Pd 替代对 Ti-Zr-Ni 准晶合金结构的影响

黄火根 贾建平 李 嵘

(表面物理与化学国家重点实验室, 绵阳 621907)

摘要 针对 Ti₄₅Zr₃₈Ni₁₇ 与 Ti₄₀Zr₄₀Ni₂₀ 准晶合金用 X 射线衍射仪、透射电子显微镜与金相等手段研究了不同含量的 Pd 替代对其结构的影响. 在吸铸态下,前一个合金形成了二十面体准晶相 (IQC) 与少量配位数为 8 的 bcc β -(Ti, Zr) 相,用 2%Pd (原子分数,下同) 对合金的 Ti 或 Zr 组元替代,抑制了 β -(Ti, Zr) 相析出并促使配位数为 14 的 MgZn₂ 结构的简单 六方 C14 Laves 相生成. 而后一个合金中 IQC 相则与少量简单六方 α -(Ti, Zr) 共存,在 2%Pd 替代后 α -(Ti, Zr) 消失,生 成了单一的 IQC 相,但当 Pd 替代量增加到 6.7% 或 13.3% 时,配位数为 12 的 IQC 相急剧减少而 C14 相大量析出,并在 Ti₄₀Zr_{26.7}Ni₂₀Pd_{13.3} 合金中生成了单一 C14 相. 结果表明,添加中等尺寸的 Pd 原子有利于提高 Ti-Zr-Ni 合金的原子密堆 性,使合金趋于生成高配位数的 Laves 相,这种相的 Fermi 面与 Brillouin 区的相互作用不显著,偏离了电子相的稳定机制.

关键词 准晶, Ti-Zr-Ni 合金, Pd 添加, Laves 相 **中图法分类号** TG139.7 **文献标识码** A **文章编号** 0412-1961(2009)10-1272-05

EFFECT OF Pd SUBSTITUTION ON THE STRUCTURES OF Ti–Zr–Ni QUASICRYSTALLINE ALLOYS

HUANG Huogen, JIA Jianping, LI Rong

National Key Laboratory for Surface Physics and Chemistry, Mianyang 621907

Correspondent: HUANG Huogen, engineer, Tel: (0816)3620285, E-mail: hhgeng2002@sina.com

Supported by Science and Technology Development Foundation of China Academy of Engineering Physics (No.2007A07002)

Manuscript received 2009–03–18, in revised form 2009–08–19

ABSTRACT Quasicrystals are a kind of special crystals, combining aperiodicity with long-range translational order and displaying a strong potential of applications. However, the forming law of quasicrystals, especially icosahedral, which have drawn a lot of attention since the discovery of the first quasicrystal, are not clearly known. A general knowledge, derived from the past work, is that the quasicrystal belongs to Hume-Rothery phase with special electron concentration per atom (e/a), and furthermore needs meeting the topological packing of atoms. Based on this, certain criteria named by e/a-constant line, e/a-variant line and cluster line, et al., have been used to design novel quasicrystals, especially in ternary alloy systems. But, as indicated in the previous work, these rules would not work very well in pseudo-ternary or quaternary systems built on Ti-Zr-Ni quasicrystals with the addition of Co or Cu. In order to further specify the quasicrystal formation in multi-component systems, in the present study an investigation was conducted in an alloy system, based on $Ti_{45}Zr_{38}Ni_{17}$ and $Ti_{40}Zr_{40}Ni_{20}$ alloys with the addition of Pd, because Pd is the neighbourship of Ni in the element table like Co and Cu and has the atom size and e/a between Ti (or Zr) and Ni. Using XRD, TEM and OM, it is found that in the suction cast alloys, the icosahedral quasicrystal (IQC) phase is formed in the coexistence of a little bcc β -(Ti,Zr) in Ti₄₅Zr₃₈Ni₁₇ alloy and of a bit hexagonal α -(Ti,Zr) in Ti₄₀Zr₄₀Ni₂₀ alloy. And after 2%Pd (atomic fraction) substitution for Ti and Zr, a MgZn₂-type Laves C14 phase with coordination number of 14 is precipitated along with the disappearance of β -(Ti,Zr) with coordination number of 8 in the former alloy, while only a complete IQC phase with coordination number of 12 is yielded in the latter alloy. However, as the subtitution is increased up to 6.7% or 13.3%in $Ti_{40}Zr_{40}Ni_{20}$ alloy, the formation of IQC is prevented and the C14 phase occurs instead till a single

^{*} 中国工程物理研究院科学技术发展基金资助项目 No.2007A07002

收到初稿日期: 2009-03-18, 收到修改稿日期: 2009-08-19

作者简介: 黄火根, 男, 1980年生, 工程师, 研究生

C14 phase forms in $Ti_{40}Zr_{26.7}Ni_{20}Pd_{13.3}$ alloy. The results show that the Pd addition in Ti–Zr–Ni alloys would promote closer atom packing, being beneficial to the formation of Laves phase because of the weak interaction between Fermi surface and Brillouin zone in Hume-Rothery phase like IQC. **KEY WORDS** quasicrystal, Ti–Zr–Ni alloy, Pd addition, Laves phase

准晶是 20 世纪 80 年代发现的一种新型固态结构^[1], 其原子排列具有长程有序性,但却缺失周期性.这种结构 的材料具有低热导率、低摩擦系数、高密度的四面体间隙 位等特点,有望成为新一代的热障涂层、耐磨涂层与储氢 材料^[2].

已发现的准晶材料从维度上可分为一维、二维和三 维 3 类. 其中, 第 3 类准晶 (即二十面体准晶) 备受关 注,因为从实用的角度讲它应该具有更大的潜质.关于这 类准晶的形成规律,人们一直在关注.早期,周公度和郭可 信^[3]研究指出,二十面体准晶中原子骨架需满足 Euclid 的《几何原本》中正二十面体的几何密堆要求,即外层原 子与心部原子的半径比为 1.1084 的尺寸要求. Friedel 等^[4,5]则较早系统地阐述了准晶的 Hume-Rothery 规 律. 后来, Dong 等^[6] 和董闯^[7] 通过研究 Al-(Cu, Pd)-(Mn, Fe, Co, Cr) 等体系准晶的电子浓度特征,发现准 晶及其类似相刚好位于一条等电子浓度线上. 在此基础上, 通过研究 Al-Fe-Ni 与 Ti-Zr-Ni 体系准晶的形成规律还 发现了三元准晶的变电子浓度线特征^[8]. 随后, 通过引入 变电子浓度线的物理涵义,进一步给出了基于亚组元团簇 的三元准晶成分判据^[9],该判据表明了三元准晶的结构是 基于亚组元团簇发展形成的. 最近, 又提出了一个适用于 准晶、非晶与固溶体合金成分设计的团簇判据^[10,11].此 外, 王玲玲等^[12]也探讨了准晶合金的形成规律, 他们通 过建立基于 Miedema 参数的坐标系,系统比较了准晶、非 晶与晶体合金的形成区域,发现利用 Miedema 参数可有 效地区分三种合金的形成. 桂许春等 [13] 则通过采用键参 数函数和尺寸因数研究了第 IV 过渡族金属基准晶的形成 规律,发现用基于基体元素的相关参数建立的抛物线方程 能区分准晶形成区与非形成区,其准确率达到 90% 以上.

总之,准晶形成规律主要归结为两点 —— 拓扑密堆 性要求与电子浓度要求,这可用于指导二元及三元准晶的 成分设计,但是在开发新准晶合金尤其是四元以上的准晶 时仅依赖它们还不够.例如,前期研究^[14,15]表明,尽管 Ni 与 Co 在元素周期表中毗邻,具有相同的原子半径与 相近的电子壳层结构,但用 Co 逐步替代 Ti-Zr-Ni 准 晶中的 Ni 时,Ti-Zr-(Ni, Co) 准晶逐渐向其他晶体相 转变. 同样,用与 Ni 相邻的 Cu 按照等电子浓度与等 原子尺寸的方法对 Ti-Zr-Ni 准晶进行合金化时,也难以 保证准晶相必然形成,而得到了准晶的一系列等电子浓度 相^[9,16,17].因此,需进一步认识准晶的形成规律,包括 准晶由三元过渡到四元的形成规律.Pd 与 Ni 也毗邻, 其原子尺寸位于 Ti(或 Zr) 和 Ni 之间,而且其电子浓度 (+1)^[18] 也居于 Ti(+1.5) 或 Zr(+1.5) 和 Ni(0)^[19] 之间, 因而 Ti-Zr-Ni 中添加 Pd 可同时调节该体系的原子密堆 性与平均电子浓度,便于认识三元向四元转变时准晶的形 成特点.为此,本文针对 Ti-Zr-Ni 准晶系研究 Pd 的替 代合金化对其准晶结构的影响.

1 实验方法

实验用 Ti-Zr-Ni 准晶合金选用了 Ti45Zr38Ni17 与 Ti₄₀Zr₄₀Ni₂₀ 两种成分, Pd 的替代量 (原子分数) 选用 2%, 6.7% 和 13.3% 三种. 原料 Ti, Zr, Ni 和 Pd 金属的 纯度分别为 99.9%, 99.95%, 99.99% 和分析纯. 为了保 证合金成分的精度, 配料时每个组元的成分偏差控制±0.5 mg. 采用 WK-II 型非自耗电弧炉制备样品, 先抽真空至 10⁻³ Pa 后充入高纯 Ar 气, 然后对合金进行熔炼, 为保证 成分均匀, 熔炼三次以上得到钮扣状母锭, 最后再将母锭 熔化并选用直径为 5 mm 的吸铸模具进行吸铸获得直径 为5mm的圆柱状吸铸样品,整个工作过程中的电极电流 为 100—150 mA. 利用 Cu K_α 射线的 Y-2000 型 X 射 线衍射仪 (XRD) 对样品的相结构进行测定, 其中二十面 体准晶相标定采用 Cahn 法则^[20].由于该衍射仪的角度 分辨率为 0.01° , 则 sin θ (θ 为衍射角) 的取值应保留到小 数点后 4 位,因而本文计算不同相的晶格常数时也保留到 小数点后 4 位. 利用金相的方法对 Ti₄₀Zr_{26.7}Ni₂₀Pd_{13.3} 合金进行组织分析,金相腐蚀剂采用 HNO3 6.5 mL, HF 13 mL 和 H₂O 75 mL 的配方, 腐蚀方法采用擦拭. 采用 Tecnai F20 场发射透射电子显微镜对 Ti45Zr38Ni17 吸 铸合金的组织结构进行表征.

2 实验结果与讨论

2.1 晶体结构

图 1 给出了 Ti₄₅Zr₃₈Ni₁₇ 与 Ti₄₀Zr₄₀Ni₂₀ 两个合 金母锭的 XRD 谱,由于形成母锭的冷却速率较小 (10²— 10³ K/s),二者都形成了简单六方 MgZn₂ 结构的 C14 Laves 相,晶格常数分别为 a=0.5230 nm, c=0.8538 nm 与 a=0.5240 nm, c=0.8563 nm,通过对比可以看出后 者的六方晶格略大于前者,这主要由于前者的 Zr 含量小 于后者. 在吸铸条件下 (冷却速率达到 10⁴— 10⁵ K/s), Ti₄₅Zr₃₈Ni₁₇ 合金除了生成少量的 bcc 结构 β -(Ti, Zr) 相外,主要形成了二十面体准晶相 (IQC,采用 Cahn 指 数 ^[20] 标定),如图 2 所示.图 3 给出了准晶相的明场像 与选区电子衍射谱.可以看出,在明场像的右下方 (图 3a) 展示了类似于 10 瓣花瓣状的组织特征,其中上面 5 瓣颜 色较深,下面 5 瓣颜色较浅.选区电子衍射则得到了二十

- **图 3** Ti₄₅Zr₃₈Ni₁₇ 合金中二十面体准晶相的明场像及其选区 电子衍射谱
- - (c) 3-fold (d) pseudo-2 fold

面体准晶所特有的五重、三重与伪二重轴 (图 3b—d) 的 衍射谱,其衍射斑点都很明锐. 2%Pd 对替代该合金的 Ni 组元, β 相的 110 衍射峰更为显著,而 Pd 替代 (Ti, Zr) 则抑制了 β 相的生长,促使了 MgZn₂ 结构的 C14 Laves 相析出,如图 2 所示.对比 Pd 替代前后的准晶衍射峰 (如 52/84 的衍射峰) 角度,可以看出 Pd 替代的三种合金中 准晶峰都向低角度发生了漂移,意味着准晶格都有变大的 趋势.

图 4 给出了吸铸条件下 Ti₄₀Zr₄₀Ni₂₀ 合金由 2%Pd 替代前后的 XRD 谱.可以看出,替代前合金几乎形成了 单一的二十面体准晶相 (IQC),其中的六方结构 α -Ti 相 很少,而用 2%Pd 替代该合金的每个组元都完全抑制了 α -Ti 相形成,得到了纯准晶相.不过,这些纯准晶的衍射 峰相对初始 Ti₄₀Zr₄₀Ni₂₀ 合金中 IQC 相基本上看不出 明显的漂移.如图 5 所示,当 6.7%Pd 替代 Ti 或 Zr 时, C14 相已经析出,而且替代 Zr 时 C14 相析出更明显.进 一步替代 Ti 或 Zr 至 13.3%Pd,合金中的准晶相急剧减 少,析出了大量的 C14 相,且在 Ti₄₀Zr_{26.7}Ni₂₀Pd_{13.3} 合 金中生成了单一的 C14 相,其晶格常数为 a=0.5225 nm,

Fig.4 XRD patterns of $Ti_{40}Zr_{40}Ni_{20}$ before and after 2%Pd substitution for Ti, Zr and Ni

- 图 5 Ti₄₀Zr₄₀Ni₂₀ 合金中 Ti 或 Zr 组元分别在 6.7%Pd 与 13.3%Pd 替代后的 XRD 谱
- Fig.5 XRD patterns of $Ti_{40}Zr_{40}Ni_{20}$ after 6.7% and 13.3% Pd substitutions for Ti or Zr, respectively

c=0.8536 nm. 图 6 给出了 Ti₄₀Zr_{26.7}Ni₂₀Pd_{13.3} 合金 的金相图,可以看出该合金基本形成了均匀的单相组织. 对比 Ti₄₀Zr_{26.7}Ni₂₀Pd_{13.3} 吸铸合金与 Ti₄₅Zr₃₈Ni₁₇ 和 Ti₄₀Zr₄₀Ni₂₀ 母锭中 C14 相的晶格常数,可以看出前者 比后两者略小,这与前者的 Zr 量减少有关.

在吸铸态下 Ti45Zr38Ni17 合金得到了少量 bcc 结构 的 β -(Ti,Zr) 相,由 200 衍射峰对应的晶面间距 d 值算出 其晶格常数 a=0.3405 nm. β 相是 β -Ti 与 β -Zr 的置换 固溶体结构,通过查找粉末晶体衍射数据卡 (PDF) 得知 β -Ti 和 β -Zr 的晶格常数分别为 0.3306 和 0.3545 nm (其 PDF 卡号分别为 44-1288 和 34-0657), 由此可推 出 β 相的晶胞中 Ti 与 Zr 原子数比接近 1:1. 每个 bcc 单胞含有 2 个原子, 那么假定 β 相有两种 CsCl 结构的 单胞, 如图 7 所示, 一种是 bcc 晶格的心部由 Zr 原子占 据,顶点由 Ti 原子占据 (图 7a);另一种则恰好相反 (图 7b). 这两种单胞的配位数都为 8, 且密堆方向为 (111) 晶 向,通过计算可知它们的晶格常数都为 0.3533 nm, 这里 用到的 Ti 和 Zr 的原子半径取第 3 类自洽半径^[21], 分别 为 0.146 和 0.160 nm. 两种堆垛方式会形成直径分别为 0.2077和 0.1797 nm 的八面体间隙. 由于 β 相属于高温 相,晶格振动更加强烈,原子的振幅会更大,因而高温时上 述两种晶胞的实际八面体间隙更大. 由于 Pd 的第3类自 治半径等于 0.138 nm^[21], 接近八面体间隙的尺寸, 如果 使上述两种晶格发生少量畸变, Pd 原子完全有可能进入 它们的空隙处,这就相当于在 bcc 晶格的 6 个 (100) 面 都可能分布 1 个 Pd 原子, 从而提高每个单胞的配位数达

图 6 Ti₄₀Zr_{26.7}Ni₂₀Pd_{13.3} 合金的金相形貌 **Fig.6** Optical metallograph of Ti₄₀Zr_{26.7}Ni₂₀Pd_{13.3} alloy

到 14, 这与 Laves C14 相的配位数 ^[22] 恰好一致. 这意 味着, Pd 替代 Ti₄₅Zr₃₈Ni₁₇ 合金的 Ti 或 Zr 原子使得 β 相消失而 C14 相出现的原因, 是 Pd 增加了高温时原 子的堆垛密堆程度.

尽管少量 Pd 替代 Ti₄₀Zr₄₀Ni₂₀ 合金的组元,并没 有观察到 C14 相,但仍然抑制了 α 相的形成,而且从图 4 还可以看出,准晶的最强衍射峰由 18/29 向 20/32 发生 了转变,这意味着 Pd 的加入对 Ti₄₀Zr₄₀Ni₂₀ 合金结构 产生了微调.随着 Pd 替代量的增加,C14 相也随即形成, 甚至在 Ti₄₀Zr_{26.7}Ni₂₀Pd_{13.3} 合金生成了单一的 C14 相 固体,可以看出 C14 相抑制了 IQC 相的形成.因为 IQC 相的配位数是 12,低于 C14 相的配位数,这进一步说明 Pd 加入后析出合金相的密堆程度得到提高.

需要指明的是, Ti₄₅Zr₃₈Ni₁₇ 与 Ti₄₀Zr₄₀Ni₂₀ 合金 本身都有形成 C14 相的趋势, 如图 1 中两个合金母锭的 相结构. 相对吸铸条件, 母锭制备时冷却速率小很多, 可 近似看作平衡凝固. 这意味着这两种合金在平衡凝固时趋 向于高配位数的原子结构, 从冶金角度讲这种结构可能会 获得更高的热力学自由能驱动力. 而 Pd 加入后使得这两 种合金吸铸时得到了不同比例的 C14 相 (见图 2 和 5), 也反映出了 Pd 原子在原子堆垛时起到的作用.

2.2 电子结构

前面提到,准晶属于电子相,其形成及稳定性应服从 Hume-Rothery 规则^[7],即合金相的 Fermi 面与 Brillouin 区能发生交互作用 (简称 FS-BZ 效应), 从而导致 Fermi 能级处产生大的 (伪) 能隙, 使合金相的整体能量降 低变得稳定. 根据近自由电子模型理论, 电子相中的 FS-BZ 效应可表示为: $K_p \approx 2K_F$ (其中, K_p 为与 Fermi 面 发生交互作用的 Brillouin 区 (定义为主 Brillouin 区) 的 宽度; K_F 为 Fermi 球半径). Friedel^[5] 的研究表明, 电子 相的主 Brillouin 区与 X 射线衍射和电子衍射中的强衍 射峰存在一定的对应关系. 其宽度 K_p 可根据衍射实验并 通过 $K_{\rm p} = 4\pi \sin \theta_{\rm p} / \lambda$ (其中, $\theta_{\rm p}$ 为 X 射线衍射谱中强 衍射峰对应的衍射角, λ 为入射 X 射线波长) 关系得出. 准晶相的 K_F 根据其 18/29 和 20/32 强衍射峰得出, 而 C14 相的 K_p 值则由其 X 射线衍射谱中的 103 衍射峰 决定. 另一方面, 电子相的 KF 值可依据近自由电子理论 计算得到. 通常 Fermi 球半径 K_F 与合金的体电子浓度 $N_{\rm v}$ 间存在近似关系: $K_{\rm F} = (3\pi^2 N_{\rm v})^{1/3}$, 此处体电子浓 度 $N_v = (e/a) \cdot (N_0 \rho/M)$ (其中, N_0 为 Avogadro 常数; ρ 为密度; M 为合金的原子量). 本工作设计的准晶和 C14 单相合金的 K_p 值列于表 1 中, 这里 Ti, Zr, Ni 和 Pd 的价电子贡献分别取 +1.5, +1.5, 0 和 +1^[19]. 从中可看 出,名义电子浓度 $e/a \approx 1.2$ 的单相准晶合金,其 $2K_F$ 计 算值与由 18/29 衍射峰确定的实验值 K_p 非常接近 (都 在 25 nm⁻¹ 附近), 满足了电子相的 Hume-Rothery 规 则 $(K_{\rm p} \approx 2K_{\rm F})$,因此,验证了四元准晶也是电子相.而

表1 Ti-Zr-Ni 与 Ti-Zr-Ni-Pd 单相合金的成分、相结构、密度及电子结构参数

 Table 1
 Compositions, phase structures, densities and eletronic structure parameters for single phase Ti–Zr–Ni and Ti–Zr–Ni–Pd alloys

Alloy	Phase	ρ , g·cm ⁻³	$M, \operatorname{g-mol}^{-1}$	e/a	$N_{\rm v},{\rm nm}^{-3}$	Index	$K_{\rm p},{\rm nm}^{-1}$	$2K_{\rm F},{\rm nm}^{-1}$
$\mathrm{Ti}_{40}\mathrm{Zr}_{40}\mathrm{Ni}_{20}$	IQC	6.160	67.38	1.20	66.04	18/29	25.70	25.01
						20/32	26.89	
	C14	6.179	67.38	1.20	66.25	103	26.03	25.04
$\mathrm{Ti}_{38}\mathrm{Zr}_{40}\mathrm{Ni}_{20}\mathrm{Pd}_2$	IQC	6.389	68.56	1.19	65.64	18/29	25.79	25.10
						20/32	26.94	
$\mathrm{Ti}_{40}\mathrm{Zr}_{38}\mathrm{Ni}_{20}\mathrm{Pd}_2$	IQC	6.314	67.68	1.19	65.71	18/29	25.68	24.11
						20/32	27.07	
$\mathrm{Ti}_{40}\mathrm{Zr}_{40}\mathrm{Ni}_{18}\mathrm{Pd}_2$	IQC	6.232	68.33	1.22	65.88	18/29	25.50	25.13
						20/32	26.93	
$\rm Ti_{40}Zr_{26.7}Ni_{20}Pd_{13.3}$	C14	6.783	69.40	1.13	58.87	103	26.08	25.09

C14-Ti₄₀Zr₄₀Ni₂₀ 与 C14-Ti₄₀Zr_{26.7}Ni₂₀Pd_{13.3} 两个 单相合金虽然成分相差较大,但它们的 $K_{\rm p}$ 与 $2K_{\rm F}$ 都相 近,前者约为 26 nm⁻¹,后者约为 25 nm⁻¹.由此可见, 高配位数的 C14 相的稳定机制偏离 Hume-Rothery 规 则,与准晶相不同.

3 结论

(1) 对于吸铸态 Ti₄₅Zr₃₈Ni₁₇ 和 Ti₄₀Zr₄₀Ni₂₀ 合
金, 少量 Pd (如 2%) 替代 Ti 或 Zr 有利于抑制配位数为
8 的 β-(Ti, Zr) 相的形成, 而促使配位数为 14 的 C14
Laves 拓扑密堆相析出.

(2) 增大 Pd 对 Ti 或 Zr 的替代量 (6.7% 或 13.3%) 后, 配位数为 12 的准晶相向 C14 相发生了转变,揭示出 尺寸中等的 Pd 的添加有利于提高 Ti-Zr-Ni 准晶合金中 原子的密堆性, 使之趋向于得到高配位的拓扑密堆相.

(3) 对比 Ti-Zr-Ni 或 Ti-Zr-Ni-Pd 的单相准晶与 C14 相合金的电子结构特征,可以看出 C14 合金相的稳 定机制由准晶相的 Hume-Rothery 规则向 Laves 相的几 何拓扑密堆规则发生了转变.

参考文献

- Shechtman D, Blech I, Gratias D. Phys Rev Lett, 1984; 53: 1951
- [2] Dubois J M. Mater Sci Eng, 2000; A294–296: 4
- [3] Zhou G D, Guo K X. Diffraction of Crystal and Quasicrystal. Beijing: Peking University Press, 1999: 211
 (周公度,郭可信. 晶体和准晶体的衍射. 北京: 北京大学出版社, 1999: 211)
- [4] Friedel J, Denoyer F. C R Acad Sci, 1987; 305B: 171
- [5] Friedel J. Helv Phys Acta, 1988; 61: 538
- [6] Dong C, Perrot A, Dubois J M, Belin–Ferre E. Mater Sci Forum, 1994; 150–151: 403
- [7] Dong C. Quasicrystalline Materials. Beijing: National Defence Industry Press, 1998: 45
 (董 闯. 准晶材料. 北京: 国防工业出版社, 1998: 45)
- [8] Qiang J B, Wang Y M, Wang D H, Kramer M, Thiel P, Dong C. J Non-Cryst Solids, 2004; 334: 223
- [9] Huang H G. Master Degree Dissertation, Dalian Univer-

sity of Technology, 2005

(黄火根. 大连理工大学硕士学位论文, 2005)

- [10] Dong C, Chen W R, Wang Y G, Qiang J B, Wang Q, Lei Y, Calvo–Dahlborg M, Dubois J M. J Non–Cryst Solids, 2007; 353: 3405
- [11] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H. J Phys, 2007; 40D: R273
- [12] Wang L L, Huang W Q, Deng H Q, Li X F, Tang L M, Zhao L H. *Rare Met Mater Eng*, 2003; 32: 889
 (王玲玲, 黄维清, 邓辉球, 李小凡, 唐黎明, 赵立华. 稀有金属材 料与工程, 2003; 32: 889)
- [13] Gui X C, Liao S Z, Xie H W, Zhang B W. Rare Met Mater Eng, 2006; 35: 1080
 (桂许春,廖树帜,谢浩文,张邦维. 稀有金属材料与工程, 2006; 35: 1080)
- [14] Huang H G, Qiang J B, Jiang N, Dong C, Li T. Trans Mater Heat Treat, 2005; 26: 6
 (黄火根, 羌建兵, 姜 楠, 董 闯, 李 铁. 材料热处理学报, 2005; 26: 6)
- [15] Huang H G, Qiang J B, Bai B, Dong P, Zhang P C. J Non-Cryst Solids, 2007; 353: 1670
- [16] Qiang J B, Wang Q, Wang Y M, Huang H, Wu J, Dong C. *Mater Sci Eng*, 2007; A449: 565
- [17] Qiang J B, Huang H G, Wang Q, Xia J H, Dong C. Acta Metall Sin, 2006; 42: 561
 (羌建兵, 黄火根, 王 清, 夏俊海, 董 闯. 金属学报, 2006; 42: 561)
- [18] Mayou D, Cyroy–Lackmann F, Laissaradiere G T, Klein T. J Non–Cryst Solids, 1993; 153–154: 412
- [19] Wang Y M, Qiang J B, Wong C H, Shek C H, Dong C. J Mater Res, 2003; 18: 642
- [20] Cahn J W, Shechtman D, Gratias D. J Mater Res, 1986; 1: 13
- [21] Charles K ed., Trans. by Xiang J Z, Wu X H. Introduction to Solid State Physics. Beijing: Chemical Industry Press, 2006: 55 (Charles K 著, 项金钟, 吴兴惠译. 固体物理导论. 北京: 化学

工业出版社, 2006: 55) [22] Hou Z S, Lu G X. Principles of Metallography. Shanghai:

Shanghai Science and Technology Press, 1990: 59 (侯增寿, 卢光熙. 金属学原理. 上海: 上海科学技术出版社, 1990: 59)