基于数据包络分析方法的项目环境效率评价

张 群,荀志远

(北京科技大学管理学院,北京 100083)

摘 要: 对项目环境效率进行了研究, 讨论了项目环境效率评价方法, 在项目环境残余物可自由处理和弱自由处理等不同情况下, 构建了评价项目环境效率数据包络分析(DEA) 模型, 最后给出了一个计算例子。

关键词:项目评价;环境效率;DEA;线性规划

中图分类号: F224.5 文献标识码: A 文章编号: 1001-7348(2007) 11-0080-03

0 前言

改革开放以来,我国经济持续高速增长。近年来,国内生产总产值年均增长 9.6%,人均 GDP增长 8.2%,但是在增长的同时,也付出了沉重的环境代价。据有关专家估计,我国 20 世纪 80 年代以来经济增长的环境经济损失大致占 GDP的 2%~8%,如果继续沿袭粗放型的经济增长模式,不注重发展引起的环境问题,只注重经济效率而不注重环境效率,改革发展所取得的成果就可能被环境损失抵消。所以,只有加强环境技术、经济和管理方面的研究,才能实现我国经济的可持续发展。

1 环境效率及其评价指标

目前对环境效率还没有准确的概念,一般认为:如果环境作为一种资源投入,则应该力求以最小的环境资源投入获得最大的产出。如果把环境的改善作为一种产出,应该力求在一定的投入下,获得环境的最大改善效果。这样,它在生产上才是有效率的。由 WBCD(World Business Council for Sustainable,世界可持续发展委员会)于 1992年在里约地球峰会上提出的环境效率内涵为,环境效率(Eco-efficiency)等于产品或服务的价值与环境负荷之比,即评价以一单位的环境负荷为代价,能够创造出多少价值,生产活动所造成的环境负荷越小,所创造的经济价值越大,环境效率就越高。在 WBCD 的定义中,产品或服务的价值指产品产量、所提供的服务量、销售量、净销售量;环境负荷指能源消费、水消费、材料消费、地球温室气体排放、臭氧层破坏物质排放等。

根据环境效率的内涵,可以得到反映项目环境效率的指

标: 资源消耗指标、能源消耗指标、经济指标、产品指标、产生的废物指标, 其中废水包括: BOD, COD, PH, TSS, 油等; 废气包括: SO₂, PM10, NOx, CO₂等; 固体废物指标和噪声指标等。

对于不同的项目和不同的生产过程,评价其环境效率的指标体系是不同的。为了对一个项目的环境效率进行综合评价,形成一个统一的分析结果,需要把不同的指标纳入评价过程。其中一种常用的方法是采用 LCA 法(生命周期分析 Life Cycle Analysis),它对项目不同阶段的环境影响进行分析,分析的目的是整合这些不同的环境影响,最后得到一个有益的结果,但选择采用何种方法进行整响的居得到一个有益的结果,但选择采用何种方法进行整响的基础上,将项目环境影响货币化,用货币的方式表示项目环境效果,但是由于环境因子是随着时间、空间和生产的变化的,而且在计量过程中投入人力、财力较大,因此很难进行合理的计量。此外,在综合评价方面,还有层次分析法、模糊数学法、神经网络法、熵法、多目标决策和决策支持系统等,这些方法由于缺乏有关权重的准确信息,因而在应用上受到限制。

基于数学规划的数据包络分析(Data Envelopment Analysis, DEA)模型以 Pareto 优化经济概念为基础,以多目标规划理论为工具,解决了多投入、多产出的"部门"或"单位"间的相对有效性客观评价问题,具有无需提供先验的权重信息的优点,非常适合于多输入、多输出情况下的投入产出效率分析。自 1978年 Charnes, Cooper 和 Rhodes首次提出 C²R模型^[1]以来,新的 DEA 理论成果不断出现,在许多领域中都得到了广泛的应用。下面对评价项目环境效率的 DEA模型进行构建。

2 环境效率DEA评价模型的构建

收稿日期: 2006-07-19

基金项目: 国家自然科学基金项目(70672102)

作者简介: 张群(1950-), 男, 湖北人, 博士, 教授, 博士生导师, 北京科技大学管理学院院长, 研究方向为管理科学与工程; 荀志远(1964-), 男, 河北人, 教授, 博士研究生, 研究方向为项目经济评价及优化。

设有 n 个从事同一生产活动的项目(即决策单元 DMU),每个 DMU 都有 m 种要素投入和 S种产出、t 种环境残余物。若 x_{ij} 表示第 j 个 DMU 的第 i 种投入量(i=1,2...,m; j=1,2,...,n),用 y_{ij} 表示第 j 个 DMU 的第 r 种有用的产出(r=1,2,...,s; j=1,2,...,n),用 b_{uk} 表示第 j 个 DMU 的第 u 种环境残余物,各 DMU 的投入产出可用向量表示为:投入向量 x_{i} =(x_{ij} ,..., x_{rij})^T,产出向量 y_{i} =(y_{1j} ,..., y_{ij})^T, b_{i} =(b_{1j} ,..., y_{ij})^T, 对 n 个 DMU 而言,在保持有用的输出不减少的情况下,建立资源 消耗和环境残余物最少的 DEA 效率评价模型。

对于决策单元 j(即 DMU, 1 j n)的效率评价指数为:

$$h_j = \frac{u^T Y_j}{v^T X_i}, j=1, 2, ..., n$$

效率评价指数的含义是: 在权系数 v 和 u 下, 投入为 $v^T X_j$, 产出为 $u^T Y_j$ 时的产出与投入之比。当评价 DMU_{j0} 的效率时, DMU_{j0} 的效率评价指数为:

$$h_{j_0} = \frac{u^T Y_0}{v^T X_0}$$

以 h_{j_0} 最大为目标,以所有的决策单元(j=1,2,...,n)的效率指数 h_i 1为约束,构成分式规划 \mathbb{C} R模型:

$$P_{0} = \begin{cases} \max \frac{u^{T} Y_{0}}{v^{T} X_{0}} \\ \frac{u^{T} Y_{j}}{v^{T} X_{j}} & 1 \\ u = 0, v = 0 \end{cases}$$

$$(1)$$

分式规划模型很难求解,必须进行转化。令: $t=\frac{1}{v_{X_0}}$,

 ω =tv, μ =tu, 可将其转化为一个等价的线性规划形式:

考虑生产中存在环境残余物,线性规划 (p_0) 对偶规划为[3]:

$$(p_1) = \begin{cases} \min \theta \\ \sum_{j=1}^{n} \lambda_j x_j & \theta x_0 \\ \sum_{j=1}^{n} \lambda_j b_j & \theta b_0 \\ \sum_{j=1}^{n} \lambda_j y_j & y_0 \\ \lambda_j & 0 \\ j=1, 2, \dots, n \end{cases}$$

$$(3)$$

和 p(1) 对应的(相当的)含有松弛变量的 C²R 模型为:

$$(P_1) \begin{cases} \min \theta \\ \sum_{j=1}^{n} \lambda_j x_j + s = \theta x_0 \\ \sum_{j=1}^{n} \lambda_j b_j + s = \theta b_0 \\ \sum_{j=1}^{n} \lambda_j y_j - s = y_0 \\ \lambda_j & 0 \\ s = 0, s = 0 \end{cases}$$

$$(4)$$

公式(4)的含义是: 对某一决策单元 DMU_{jo} , 在保持输出 y_o 不变时,将输入 x_o 各分量和环境残余物输出各分量 b_o 按同一比例 θ 减少,如果有解 θ <1 存在,表明可以用比 DMU_{jo} 更少的投入获得相同的产出, DMU_{jo} 必然不是有效的生产活动。若决策单元 DMU_{jo} 的线性规划解 θ ',s ' +, s ', λ '满足 θ ' =1,则称 DMU_{jo} 为弱 DEA 有效;若解满足 θ ' =1,且 S '=S '=O,则称 DMU_{jo} 为 DEA 有效。

模型(3)、(4)对环境残余物而言,是可自由处置的,即任何一种产出的处置不会以其它产出的减少为代价,项目生产排污较少受环境管制措施的制约。但是,在实际中,环境管制措施会迫使项目将本来用于生产有用产品的资源投入,重新配置到减少污染的投资方向,减少环境残余物需要减少有用的产出,环境残余物是弱可自由处理的^[2]。这时和模型(3)相对应的评价项目环境效率的 DEA 模型为:

模型 (p_1) 、 (p_2) 在评价环境效率有效性时,假设每一个 DMU 都处在最优的规模报酬下,所以,评价结果是规模和技术同时有效的。但在实际中,可能不满足这些条件,需要增加凸约束 $\sum_{j=1}^{n} \lambda_j = 1$ 。模型 (p_1) 、 (p_2) 增加凸约束后,形成 BC² 模型 $(q(E_1)$ 、 (E_2) ,来评价环境效率的技术有效性。

$$(E_{1}) = \begin{cases} \min \beta \\ \sum_{j=1}^{n} \lambda_{j} x_{j} & \beta x_{0} \\ \sum_{j=1}^{n} \lambda_{j} b_{j} & \beta b_{0} \\ \sum_{j=1}^{n} \lambda_{j} y_{j} & y_{0} \\ \lambda_{j} = 0, \lambda_{j} & 0 \\ j = 1, 2, \dots, n \end{cases}$$

$$(E_{2}) = \begin{cases} \min \delta \\ \sum_{j=1}^{n} \lambda_{j} x_{j} & \delta x_{0} \\ \sum_{j=1}^{n} \lambda_{j} b_{j} = \delta b_{0} \\ \sum_{j=1}^{n} \lambda_{j} y_{j} & y_{0} \\ \lambda_{j} = 0, \lambda_{j} & 0 \\ j = 1, 2, \dots, n \end{cases}$$

$$(7)$$

3 算例

假设有 12 个钢铁项目, 它们的设备、技术、工艺水平相当, 投入指标: 能源消耗折算成标煤(万 t 标煤/年)、其它材料折算成资金(万元), 分别用 x_1, x_2 表示; 产出指标: 钢产品(万 t/年), 用 y_1 表示; 环境残余物有粉尘(t/年)、 $SO_2(t/$ 年)、废水(万 t/年),分别用 b_1, b_2, b_3 表示, 12 个钢铁项目的相关数据见表 1。

表 1 项目环境效率评价数据

决策		投入		产出					
单元	能源(x₁)	资金(x₂)	钢产品(y₁)	粉尘(b₁)	SO ₂ (b ₂)	废水(b₃)			
项目1	96.23	15152.41	158.46	1893.33	1247.55	302.02			
项目 2	87.56	11087.23	143.29	1694.24	1354.82	361.45			
项目3	90.48	9912.26	110.35	1254.40	1119.96	371.79			
项目4	80.22	8979.84	127.45	1126.78	1456.27	368.61			
项目5	56.08	7658.53	65.22	956.36	1032.86	287.56			
项目6	63.11	8732.14	70.16	879.75	953.68	319.11			
项目7	36.55	7544.12	44.30	768.65	387.21	186.27			
项目8	54.28	7745.23	72.71	754.23	856.33	246.75			
项目 9	73.67	9012.25	97.88	1025.49	1010.45	295.68			
项目 10	43.46	7362.12	55.72	812.46	785.20	224.56			
项目 11	52.01	7894.45	74.35	947.15	802.11	242.25			
项目 12	66.72	8776.48	82.46	832.56	1103.45	301.59			
表 2 项目环境效									

利用模型 p_1, p_2, E_1, E_2 解不同的线性规划, 计算出 12 个项目的相对环境效率值, 列于表 2。

从表 2 可知,项目 1、2、4、8、9 用所建立的模型评价时,效率值都为 1,说明这 5 个项目既是环境规模有效率的,又是环境技术有效率的;项目 3、6、12 在环境残余物可自由处理时,是无规模和技术效率的,当环境残余物弱可自由处理时,是有规模和技术效率的;项目 5 在环境残余物可自由处理时是无规模效率和技术效率的,在环境残余物弱可自由处理时,只是有技术效率的;项目 10 环境残余物有技术效率,但无规模效率;项目 7、11 只是在环境残余物可自由处理时无规模效率,但有技术效率。

参考文献:

- [1] 魏权龄.数据包络分析[M]. 北京: 科学出版社, 2004.
- [2] 王波,张群.环境约束下不同生产效率模型研究[J].系统工程理论与实践,2002,(1):1-8.
- [3] Fare, R., Grosskopf, S., Lovell, C. A. K., Pasurka, C, Multilateral Productivity Comparisons when Some Output are Undesirable: a Non Parametric Approach [J]. The Review of Economics and Statistics, 1989, 71(1): 90-98.
- [4] R.D.Banker, A. Charnes, W.W.Cooper, Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis [J]. Management Science, 1984, (30): 1078-1092.

(责任编辑:高建平)

表 2 项目环境效率值

模型	项目 1	项目 2	项目3	项目 4	项目 5	项目 6	项目7	项目8	项目9	项目 10	项目 11	项目 12
P ₁	1.0000	1.0000	0.9338	1.0000	0.6605	0.7883	0.9007	1.0000	1.0000	0.7000	0.9397	0.9650
P_2	1.0000	1.0000	1.0000	1.0000	0.6775	1.0000	1.0000	1.0000	1.0000	0.7210	1.0000	1.0000
E ₃	1.0000	1.0000	0.9766	1.0000	0.9893	0.8812	1.0000	1.0000	1.0000	1.0000	1.0000	0.9856
E_2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Measuring Project Environmental Efficiency with Data Envelopment Analysis

Abstract: The concept of project environmental efficiency is showed up, the index system for evaluation project environmental efficiency is discussed, a mathematics model about project environmental efficiency evaluation was established when the environmental factors are freely disposable or weakly disposable, and a sample of this efficiency measures is given.

Key Words: environmental efficiency; DEA; evaluation method; linear programming