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Abstract

This article develops an econometric analysis of metro station operating cost to 
identify factors that create variation in cost efficiency. Stations operating costs can 
be classified amongst the semifixed costs that a metro faces in the sense that they 
do not vary proportionately with metro output. They may therefore be important 
in determining the degree of returns to density. This article seeks to provide an 
improved understanding of some of the major factors driving these costs. Empirical 
results show that strong system-specific influences impact costs but over and above 
these we detect positive associations from a range of station characteristics, includ-
ing the length of passageways, number of platforms, peak-level service frequency, 
interchange demand, and the provision of toilet facilities. In addition, we find that 
the presence of air-conditioning has a substantial effect in increasing expected station 
operating cost by as much as 40 percent.

Introduction
The cost structure of the mainline railway industry has received a great deal of 
attention in the academic literature (e.g., Caves et al. 1980; Caves et al. 1981a, 
1981b; Freeman et al. 1985;  Caves et al. 1985; Dodgson 1985; McGeehan 1993; 
Bookbinder and Qu 1993; Oum and Yu 1994; Cowie and Riddington 1996; Wun-
sch 1996; Tretheway et al. 1997; Oum et al. 1999; Cantos et al. 1999; Cantos et al. 
2002). Research has demonstrated the very large variance in cost efficiency, or 
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productivity, that is often present within a sample of rail firms and has developed 
cost and production function approaches to analyze the factors underpinning this 
variance.

A prominent theme in the rail efficiency literature is whether cost structures 
are subject to returns to scale (RTS) or returns to density (RTD). RTS describe 
the relationship between all inputs and the overall scale of operations, including 
both output and network size. RTD describe the relationship between inputs and 
outputs with the rail network held fixed. Evidence in the literature indicates that 
RTD are due to the prevalence of fixed costs in the rail industry and to a range of 
semifixed costs that do not vary proportionally with output. Less consistent evi-
dence is available on the existence of scale economies, though the majority view 
is that railways operate under constant returns to scale. Few studies have been 
conducted on the costs structure of urban metros, though Graham et al. (2003) 
estimates increasing RTD and constant RTS. 

Station operations may provide an important source of increasing RTD in metro 
operations. Stations must remain staffed and functioning, with all the energy and 
other resources required, throughout the duration of the metro operating hours. 
Moreover, costs may differ quite substantially from one station to another due 
to the nature of engineering, the depth of station, its size and dimensions, the 
technology employed, and so on. So we can conceive of station operating costs 
as semifixed costs that do not vary proportionately with system throughput and 
therefore may be instrumental in giving rise to increasing RTD. 

In this study we develop an econometric model to analyze variance in station 
operating costs. An econometric model is essential to determine the effect of a 
particular characteristic of a metro station on its operating costs while control-
ling for all other factors affecting the metro station operating cost. The analysis of 
historical data fails to control for the effects of other factors while estimating the 
effect of a particular factor. We use data on 83 stations from 13 metro systems 
from around the world to estimate the main drivers of cost. Model specifications 
and the data used for estimation are discussed and results are presented. 

Model Specification and Data 
The data available for our analysis describe the total operating cost of each station 
and a range of station characteristics collected from a total of 13 metros (Buenos 
Aires, Dublin, Glasgow, Hong Kong KCR, Hong Kong MTR, Lisbon, London, Mon-
treal, Naples, Sao Paulo, Singapore, Taipei, and Toronto). The analysis we develop 
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below regresses the total operating costs against these station characteristics to 
determine their role in influencing variance in costs. 

It is important to stress that we do not adopt a conventional cost function 
approach. We do not have data on factor prices and therefore cannot estimate 
the cost function. However, another important consideration in this respect is 
that since the operating costs of any one particular station represents only a small 
fraction of total metro operating costs, individual stations cannot be regarded as 
the appropriate units over which cost decisions are made. For instance, metro 
operators do not demand factor inputs at the station level in accordance with 
prices but make rational decisions relating to costs and operations for the system 
as a whole. Furthermore, it would be wrong to ascribe any particular behavioral 
assumptions to individual stations (e.g., cost minimizing behavior). A metro may 
not seek to sustain a set level of station efficiency across the system but rather 
allow for disparities in efficiency to achieve some broader objectives relating to the 
appropriate level of system output given overall costs. 

In this respect, it is mainly how the station characteristics serve to influence total 
cost that is of interest in the present analysis. One important issue, however, 
relates to the absence of factor price data, because this will certainly be important 
in determining station costs. To control for these omitted variables, which we can-
not observe, we estimate the station operating costs model with a set of dummy 
variables for the 13 metro systems. We assume that these dummies will capture 
unobserved system-specific effects including factor prices. 

A log linear model is used to identify the factors that influence the operating cost 
of a metro station. The model can be written as:

	 1n yi = +1nXi+Di+i	 (1)

where:

yi 	 is the total operating cost of a metro station i

Xi	 represents a kx1 vector of continuous explanatory variables  
	 describing the characteristics of station i

Di	 denotes a mx1 vector of dummy explanatory variables relating to 		
	 metro systems

i	 is white noise

	 represents kx1 vector of parameters to be estimated

	 is a mx1 vector of parameters to be estimated
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The log linear model is used because it reduces the potential for multicollinearity 
and provides direct parameter estimates of the elasticities. 

The dependent variable is the total cost of operating the station per year. This 
includes the costs associated with staff, utilities (e.g., electricity, gas, and water), 
the maintenance of lifts and escalators, and the maintenance of other systems 
such as CCTV, air-conditioning, ticketing equipment, and building. Two econo-
metric models will be estimated using equation (1). The first model will be esti-
mated without metro-specific dummy variables and the second model will be 
estimated with metro-specific dummies to control country-specific effects on 
metro stations’ operating cost. 

The explanatory variables, which describe the station characteristics, and the 
hypotheses we seek to test with each variable are described below.

Age of the station. Age of the station is taken as the number of years since the 
station opened. This figure is averaged if the station was opened in stages. Our 
hypothesis is that older stations will incur higher maintenance costs than new 
stations. 

Lifts and escalators. The number of lifts and escalators within a station may influ-
ence the operating cost because this equipment needs to be in operation on a 
daily basis and frequently maintained. 

Number of ticket machines/ticket offices/ticket sales windows/entry and exit gates. 
The number of ticket machines includes only those machines used by the public 
to purchase or validate tickets. The number of ticket offices is the number of areas 
in the station where ticket-selling takes place. The number of ticket sales windows 
relates to the number of potentially staffed positions used by the metro staff to 
sell tickets to passengers. We hypothesis that these factors will influence the staff 
costs of the station.

Number of opening hours per day. This variable is taken as the average number 
of metro station opening hours per day. The hypothesis is, of course, that longer 
operating hours induce higher costs.

Service frequency. Two service frequency variables—peak frequency and off-peak 
frequency— are considered. Frequency is calculated as the average number of 
trains per hour (each way) during peak periods (peak frequency) or off-peak 
periods (off-peak frequency). The inclusion of these variables will allow us to test 
whether costs are associated with frequency. 
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Length of trains. This is calculated as the total number of carriages of a train using 
the station. At stations with multiple lines averages are used.

Platform dimensions. Variables for width, length, and elevation of the platform are used 
to determine if these factors are important for maintenance and cleaning costs. 

Roof length of platforms. For underground stations, this is clearly the same as 
platform length, but for at-grade and elevated stations only part of platforms 
may be covered by a canopy, shelter, or overall roof. This variable is included to 
understand if variation in the maintenance associated with roof lengths affects 
total station costs.

Length of passageways. This is measured as the total length of passageways, includ-
ing escalator shafts, estimated by metros as an indicative proxy for the amount 
of cleaning and building repair that may need to be done. No account is taken of 
possible variations in passageway width. A better measure might have been the 
total floor area, but this would not have directly reflected the amount of walls and 
ceilings that need maintenance and cleaning; this is also discarded as a measure 
because it is more difficult for metros to estimate easily.

Station demand variables. The two main demand variables considered are entry 
demand and interchange demand. Station entry demand is the total number 
of passengers entering the station per year. This includes passengers changing 
modes at the station, and entering from mainline rail or bus stations, as well as 
those starting their journeys locally and entering the station on foot. Interchange 
demand relates only to those passengers changing metro lines at the station 
concerned. Two secondary variables—peak entry demand and peak interchange 
demand—are also considered. Peak entry (interchange) demand is calculated as 
the total number of entry (interchange) passengers for the busiest hour during a 
standard week, and is designed to test whether peak demand (entry/interchange) 
drives station capacity and hence costs, or total demand drives staffing levels and 
hence cost.

Types of metro stations. Dummy variables are used to reflect the overall type of 
metros in terms of being at-grade, elevated, subsurface (typically constructed by 
cut and cover, and 5–6m below ground), or deep tube. At-grade and subsurface 
stations can be managed without lifts or escalators for passengers to travel verti-
cally, whereas elevated and deep tube stations normally need this equipment, 
which adds significantly to costs (e.g., electricity).
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Other variables. Presence of air-conditioning, toilets for public use, platform screen 
doors, and shops are all included in modeling through a dummy variables. Each is 
thought to generate costs (electricity, cleaning, maintenance, and management 
time).

Results 
Prior to model fitting, a number of statistical tests were performed to determine the 
nature of the data. For example, it is possible that the explanatory variables may be 
correlated with each other (the effect of multicollinearity) or that the data exhibits 
heteroskedasticity (the effect of nonconstant variance). 

Although imperfect multicollinearity does not violate the assumptions of the classical 
model, if its presence is sufficiently acute, it can lead to biased, inefficient, and even 
wrongly signed estimates. If the overall goodness of fit, R2, is relatively high (say more 
than 0.8) but only few explanatory variables are significantly different from 0 or there 
are high pair-wise correlations among the regressors, then it is possible that multicol-
linearity may be present. Here, we use the variance inflation factor (VIF) proposed by 
Chatterjee et al. (2000) to determine the presence of multicollinearity. The number of 
ticket gates at a station, for example, is found to be highly correlated with the entry 
demand at the station, and the length of the platform at a station is correlated with 
the length of the longest train passing the station. Based on the VIF test, the highly cor-
related variables are excluded from the explanatory variables used in the final model. 
The problem of Omitted Variable Bias (OVB) is addressed in the conventional way by 
the use of proxy variables and fixed effects to control for unobserved metro-specific 
variables. We have no evidence that multicollinearity affects the parameter estimates.

Data from London metro stations are not included in the model as operating costs 
are not obtainable at the station level for the categories which are consistent with the 
other metros. This reduces the total number of observations to 83. However, we still 
have to estimate more than 30 parameters which are found to be uncorrelated with 
each other. Some of the explanatory variables such as entry and interchange demand, 
lifts, and escalators are then combined to minimize the number of parameters to be 
estimated. A dummy variable is used to represent the presence of lifts or escalators 
within a station in the model. This variable takes on a value of 1 if there are any lifts or 
escalators in a metro station and a value of 0 otherwise. Summary statistics (observa-
tions, mean, standard deviation, minimum, and maximum) of the final explanatory 
variables used in the model are shown in Table 1. 
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Table 1. Summary Statistics of Explanatory Variables Used in the Model
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Another important assumption of the classical linear regression model is that 
the disturbances  appearing in the regression function are homoskedastic. The 
problem of heteroskedasticity is common in cross-sectional analysis because the 
data usually involves observations from heterogeneous units (i.e., stations from 
different metros), and therefore heteroskedasticity may be expected if data from 
small, medium, and large stations are sampled together. In conducting the Park 
Test (Park 1966), we find that our data are not characterized by heteroskedasticity. 
This may be due to the use of the log linear model, which reduces the variances 
among the variables. 

Table 2 presents our results. Two models are considered: one without metro 
dummies and one with metro dummies. The second model includes the metro-
specific effects to control for heterogeneous environments. Ramsey’s RESET test 
(an F-test) is used to select the better model (Ramsey 1969) and this shows that 
the addition of metro station dummies significantly increases the goodness of fit 
of the model. Therefore, the model with the metro station dummies is used for the 
interpretation of the results. 

The model goodness of fit, the adjusted R2, is 0.88, which shows a good degree 
of explanatory power for a cross-sectional model. The comparison between the 
observed cost and the predicted cost is shown in Figure 1. The mean prediction 
error is found to be only 2.3 percent. Note that the names of the metros are omit-
ted to preserve confidentiality.

Figure 1. Observed and Predicted Costs 
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Table 2. Model Estimation Results for the Operating Cost of a Metro Station
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Table 2 shows a number of statistically significant effects on metro station operat-
ing cost that arise having controlled for unobservable system-specific effects.

The age of the station is found to be negatively associated with the operating cost 
of a metro station at the 90 percent confidence level. This is surprising as we would 
expect an older station to require more maintenance and hence be associated 
with higher costs. The explanation of this counterintuitive finding may be due to 
the fact that more recent stations (e.g., KCR, Hong Kong) tend to be larger and 
to have higher quality facilities, which also require a relatively high maintenance 
treatment. 

Length of passageways, total number of platforms, peak-hour service frequency, 
and entry and interchange demand are found to be statistically significant at the 
95 percent confidence level and positively associated with the operating cost. 
These results confirm our hypotheses. The elasticity associated with the peak-
period service frequency is higher compared to others. The result suggests that a 
10 percent increase in peak-period service frequency (each way, per hour) is asso-
ciated with a 4.8 percent increase in the operating cost, and a 10 percent increase 
in the number of platforms leads to a 2.7 percent increase in the operating cost. 
The length of the roof is also found to be positively associated with the cost but 
only at the 90 percent confidence interval. 

The effect of air-conditioning is captured by a dummy variable. This variable is 
found to be positively associated with the operating cost and is statistically sig-
nificantly different from 0 at the 95 percent confidence level. This is an indication 
that average operating cost is high in a station with air-conditioning if all other 
factors remain constant. The coefficient () of the effect of the air-conditioning 
is 0.35, indicating that the relative effect on the average operating cost due to 
the presence of air-conditioning is 100*{exp()-1}, or 41 percent. In other words, 
air-conditioning has an extremely large impact on costs, increasing the expected 
operating cost by 41 percent, holding all other factors included in the model con-
stant. 

The presence of toilets within a station is also found to be positively associated 
with the operating cost. This is expected as some costs are associated with the 
maintenance and staffing of toilets. However, the coefficient of this variable is 
unexpectedly high, perhaps because this variable represents the effects of some 
other factors that are not included in the model. 
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Interestingly, the type of metro station has little effect on operating cost. As 
explained previously, a categorical variable (grade, subsurface, elevated, and tube) 
is used to reflect the overall type of metro station. None of the coefficient esti-
mates are statistically significant at the 95 percent confidence level. The tube-type 
metro station shows a positive coefficient relative to the at-grade-type station but 
only at the 87 percent confidence level. 

The system-specific dummy variables are expressed relative to and intercept for 
Metro-1. The result suggests that Metro-3, Metro-5, Metro-6, and Metro-7 are 
costlier compared to Metro-1. The operating cost associated with Metro-5, for 
instance, is about 93 percent higher relative to Metro-1 if all other factors included 
in the model remain constant. 

The number of ticket offices in a station, total number of entrances, operating 
hours per day, presence of lifts or escalators, width of platforms, and length of the 
longest train are found to be statistically insignificant. This is perhaps because the 
metro-specific dummies included in the model pick up the effects hypothesized 
from these factors. 

The models are reestimated without the statistically insignificant variables (below 
90% confidence level) of the models presented in Table 2 (with metro dummies). 
The results are shown in Table 3. Interestingly, the model goodness of fit remains 
the same after excluding five insignificant explanatory variables. The age of the 
station now becomes insignificant. As expected, the metro dummies now pick 
up most of these effects. The operating cost of Metro-2, Metro-8, Metro-9, and 
Metro-10 are now lower relative to Metro-1. The effects of all other factors remain 
invariable. 

A limitation of the analysis is that not all of the characteristics associated with cost 
are readily alterable. For instance, the length of a metro station’s roof plays a major 
role in increasing the station’s operating cost.

The standard errors associated with the parameter estimates give us a guide as to 
how confident we can be in the magnitudes indicated by our results. Of course, 
econometric models can be revised given better data or new hypotheses to test, 
but an econometric model should be assessed based on both the “significance” of 
a variable and “the estimated magnitude of the effects” of the variable as this is one 
of the fundamental objectives of estimating an econometric model.
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Table 3. Reestimated Models with Significant Variables  
of the Models Shown in Table 2

Conclusions
We have developed an econometric model to investigate variance in metro sta-
tion operating costs. The model regresses total metro station operating costs 
on a series of station characteristics and a set of metro systems’ specific dummy 
variables. The results show strong unobserved system-specific effects, confirming 
the need to differentiate the data in this way. Over and above the system-specific 
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effects, we have identified some factors that appear to have an important influ-
ence on the levels of station costs. These include length of passageways, number 
of platforms, peak-level service frequency, interchange demand, and the provision 
of toilet facilities. In addition, we find a very strong effect from the existence of 
air-conditioning, which raises the expected station operating cost by as much as 
40 percent. 

Stations operating costs can be classified amongst those semifixed costs that do 
not vary proportionately with metro output. For this reason, they may be very 
important in determining the magnitude of RTD on the costs structure and pro-
ductive efficiency of the firms. This article has provided an improved understand-
ing of some of the major factors driving these costs. 
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