different than 1, which indicates that the hazard function 
is monotonically increasing for the interval of time between breakdowns; that is, 
the longer the vehicle has been in service, the more likely it is to break down. The p 
value less than one indicates that the hazard function is monotonically decreasing 
for the duration of time being repaired; that is, the longer the bus is in the garage, 
the likelihood of leaving the garage decreases. This can be expected as longer, more 
complicated maintenance operations require parts and labor that are not always 
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available and thus require longer times out of service. These p values also indicate 
that the distribution is not exponential and the Markovian property of duration 
independence does not hold for any of the parameters. 

These relationships are most easily displayed in the hazard functions for each of 
the fleets (Figures 1 and 2). From Figure 1, it can be seen that the hazard functions 
are increasing for the in-service intervals of time. From these graphs the instanta-
neous hazard rate can be determined given that a bus has survived until a certain 
time. For instance, given that an electric diesel bus has survived 20 days, the prob-
ability of failure is 0.15. The graph also indicates that the hazard rate is higher for 
the diesel fleet than the electric fleet in most cases. Similarly, Figure 2 shows the 
hazard functions of the time taken to perform a maintenance operation for the 
electric and diesel fleets. These functions are decreasing, illustrating decreasing 
duration dependence. The figure also illustrates that the diesel fleet has a higher 
“hazard” of coming back into service compared to the electric fleet, meaning that 
it has a higher probability of ending its duration of time out of service, given it has 
been out of service for a period of time. 

Figure 1. Diesel and Electric Fleet In-Service Hazard Function 
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Figure 2. Diesel and Electric Fleet Out-of-Service Hazard Function

Transition Probability Estimation
Transition probabilities tell the transit manager the probability that the bus will 
transition to the worse state (out of service) in the following time step (∆). This 
is a very powerful tool as it indicates that the probability does in fact increase as 
the duration increases. The transition probabilities also give the manager a good 
approximation of the amount of maintenance operations that are likely to be 
required in the coming time step. Figure 3 displays the transition probabilities for 
a bus in each fleet as calculated by Eq. (5). The graph indicates the transition prob-
abilities for transitioning from an in-service to an out-of-service state. It gives these 
transition probabilities for each fleet for a three-day and a seven-day time horizon. 
For instance, given an electric bus has been in-service for 55 days, the probability 
of transitioning to a worse state (out of service) is 32 percent within the next 
three days and 61 percent within the next seven days. This graph also shows the 
dependence of the transition probabilities on the time step chosen. The larger the 
time step, the higher the probability of transitioning to a worse state within the 
following time step.  
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Figure 3. Transition Probabilities from In-Service to Out-of-Service State 
Diesel and Electric Fleet

Expected Duration
The expected duration is required when attempting to determine the optimum 
fleet size. This expected duration is calculated for both the interval of in-service 
time and the duration of out-of-service time using Eq. (2). Table 2 shows these 
calculations for each fleet. 

Table 2. Expected Value Estimates 
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From these data, the expected proportion of time out of service is calculated as 
the expected duration divided by the total time both in and out of service. This 
can be expressed as: 

P(out of service) =  (6)

When these proportions are calculated, we find that vehicles are out of service 
11.1 percent and 13.4 percent of the time, at any given time for diesel and electric 
vehicles, respectively. These proportions can easily be extended to a required fleet 
size. To cover for the expected amount of time a vehicle is out of service, an extra 
vehicle has to be in service. The required fleet size then becomes the required 
vehicles in service plus the number of vehicles out of service. The expression is: 

Fleet Size =  (7)

For instance, if San Francisco transit planners require 500 diesel buses for service 
coverage, the required number of buses is 500/(1-0.111)=563 buses. This covers for 
the expected number of buses, without stochastic fluctuations. Policy questions 
that must be answered are: What confidence interval is adequate? And, what is 
the value of full-service coverage? The total number of buses could be higher than 
this number depending on the variance of durations and the benefit/cost ratio of 
assuring full service. 

Conclusions and Recommendations
This article demonstrated a method of determining rolling stock availability using 
fully parametric duration models. Two similar datasets were analyzed, an electric 
and a diesel fleet from the San Francisco Municipal Transit Agency. The data were 
manipulated to demonstrate that vehicles were either in or out of service. Using 
LIMDEP statistical software, Weibull distributed hazard and survival functions 
were developed to identify the instantaneous hazard and survival rates for both 
the interval of time that the bus is in service and the duration of time that the bus 
is out of service. The estimated parameters of the model indicate that the electric 
and diesel fleets are in fact different and that they should be modeled separately.  

E[Tdur]

E[Tdur] + E[Tint] 

Service Requirements
1-P(out of service)
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This difference could be attributed to the reliability of the vehicles or the different 
maintenance procedures for the two fleets. Additionally, the magnitude of the 
estimated parameters indicates that the deterioration, and thus hazard rate of 
the buses, is monotonically increasing, implying that the longer a bus is in service, 
the higher the rate of breakdown. Conversely, the longer the bus is in the garage 
for maintenance, the lower the chances of being released, thus creating a mono-
tonically decreasing relationship. The parameters indicate a significant difference 
from an exponential distribution that would imply no duration dependence and 
a Markovian property. 

Once the survival and hazard functions were calculated, the discrete time, state-
based transition probabilities were calculated as the probability of changing from 
state 1 (in service) to state 0 (out of service) in the next discrete time step. This 
allows the planner to identify the probability of a vehicle requiring maintenance 
the next day, based on the amount of time the vehicle has been in service. This is a 
potentially powerful tool to use when planning maintenance activities. 

Finally, the expected interval in service and duration out of service are calculated 
to determine the proportion of time a vehicle is available and thus the fleet size 
required to cover all scheduled service. This powerful policy tool offers the poten-
tial to save a large amount of money for a transit agency considering rolling stock 
acquisition. 

A major improvement of this model would be to include covariate data. The 
hazard rate is a function of many of the vehicle’s variables, including age, mileage, 
manufacturer, size, route, etc. These variables would certainly have an effect on 
the time taken to require maintenance and would result in a much more powerful 
model. These variables would also eliminate the need to account for vehicles that 
are not in full service or have been taken out of service using the methodology of 
taking those buses out of the dataset, as the age and mileage parameter would 
certainly account for those effects. Additionally, this model only analyzes the time 
in service and the time out of service. An improvement would be to consider the 
type of service required. Road calls have very different maintenance characteris-
tics than routine maintenance. By differentiating them, policy decisions could be 
made on maintenance schedules, garage capacity, workforce composition, and 
support equipment. Additionally, weaknesses in the maintenance schedule could 
be identified and improved.  
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Overall, the methodology presented here could be applied to any transit agency 
to quantify their bus availability and maintenance program. This could potentially 
save a transit agency millions of dollars through improved rolling stock utilization 
as well as reduced maintenance and storage facilities. These methods give transit 
maintenance operators the tools required to make informed decisions to improve 
their maintenance programs, ultimately improving the quality of service provided 
to transit customers. 
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