•研究论文•

芳香胺类化合物 N—H 键离解能的定量构效关系研究

乔澍谢昆付川祁俊生*

(重庆三峡学院化学与环境工程学院 重庆 404000)

摘要 基于启发式方法(HM)和 BP 人工神经网络方法建立了 5 个参数的定量结构性质关系(QSPR)模型,用于预测 80 个芳香胺类化合物 N—H 键的键离解能(BDE). 通过两种方法分别建立了线性和非线性的 QSPR 模型,相关系数 R 分别为 0.823 和 0.976. 通过对模型的稳定性和预测能力进行比较,发现 BP 人工神经网络方法能够更好地预测芳香胺类化合物 N—H 键的 BDE 值.

关键词 启发式方法; BP 人工神经网络; 定量结构性质关系; 键裂解能

Quantitative Structure-property Relationship Study on N—H Bond Dissociation Energy of Arylamines

Qiao, Shu Xie, Kun Fu, Chuan Qi, Junsheng*

(College of Chemistry & Environmental Engineering, Chongqing Three Gorges University, Chongqing 404000)

Abstract The bond dissociation energy (BDE) of 80 diverse arylamines was modeled using the five descriptors calculated from the molecular structure along with a quantitative structure-property relationship (QSPR) technique. The heuristic method (HM) and back-propagation neural network method were utilized to construct the linear and nonlinear prediction models, leading to the correlation coefficients R of 0.823 and 0.976. By comparison of the stability with prediction ability of the models, it was found that BP network was a good method for predicting the N—H BDE values of arylamines.

Keywords heuristic method; BP artificial neural network; quantitative structure-property relationship (QSPR); bond dissociation energy (BDE)

芳香胺类化合物由于具有一定的还原性质,常被作 为抗氧化剂使用.这类化合物中的N—H键离解能(bond dissociation energy 简写成 BDE)是影响化学键活性的一 个重要因素,实验通过动力学方法、光致电离质谱分析 技术和酸性/电子亲和性循环方法测定化合物在气相的 键解离能^[1].但是由于实验方法本身的缺陷及自由基寿 命较短等原因导致实验测定某些化合物的键解离能时 仍存在一定的困难.目前利用高水平的量子化学从头计 算方法可以获得多种化合物的键解离能^[2~5],但这种方 法的计算成本较高且不太适合于大分子体系,为此有必 要寻找一种经济方便并且能够精确预测大范围化合物 BDE 值的方法.

物质定量结构-性质/活性关系(QSPR/QSAR)在近 年来发展很快,并且在预测和评估实际物质的活性和性 质方面有着较为广泛的应用^[6-10].本文创新性地使用 QSPR 方法来预测一系列结构复杂的芳香胺类化合物 N—H 键的 BDE 值,通过基于回归分析的启发式方法 (HM)以及基于人工神经网络的反向传播(BP)网络方法 对 80 种芳香胺类化合物进行建模,结果表明 BP 人工神 经网络方法可以作为一种新的工具研究和预测化合物

^{*} E-mail: sanxiauqi@163.com; Tel.: 023-58960027

Received October 30, 2008; revised December 5, 2008; accepted January 21, 2009.

教育部"春晖计划"(No. Z 2007-1-630010)、重庆市教委科学技术研究基金(No. KJ081102)、重庆三峡学院引进人才科研基金(No. 2007-SXXYRC-008)资助项目.

的 BDE 值.

1 研究方法

1.1 数据的准备

本文中选取了 80 个芳香胺类化合物,包括苯胺、苯肼、萘胺、二苯胺等(结构见表 1),其 N—H 键 BDE 实验值全部摘自文献[11].随机选取其中的 60 个化合物作

为训练集,用于建立模型,其余20个化合物作为测试集 对模型的稳定性和预测能力进行检验.

使用 Hyperchem 画出所有 80 个化合物的结构并在 该程序下进行 AM1 半经验几何优化,将优化好的分子 导入 MOPAC 计算软件中进行计算.

1.2 描述符的计算

将MOPAC的输出结果文件转入CODESSA程序中,

表 1 80 个样本化合物的结构及编号 **Table 1** Structures and numbers of 80 compounds

No.	Structure	No	Structure	No.	Structure	No.	Structure
1	O CH ₃ NH ₂	21	Br NH ₂	41		61	
2	CF3	22	CI NH2 NO2	42	NH ₂	62	N N N N N N N N N N N N N N N N N N N
3		23		43	Br Br	63	O ₂ N H C
4	H ₃ C ₀ CH ₃	24	CI NH2	44		64	O ₂ N
5	H ₃ C CH ₃	25	F NH ₂	45		65	S HN-
6	NH ₂ CN	26	NH ₂	46	Br	66	NH ₂
7	NH ₂	27	O CH ₃ NH ₂	47	NC NH2	67	NH ₂
8	NH ₂ O ^{CH₃}	28	O ₂ N NH ₂	48	C N C O	68	H OH
9	CF ₃ NH ₂	29	H ₂ N	49		69	Н ОН
10	$F_{3}C$	30	NH ₂	50	Br Br	70	NO ₂ H NO ₂ N NO ₂

即可计算化合物的五类分子描述符:组成描述符(如分子中各类原子和化学键的种类、环的数量以及分子量等);拓扑描述符(如 Wiener 指数、Kier-Hall 指数等);几何描述符(如分子体积、分子表面积等);静电描述符(如最大或最小局部电荷等)和量子描述符(偶极矩、HOMO

以及 LOMO 的能量等).

1.3 启发式回归方法

CODESSA 软件中的启发式方法(HM, Heuristic Method)^[12],可对大量的分子描述符进行完全搜索,从

而建立最佳的线性回归模型.该方法的特点是对数据集 大小没有限制,计算速度很快,并且可以同时得到几个 最好的模型.启发式方法在程序计算过程中并不是把所 有的描述符列举并计算,而是通过测试共线性(例如任 意两个相关系数在 0.8 以上的参数不能出现在同一个模 型中),来减少运算量,从而快速地建立并输出模型.

1.4 BP 人工神经网络方法

BP (Back-Propagation)人工神经网络又称误差反向 传播训练算法, 是学者 Rumelhart 等^[13]提出用以解决多 层网络中隐含单元连接权的学习问题.本文中使用了三 层 BP 网络,以启发式回归模型中最好的五参数模型中 的五个描述符作为该 BP 网络的输入,以 80 个芳香胺类 化合物 N—H键 BDE 的值作为输出,建立人工神经网络 模型.

2 结果讨论

2.1 启发式回归模型

通过启发式方法(HM)建立了 5 个参数的线性回归 模型,见表 2. HA dependent HDCA-2 [Zefirov's PC]属于 静电描述符,表示由氢受体决定的氢给体电荷表面积. 其余 4 个参数均为量子描述符, min n-n repulsion for a H ─N bond 表示 H─N 键上原子核之间的排斥作用, min (>0.1) bond order of a N atom 表示 N 原子的最小键级, tot point-charge comp. of the molecular dipole 表示构成分 子偶极矩的总点电荷, min exchange energy for a H─N bond 表示 H─N 键的最小交换能. 这些参数都与 N─H 键密切相关.

HM方法得到N—H键BDE的计算值与实验值之间 相互关系参见图 1,预测结果列于表 3.训练集、测试集 和整个数据集的 RMS 分别为 2.17,6.15 和 4.45;相应的 相关系数 *R* 分别为 0.877, 0.659 和 0.823.

图 1 HM 方法得到 N—H 键 BDE 预测值 vs.实验值 Figure 1 Plot of predicted N—H BDE versus experimental values based on the HM method

表2 含5个参数的多元线性模型"

I able 2 Multilinear model contains 5 descriptors								
Descriptor	Coefficient	SD	Beta	t-Test				
intercept	-643.621	75.599	—	-8.514				
min n-n repulsion for a H—N bond	11.407	1.731	0.550	6.590				
$\min(>0.1)$ bond order of a N atom	-19.308	2.371	-0.716	-8.143				
HA dependent HDCA-2 [Zefirov's PC]	-263.963	57.271	-0.359	-4.609				
tot point-charge comp. of the molecular dipole	0.644	0.258	0.165	2.500				
min exchange energy for a H-N bond	24.179	8.196	0.281	2.950				
$a R^2 = 0.7037$; $s = 4.48$; $F = 33.26$; $n = 80$.								

表 3 HM 和 BP 方法得到的 N—H 键 BDE 值 Table 3 Predicted N—H BDE values by HM and BP methods

	Tuble of Theatered T(Thebbel values by Third and Dr Intentions								
No Compound name		$Exp./(kJ \cdot mol^{-1})$	$HM/(kJ \cdot mol^{-1})$	$Error/(kJ \cdot mol^{-1})$	$ANN/(kJ \cdot mol^{-1})$	$Error/(kJ \cdot mol^{-1})$			
1	1-(4-Aminophenyl)ethanone	381.16	386.06	4.90	384.59	3.43			
2	2-(Trifluoromethyl)benzenamine	389.11	386.48	-2.64	386.43	-2.68			
3	2,4,6-Trichlorobenzenamine	399.57	384.64	-14.94	386.27	-13.31			
4	2,4-Dimethoxybenzenamine	369.45	373.25	3.81	363.51	-5.94			
5	2,4-Dimethylbenzenamine	370.28	373.34	3.05	373.80	3.51			
6	2-Aminobenzonitrile	397.90	376.89	-21.00	399.40	1.51			
7	2-Chlorobenzenamine	389.53	385.68	-3.85	376.27	-13.31			
8	2-Methoxybenzenamine	373.21	369.49	-3.72	368.95	-4.27			
9	3-(Trifluoromethyl)benzenamine	392.46	389.95	-2.51	380.12	-12.34			
10	3-(Trifluoromethylsulfonyl)benzenamine	400.41	399.03	-1.38	398.53	-1.88			

					续表
No Compound name	$Exp./(kJ \cdot mol^{-1})$	$HM/(kJ \cdot mol^{-1})$	$Error/(kJ \cdot mol^{-1})$	$ANN/(kJ \cdot mol^{-1})$	$Error/(kJ \cdot mol^{-1})$
11 3,4-Dimethoxybenzenamine	372.38	376.56	4.18	375.05	2.68
12 3,4-Dimethylbenzenamine	373.21	375.85	2.64	374.47	1.26
13 3,5-Dimethoxybenzenamine	385.35	378.11	-7.24	384.51	-0.84
14 3,5-Dimethylbenzenamine	380.33	375.14	-5.19	374.30	-6.02
15 3-Aminobenzonitrile	393.71	384.01	-9.71	392.54	-1.17
16 3-Bromobenzenamine	389.95	379.61	-10.33	382.42	-7.53
17 3-Chlorobenzenamine	387.44	395.72	8.28	385.89	-1.55
18 3-Methoxybenzenamine	392.88	380.12	-12.76	382.92	-9.96
19 4-(Trifluoromethyl)benzenamine	387.44	395.01	7.57	386.35	-1.09
20 4-Aminobenzonitrile	386.18	388.11	1.92	389.49	3.31
21 4-Bromobenzenamine	385.76	381.96	-3.81	387.06	1.30
22 4-Chloro-2-nitrobenzenamine	408.36	384.97	-23.39	402.88	-5.48
23 4-Chloro-3-nitrobenzenamine	408.36	414.17	5.82	408.02	-0.33
24 4-Chlorobenzenamine	386.18	398.57	12.38	390.16	3.97
25 4-Fluorobenzenamine	388.69	400.37	11.67	389.82	1.13
26 4-Iiodobenzenamine	372.79	392.58	19.79	386.43	13.64
27 4-Methoxybenzenamine	367.36	376.27	8.91	372.54	5.19
28 4-Nitrobenzenamine	404.59	409.57	4.98	407.10	2.51
29 4-tert-Butylbenzenamine	374.47	376.02	1.55	376.02	1.55
30 Aniline	385.76	393.55	7.78	379.61	-6.15
31 Benzene-1,4-diamine	362.33	376.14	13.81	360.54	-1.80
32 o-Toluidine	361.50	390.99	29.50	380.33	18.83
33 <i>p</i> -Toluidine	384.51	381.92	-2.59	384.84	0.33
34 1-(4-Chlorophenyl)hydrazine	306.27	314.18	7.91	307.15	0.88
35 1,1-Dimethyl-3-phenylurea	387.86	391.29	3.43	380.41	-7.45
36 1,1-Dimethyl-3- <i>p</i> -tolylurea	384.09	389.82	5.73	386.10	2.01
37 1,2-Diphenylhydrazine	305.85	345.39	39.54	315.14	9.29
38 1-Phenylhydrazine	305.01	311.88	6.86	305.72	0.71
39 1-Phenylnaphthalen-2-amine	362.75	377.23	14.48	371.00	8.24
40 1-p-Tolylhydrazine	302.08	311.88	9.79	306.85	4.77
41 2,2,2-Trifluoro-N-phenyl-acetamide	416.73	422.33	5.61	416.06	-0.67
42 2-Phenylnaphthalen-1-amine	356.90	374.72	17.82	366.94	10.04
43 3-(4-Bromophenyl)-1,1-dimethylurea	391.20	391.87	0.67	389.07	-2.13
44 3-(4-Chlorophenyl)-1,1-dimethylurea	390.79	393.04	2.26	387.65	-3.14
45 3-(4-Iodophenyl)-1,1-dimethylurea	390.79	389.45	-1.34	392.25	1.46
46 4-Bromo-N-hydroxybenzenamine	302.92	302.25	-0.67	304.60	1.67
47 4-Hydrazinylbenzonitrile	325.93	301.46	-24.48	327.77	1.84
48 4-Methoxy-N-phenylbenzenamine	356.06	359.03	2.97	353.59	-2.47
49 4- <i>tert</i> -Butyl- <i>N</i> -(4- <i>tert</i> -butylphenyl)- naphthalen-1-amine	352.29	359.82	7.53	350.83	-1.46
50 Bis(4-bromophenyl)amine	364.01	362.08	-1.92	365.35	1.34
51 Bis(4-methoxyphenyl)amine	348.53	359.11	10.59	349.36	0.84
52 Bi(naphthalen-2-yl)amine	360.66	362.25	1.59	365.72	5.06
53 Diphenylamine	364.84	360.16	-4.69	360.83	-4.02
54 Dip-tolylamine	360.66	360.91	0.25	361.12	0.46
$55 N^{1}, N^{4}$ -Bis(4-isopropylphenyl)benzene-1,4	- 333.46	357.23	23.77	336.73	3.26
57 <i>N</i> -(4-(Trifluoromethyl)phenyl)acetamide	346.44	360.20	13.77	353.88	7.45

续表

No Compound name	Exp./(kJ•mol ⁻¹) H	$M/(kJ \cdot mol^{-1})$	Error/(kJ•mol ⁻¹) AN	$JN/(kJ \cdot mol^{-1})$ Er	$ror/(kJ \cdot mol^{-1})$
58 N-(4-Acetylphenyl)acetamide	418.40	395.43	-22.97	419.70	1.30
59 N-(4-Bromophenyl)acetamide	414.63	384.93	-29.71	404.93	-9.71
60 N-(4-Cyanophenyl)acetamide	424.68	395.01	-29.66	421.16	-3.51
61 N-(4-Chlorophenyl)acetamide	412.96	400.45	-12.51	411.37	-1.59
62 N-(4-Methoxyphenyl)benzenamine	353.13	331.96	-21.17	357.19	4.06
63 N-(4-Nitrophenyl)acetamide	426.77	391.79	-34.98	423.76	-3.01
64 N-(4-Nitrophenyl)benzenamine	380.74	371.08	-9.67	383.38	2.64
65 N-(Phenylthio)benzenamine	345.60	359.82	14.23	352.29	6.69
66 Naphthalen-1-amine	374.89	346.81	-28.07	373.67	-1.21
67 Naphthalen-2-amine	379.49	360.16	-19.33	363.51	-15.98
68 N-Hydroxy-4-methylbenzenamine	284.09	323.13	39.04	296.52	12.43
69 N-Hydroxybenzenamine	291.21	315.10	23.89	289.07	-2.13
70 N-Methoxy-2,4,6-trinitrobenzenamine	324.68	331.67	6.99	325.93	1.26
71 N-Methoxy-2,6-dinitrobenzenamine	315.47	305.47	-10.00	318.44	2.97
72 N-m-Tolylbenzenamine	366.52	332.08	-34.43	346.56	-19.96
73 N-Phenoxynaphthalen-2-amine	349.36	337.44	-11.92	350.49	1.13
74 N-Phenylacetamide	416.31	401.75	-14.56	413.88	-2.43
75 N'-Phenylacetohydrazide	328.86	420.62	91.76	345.39	16.53
76 N-Phenylbenzothioamide	377.40	355.77	-21.63	359.32	-18.07
77 N-Phenylnaphthalen-1-amine	352.29	359.78	7.49	358.78	6.49
78 N-Phenylnaphthalen-2-amine	353.97	345.72	-8.24	359.91	5.94
79 N-p-Tolylbenzenamine	363.59	374.18	10.59	377.31	13.72
80 N-p-Tolylacetamide	406.27	393.25	-13.01	387.44	-18.83

从以上图表可以看出, HM 方法所建立线性模型的 预测结果并不令人满意, 但是模型中的 5 个参数对于芳 香胺化合物 N—H 键 BDE 值的影响显著.

2.2 BP 人工神经网络模型

相同的描述符作为 BP 神经网络的输入, N—H 键 BDE 的实验值作为输出建立非线性模型, 进一步讨论芳香胺类分子结构与 N—H 键 BDE 间的关系.

BP 网络的隐含层节点数为 4, 得到的结果见表 3 和 图 2. 训练集、测试集和整个数据集的 RMS 分别为 0.874, 2.03 和 0.845; 相应的相关系数 R 分别为 0.978, 0.970 和 0.976. 通过比较可以看出, BP 神经网络的预测结果优于 HM 方法.

2.3 Hammett 常数与 N—H 键 BDE 的关系

Bosque 等^[14]曾使用 QSPR 方法对苯酚类化合物的 O —H 键裂解能进行预测,以 Hammett 常数为参数建立了 线性模型.为了进行比较,我们选择了 80 个芳香胺化合 物中 17 个一取代苯胺化合物,建立了其 N—H 键 BDE 与取代基 Hammet 常数间的相关模型,见图 3. 模型的相 关系数 *R*=0.80,表明取代基的 Hammett 常数与苯胺类 化合物的 N—H 键 BDE 值之间确实存在定量关系.但是

图 2 BP 方法得到 N—H 键 BDE 预测值 vs.实验值 Figure 2 Plot of predicted N—H BDE versus experimental values based on the BP neural networks

此模型的预测结果比起 BP 神经网络的结果稍逊一筹.

3 结论

本文首次提出了基于 HM 和 BP 人工神经网络方法 预测芳香胺类化合物的键解离能(BDE),并建立了线 性、非线性的 QSPR 模型,开辟了预测化合物 BDE 的新 思路.比较两种方法,结果表明非线性的 BP 人工神经

图 3 基于 Hammett 常数的 N—H 键 BDE 预测值 vs.实验值 Figure 3 Plot of predicted N—H BDE versus experimental values based on the Hammett constants

网络方法明显优于 HM 方法,可以作为一种新的研究和 预测 BDE 值的有利工具.

References

- 1 Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem. **1994**, *98*, 2744.
- 2 Song, K.-S.; Liu, L.; Guo, Q.-X. J. Org. Chem. 2003, 68, 262.
- 3 Wang, H.-J.; Fu, Y.; Liu, L.; Guo, Q.-X. Acta Chim. Sinica 2007, 65, 2039 (in Chinese).
 (王华静,傅尧,刘磊,郭庆祥,化学学报, 2007, 65, 2039.)
- 4 Wang, H.-J.; Fu, Y.; Wang, C.; Guo, Q.-X. Acta Chim. Sinica 2008, 66, 362 (in Chinese).
 (王华静, 傅尧, 王晨, 郭庆祥, 化学学报, 2008, 66, 362.)

- 5 Zheng, W.-R.; Fu, Y.; Wang, H.-J.; Guo, Q.-X. Chin. J. Org. Chem. 2008, 28, 459 (in Chinese).
 (郑文锐,傅尧,王华静,郭庆祥,有机化学, 2008, 28, 459.)
- 6 Chen, M.-L.; Wang, Z.-W.; Zhang, G.-X.; Wang, W.-D.; Wang, Z.-N. *Acta Chim. Sinica* 2007, 65, 1265 (in Chinese). (陈美玲, 王正武, 张革新, 王文德, 王仲妮, 化学学报, 2007, 65, 1265.)
- 7 Cao, C.-Z.; Liu, J.-L. *Acta Phys.-Chim. Sinica* **2007**, *23*, 955 (in Chinese).

(曹晨忠, 刘金玲, 物理化学学报, 2007, 23, 955.)

8 Zhang, Y.-T.; Li, L. *Chem. J. Chin. Univ.* **2008**, *29*, 374 (in Chinese).

(张运陶, 李莉, 高等学校化学学报, 2008, 29, 374.)

9 Cao, C.-Z.; Gao, S. *Acta Chim. Sinica* **2007**, *65*, 2898 (in Chinese).

(曹晨忠, 高硕, 化学学报, 2007, 65, 2898.)

- Mu, L.-L.; He, H.-M.; Feng, C.-J. Chin. J. Chem. 2007, 25, 743.
- Luo, Y.-R. Handbook of Chemical Bond Dissociation Energy, Science Press, Beijing, 2005, p. 231 (in Chinese).
 (罗渝然,化学键能数据手册,科学出版社,北京, 2005, p. 231.)
- 12 Katritzky, A. R.; Lobanov, V. S.; Karelson, M. CODESSA: Training Manual 1995, University of Florida, Gainesville, FL.
- 13 Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Nature 1986, 323, 533.
- 14 Bosque, R.; Sales, J. J. Chem. Inf. Comput. Sci. 2003, 43, 637.

(A0810303 Lu, Y.)