•研究论文•

La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-a}的中温质子导电性及其在常压合成氨中的应用

陈 成 王文宝 马桂林*

(苏州大学材料与化学化工学部 江苏省有机合成重点实验室 苏州 215123)

摘要 采用水热沉淀法制备了 $La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\alpha}$ (M=Ca²⁺, Sr²⁺, Ba²⁺)陶瓷样品的前驱体, 沉淀剂来自尿素在水热 条件下的水解产物. 前驱体经煅烧和烧结后得到陶瓷样品. XRD 显示样品具有单一的斜方晶 $LaGaO_3$ 钙钛矿结构. 同位 素效应和氢的电化学透过(氢泵)实验证明陶瓷样品具有质子导电性. 用 AC 阻抗谱法测定了样品在 300~600 °C、氢气 气氛中的质子电导率, 其大小取决于 La 位掺杂的碱土金属离子: σ (M=Sr²⁺)> σ (M=Ba²⁺)> σ (M=Ca²⁺). 以 $La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\alpha}$ 为固体电解质进行了常压合成氨,最佳合成温度为 520 °C. 当施加的电流密度为 1 mA•cm⁻²、合 成温度为 520 °C时,氨产率分别为: 1.63×10⁻⁹ mol•s⁻¹•cm⁻² (M=Ca²⁺), 2.53×10⁻⁹ mol•s⁻¹•cm⁻² (M=Sr²⁺)和 2.04× 10⁻⁹ mol•s⁻¹•cm⁻² (M=Ba²⁺).

关键词 LaGaO3; 水热沉淀法; 质子导电性; 常压合成氨

Proton Conduction in $La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\alpha}$ at Intermediate Temperature and Its Application to Synthesis of Ammonia at Atmospheric Pressure

Chen, Cheng Wang, Wenbao Ma, Guilin*

(Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Suzhou University, Suzhou 215123)

Abstract The precursors of La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-a} (M=Ca²⁺, Sr²⁺, Ba²⁺) were prepared by a hydrothermal precipitation method in which the precipitant was from hydrolysis of urea (CO(NH₂)₂) in water solution under hydrothermal conditions. The ceramic samples were obtained by calcining and sintering the precursors. XRD showed the ceramic samples to be of a single orthorhombic phase of LaGaO₃ perovskite structure. The proton conduction in La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-a} was confirmed by an isotope effect and a hydrogen pumping experiment. Protonic conductivity was measured by an AC impedance spectroscopy method from 300 to 600 °C in a hydrogen atmosphere, which depended on the alkaline earth cations doped for the La site and increased in the following order: $\sigma(M=Sr^{2+})>\sigma(M=Ba^{2+})>\sigma(M=Ca^{2+})$. Ammonia synthesis at atmospheric pressure was carried out using La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-a} as electrolyte, and it was found that the optimum temperature for ammonia synthesis in this study was 520 °C. The rate of NH₃ formation was 1.63×10^{-9} mol·s⁻¹·cm⁻² (M=Ca²⁺), 2.53×10^{-9} mol·s⁻¹·cm⁻² (M=Sr²⁺) and 2.04×10^{-9} mol·s⁻¹·cm⁻² (M=Ba²⁺) at 520 °C when a current density of 1 mA·cm⁻² was imposed on the cell, respectively.

Keywords LaGaO₃; hydrothermal precipitation; proton conduction; ammonia synthesis

^{*} E-mail: 32uumagl@suda.edu.cn Received August 16, 2008; revised October 31, 2008; accepted December 9, 2008. 国家自然科学基金(No. 20771079)资助项目.

SrO和MgO掺杂的LaGaO3基固体电解质在中温范 围内具有较高的氧离子电导率, 被认为是目前最有希望 的中温固体氧化物燃料电池的候选电解质之一,因而大 多数工作集中在对其氧离子导电性的研究[1.2],而其质 子导电性长期以来被人们所忽视, 仅 Goodenough 等^[3] 曾经报道具有立方钙钛矿结构的 $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\alpha}$ 在干燥空气、普通空气和湿润空气中的电导率几乎大小 相同,因此他得出结论 La09Sr01Ga08Mg02O3-a不存在质 子导电性. 然而最近我们发现 La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-a}在 高温(600~1000 ℃)下氢气气氛中几乎是纯的质子导 体,在湿润的空气气氛中是质子和氧离子的混合导体, 在干燥的氧气气氛中是纯的氧离子导体[4~6].此外,我 们还研究了在Ga位掺杂与Mg²⁺的离子半径几乎相同但 离子构型不同的 Zn²⁺的 La(Sr)Ga(Zn)O3 陶瓷的质子导 电性,在相同条件下其质子电导率低于La(Sr)Ga(Mg)O3 的质子电导率[7].

LaGaO₃ 基陶瓷的传统合成方法为固相反应法,该 方法较简单,但制得的陶瓷样品往往含有杂相,难以获 得单一 LaGaO₃ 钙钛矿结构.与固相反应法相比,液相 反应法制备的粉体具有较高的组分均一性、较高的纯度 和较低的烧结温度等优点,因此一些液相反应法被用来 合成 LaGaO₃ 基陶瓷,如溶胶-凝胶法^[8]、甘氨酸-硝酸盐 燃烧法^[9]、Pechini法^[10]和微乳液法^[6,11,12]等.本文采用水 热沉淀法^[13]制备了 La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-α}陶瓷的纳米 共沉淀前驱体,在较低温度下烧结得到了单一的 LaGaO₃ 钙钛矿结构的陶瓷样品.采用多种电化学方法 研究了该系列陶瓷样品中温(300~600 ℃)质子导电性, 并应用于常压合成氨,讨论了不同掺杂离子对陶瓷质子 导电性及氨产率的影响.

1 实验部分

1.1 样品的制备

起始原料为 La(NO₃)₃, M(NO₃)₂ (M=Ca²⁺, Sr²⁺, Ba²⁺), Ga(NO₃)₃, Mg(NO₃)₂ 和尿素,均为分析纯.按 La_{0.9}M_{0.1}-Ga_{0.8}Mg_{0.2}O_{3-α} 的化学计量比分别称取相应的硝酸盐溶 于去离子水,制得硝酸盐溶液后与尿素混合,尿素与阳 离子的物质的量之比为 10:1.将溶液移入聚四氟乙烯 容器中并将其密封在不锈钢反应釜中,将此反应釜置于 电炉中在 180 ℃下水热反应 6 h 后冷却到室温,过滤, 将凝胶状沉淀用去离子水和无水乙醇多次洗涤后置于 真空干燥箱中 120 ℃下干燥 24 h.用不锈钢模具将前驱 体粉末压成圆柱体,置于控温电炉在空气气氛中 900 ℃下煅烧 8 h.将所得氧化物球磨 2 h,烘干,过筛.用 2×10⁸ Pa 等静水压力压制成直径为 20 mm,厚为 3 mm 的圆形薄片, 在 1410 ℃下烧结 10 h, 得所需的陶瓷样 品.

1.2 样品的表征

样品前驱体粉末的 DSC-TGA 曲线测定在 2960 SDT V3.0F 热分析仪上进行, 测定温度范围为 0~900 ℃, 气氛为空气, 扫描速率为 20 ℃•min⁻¹. 用日本理学 D/MAX-IIIC型X射线衍射仪测定陶瓷样品的结构, X射 线源为 Cu Kα (λ=0.15405 nm), 步长和扫描速率分别设 定为 0.0167°和 2.00 (°)•min⁻¹, 扫描范围为 20°~80°.

1.3 电性能测试

用金刚砂纸将陶瓷样品打磨成厚度为 0.6 mm 的圆 形薄片,薄片两面均涂布面积为 0.5 cm²的 Pt 浆料,以 铂网为集电体.分别将 Pyrex 玻璃密封圈置于氧化铝陶 瓷管与圆形陶瓷样品薄片间,将此组合体置于自制测试 电炉中,在 900 ℃下保温 1 h,使玻璃密封圈与氧化铝 陶瓷管及陶瓷样品薄片牢固粘结,并检验气密性合格后 测量样品在 300~600 ℃时的电化学性能.

用电化学工作站(Zahner IM6EX)测量样品的交流阻抗谱,由交流阻抗谱在高频范围的半圆与实轴的切距测得样品的晶粒电阻 R,由样品薄片的厚度 L,Pt 电极的面积 S 根据式 $\sigma = L/(R \cdot S)$ 计算得到样品的晶粒总电导率 σ .测量频率范围为 1 Hz~3 MHz,振幅为 20 mV,测量气氛为干燥的 H₂、20 ℃水蒸气饱和的 Ar 和 20 ℃重水蒸气饱和的 Ar.

为了评价氢离子对导电性的贡献,根据文献方法^[14]测量了如下氢浓差电池电动势:

$H_2, Pt \mid La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\alpha} \mid Pt, H_2-Ar$

分别向负、正极气室通入干燥的高纯氢气(99.999%) 和干燥的高纯氢气-高纯氩气(99.999%)的混合气,用电 位差计测定该浓差电池电动势 *E*obs. 在这里我们使用的 是干燥的高纯 H₂和干燥的高纯 Ar,可以近似地认为两 气室中残存的水蒸气分压是一样的,从 EMF 求得的迁 移数为离子迁移数 *t*,可由如下方程求得:

$$t_{\rm i} = \frac{2F}{RT} \frac{E_{\rm obs}}{\ln(p({\rm II})/p({\rm I}))} \tag{1}$$

p(II)和 p(I)分别是阳极室和阴极室的氢分压.

采用如下所示的氢的电化学透过(氢泵)可直接从实验上证实陶瓷样品是否具有质子导电性^[4]:

(阳极) H₂, Pt | La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-α} | Pt, Ar (阴极)

分别向阳极和阴极气室通入高纯氢气(*p*=10⁵ Pa)和干燥的高纯氩气,对该电解池施加一直流电,用氢传感器(Shanghai Gainforce SG33A)测定阴极室氢气-氩气混合

气中氢的浓度,根据文献[4]中的公式计算出氢的电化 学透过速率,由电化学氢透过速率的实验值与理论值之 比求得质子迁移数.本文中干燥的氢气和氩气的制法是 将氢气和氩气分别通过冷阱装置(以液氮蒸气为致冷剂, -115 ℃)去除水分.

1.4 常压合成氨

常压合成氨在如下所示的电解池中进行:

H₂, Ag-Pd (20%)|La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-a}|Ag-Pd (20%), N₂

Ag-Pd (Pd 质量分数为 20%)电极面积为 0.78 cm². 阳极室通入高纯氢气, 阴极室通入干燥的高纯氮气 (99.999%, 以液氮蒸气为致冷剂, -115 ℃), 流速均为 30 mL•min⁻¹. 用恒电流仪向该电解池施加直流电流, 用 10 mL pH=3.35 的稀硫酸吸收阴极室混合气体中的 氨气, 并以奈斯勒试剂为显色剂, 用分光光度法测定被 稀硫酸吸收的氨的量, 进一步计算氨产率.

2 结果与讨论

2.1 DSC-TGA

La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-α}陶瓷样品前驱体粉末的 DSC-TGA 曲线如图 1 所示. 实线为 TGA 曲线, 虚线为 DSC 曲线. 在 0~500 ℃范围样品失重 14.4%, 是来自 以下两部分的失重: (1)在 DSC 曲线上的 79, 202 ℃处存 在的吸热峰,可能对应于前驱体粉末中物理吸附水分的 挥发; (2)在 DSC 曲线上的 442 和 490 ℃处的吸热峰, 可 能对应于残存在前驱体粉末中的硝酸铵的热分解以及 化学吸附水的脱除. 在 500~770 ℃范围样品失重 5.6%, DSC 曲线上的 755 ℃处的吸热峰, 可能对应着碳 酸盐的分解 CO₂ 的逸出^[13].

图 1 La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-a}陶瓷样品前驱体的 DSC-TGA 曲 线

Figure 1 DSC (dash line) and TGA (solid line) analysis for precursor of $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-a}$ ceramic sample

当高于 770 ℃时, 基本不再失重, 表明样品已基本 形成了钙钛矿结构.为了使样品充分形成钙钛矿结构, 900 ℃被选择为煅烧温度. La_{0.9}Ba_{0.1}Ga_{0.8}Mg_{0.2}O_{3-α}和 La_{0.9}Ca_{0.1}Ga_{0.8}Mg_{0.2}O_{3-α}样品前驱体粉末的 DSC-TGA 曲 线与 La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-α}的相类似.

2.2 XRD 分析

图 2 为 La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-α} (M=Ca²⁺, Sr²⁺, Ba²⁺) 陶瓷样品的 XRD 谱图. 1410 ℃烧结后的样品 XRD 衍射 峰与 JCPDS24-1102 卡上的衍射峰一致,表明陶瓷样品 已形成单一的斜方晶 LaGaO₃ 钙钛矿结构. 样品的晶胞 体积随着 Ca²⁺, Sr²⁺和 Ba²⁺离子的掺杂而增大,分别为 0.2355, 0.2380 和 0.2388 nm³, 这是由于随 La 位掺杂离 子半径的增大陶瓷样品的晶胞发生了膨胀而造成的.

图 2 陶瓷样品粉末 XRD 图

(a) $M = Ca^{2+}$; (b) $M = Sr^{2+}$; (c) $M = Ba^{2+}$

2.3 氢浓差电池电动势

图 3 是以 La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3- α}为电解质的氢浓差 电池在 300~600 ℃的电动势 EMF 与混合气中氢分压 p_{H_2} 的关系图. 图中的实心点代表 300, 400, 500 和 600 ℃下氢浓差电池电动势的实测值 E_{obs} , 虚线表示与实验 温度对应的电动势的理论值 E_{cal} , 可由能斯特方程求得. 如图 3 所示, 各温度下的电动势的实测值 E_{obs} 与对应的 理论值 E_{cal} 吻合得很好, 表明陶瓷样品在 300~600 ℃ 下氢气气氛中是纯的离子导体,离子迁移数 $t_i \approx 1$. 以 La_{0.9}Ba_{0.1}Ga_{0.8}Mg_{0.2}O_{3- α} 和 La_{0.9}Ca_{0.1}Ga_{0.8}Mg_{0.2}O_{3- α} 为电 解质时得到了类似的结果.

2.4 电导率的同位素效应

测定了样品在 Ar-H₂O 及 Ar-D₂O 气氛中的电导率, 实验结果表示在图 4 中. 如图所示, 三个样品在 Ar-H₂O 气氛中的电导率明显高于在 Ar-D₂O 气氛中的电导率,

图3 氢浓差电池的电动势

Figure 3 EMFs of the hydrogen concentration cell: H_2, Pt | $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3^{-}\alpha}$ | Pt, H₂-Ar

·····- theoretical; ▼-300 °C; ▲-400 °C; $\bullet-500$ °C; ■-600 °C

均表现出明显的同位素效应,这种同位素效应是样品具 有质子导电性的证据. 这是因为 Ar-D₂O 气氛中的载流 子 D⁺的质量大于 Ar-H₂O 气氛中的载流子 H⁺的质量, 从而导致 H⁺的迁移率大于 D⁺的迁移率^[15]. 载流子 i 的 电导率σ_i可用下式^[16]表示:

 $\sigma_{i} = z_{i} e c_{i} \mu_{i} \tag{2}$

式中 *z*_i, *e*, *c*_i, *µ*_i分别为载流子 i 的电荷数,单位电荷的电量,载流子 i 的浓度和迁移率.由上式可知, H⁺的电导率高于 D⁺的电导率,从而导致样品在 Ar-H₂O 中的电导率高于在 Ar-D₂O 气氛中的电导率.可根据式:

Figure 4 Arrhenius plots for isotope effect on the conductivity of $La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3^{-\alpha}}$ (M=Ca²⁺, Sr²⁺, Ba²⁺) (a) M=Ca²⁺; (b) M=Sr²⁺; (c) M=Ba²⁺, solid symbols—Ar-H₂O; open symbols—Ar-D₂O

进一步说明同位素效应, 式中 *A* 为指前因子, *E*_a为载流 子 i 迁移活化能, *R* 和 *T* 具有通常意义. 可根据 D⁺和 H⁺ 的指前因子 $A(D^+)$ 和 $A(H^+)$ 的比值 $A(D^+)/A(H^+)$ 衡量同位 素效应. $A(D^+)$ 和 $A(H^+)$ 可由图 4 中的 Arrhenius 曲线求 得, Ca²⁺, Sr²⁺和 Ba²⁺离子掺杂样品的 $A(D^+)/A(H^+)$ 比值 分别为 1.38, 1.44, 1.41, 而依据 Nowick 和 Du 的报道^[17], D⁺和 H⁺的指前因子比值的理论值为 1.41. 本研究实验 测 得 的 指 前 因 子 比 值 接 近 于 理 论 值 , 表 明 La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-α} (M=Ca²⁺, Sr²⁺, Ba²⁺)在此条件 下具有质子导电性.

2.5 氢的电化学透过(氢泵)

为了直接证实 La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-α} 陶瓷样品在 氢气气氛中是否具有质子导电性,我们测定了三个样品 在 600 ℃的氢的电化学透过速率实验结果如图 5 所示. 虚线代表由法拉第定律求得的氢透过速率理论值, 实心 点代表氢透过速率实验值. 如图 5 所示, 在电流密度低 于 14 mA•cm⁻², 样品的氢透过速率的实验值与理论值 基本吻合. 这表明 La0.9M0.1Ga0.8Mg0.2O3-a 陶瓷样品在氢 气气氛中几乎为纯的质子导体,因此从图3获得的离子 迁移数即为质子迁移数, $t_i = t_H^+ \approx 1$. 质子迁移数还可从 氢的电化学透过速率的实验值与理论值之比求得约为 1, 二者的结果是一致的. 当电流密度大于 14 mA•cm⁻² 时,氢的电化学透过速率偏离理论值,这是由于样品在 大电流密度条件下出现电子导电而造成的. 这可能是因 为在较大的电流密度下, 在阴极质子得到电子生成氢气 的速度较快,使得靠近阴极的样品中质子(以点缺陷 OHo 形式存在)浓度下降较快, 而在阳极生成的质子

(同样以点缺陷 OH₀ 形式存在)向阴极的迁移速度相对 较慢,因而,在阴、阳极之间形成质子浓度梯度,从而产 生浓差极化,导致电子导电的产生.

2.6 电导率的测量

图 6 是三个样品在 300~600 ℃下氢气气氛中的晶 粒电导率的 Arrhenius 曲线. 由 2.5 节可知样品在氢气气 氛中几乎为纯的质子导体,因此在氢气气氛中的电导率 为质子电导率. 三个样品在 300~600 ℃的质子电导率 分别为 3.4×10⁻⁵~1.4×10⁻² S•cm⁻¹ (M=Sr²⁺), 1.8× $10^{-5} \sim 0.82 \times 10^{-2}$ S•cm⁻¹ (M=Ba²⁺)和 0.69×10⁻⁵~ 0.42×10⁻² S•cm⁻¹ (M=Ca²⁺),在相同的条件下质子电 导率的大小次序为: $\sigma(M=Sr^{2+})>\sigma(M=Ba^{2+})>\sigma(M=Ba^{2+})$ Ca²⁺). 质子电导率的大小与样品的自由体积 V_f 密切相 关, V_t是单位晶胞体积与晶胞中各离子占有的体积之差, 通常 V_f 的增大有利于质子的传输和质子电导率的增 大^[18]. 对于 La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-a} (M=Ca²⁺, Sr²⁺, Ba²⁺)样品, V_f的大小次序为: V_f(M=Sr²⁺)=0.0540 nm³ $> V_{\rm f}({\rm M} = {\rm Ba}^{2^+}) = 0.0528 \text{ nm}^3 > V_{\rm f}({\rm M} = {\rm Ca}^{2^+}) = 0.0525$ nm³、与上述质子电导率的大小次序相一致. 根据图 6 可求得 Ca²⁺, Sr²⁺和 Ba²⁺离子掺杂样品的质子传输的表 观活化能分别为: 98, 90 和 92 kJ•mol⁻¹, Sr²⁺掺杂样品的 质子传输的表观活化能最低,这与质子电导率的测量结 果是一致的. 由图 6 还可见, 由水热沉淀法制备的 $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\alpha}$ 的质子电导率略高于由传统固相 法制备的样品,这可能是由于与固相法相比,水热沉淀 法制备的陶瓷样品具有组成均匀、相对密度较高(水热 沉淀法: 96.2%, 固相法: 88.4%, 烧结温度均为 1410 ℃, 烧结时间均为10h)的优点.

图 6 陶瓷样品质子电导率的 Arrhenius 曲线 **Figure 6** Arrhenius plots of protonic conductivity for $La_{0.9}M_{0.1}$ -G $a_{0.8}Mg_{0.2}O_{3-\alpha}$ (M=C a^{2+} , S r^{2+} , B a^{2+})

▲— $M=Ca^{2^+}$; ■— $M=Sr^{2^+}$; ●— $M=Ba^{2^+}$ prepared by hydrothermal precipitation method, □— $M=Sr^{2^+}$ prepared by solid reaction method

2.7 常压合成氨

以 La0.9M0.1Ga0.8Mg0.2O3-a 为电解质进行常压合成 氨实验. 开路条件下的空白实验表明在此情况下没有氨 生成. 氨产率与操作温度的关系如图 7 所示. 向合成氨 反应器施加的直流电流密度为 1 mA•cm⁻². 由图可见, 在 400~520 ℃范围, 氨产率随温度的升高而增加, 高 于 520 ℃时, 氨产率随温度的升高反而下降, 因此在本 实验中 520 ℃是常压合成氨的最佳温度. 这是因为合 成氨的产率不仅取决于固体电解质的质子电导率,H2和 N2 的流速和所施加的电流密度, 还取决于氨的分解速 率. 尽管样品的质子电导率随温度的增加而增大, 但同 时氨的分解速率也在增大^[19]. 图8是520 ℃时电流密度 对合成氨产率的影响. 电流密度小于 1 mA•cm⁻² 时合成 氨的产率随着电流密度的增大而增大,大于1 mA•cm⁻² 时增加缓慢,因而1mA•cm⁻²是本研究中合成氨的较理 想的电流密度.1 mA•cm⁻²时合成氨产率分别为: 1.63× $10^{-9} \text{ mol} \cdot \text{s}^{-1} \cdot \text{cm}^{-2} (M = \text{Ca}^{2+}), 2.53 \times 10^{-9} \text{ mol} \cdot \text{s}^{-1} \cdot \text{cm}^{-2}$ (M=Sr²⁺)和 2.04×10⁻⁹ mol•s⁻¹•cm⁻² (M=Ba²⁺). 其中 La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-α}的合成氨产率最高,这与其具有 最高的质子电导率相关. 由于三个样品的质子迁移数几 乎为 1, 根据文献[20]计算出它们在 1 mA•cm⁻²时合成 氨产率的理论值为 3.45×10⁻⁹ mol•s⁻¹•cm⁻², 因此在本 实验中以 Ca²⁺, Sr²⁺和 Ba²⁺离子掺杂样品的电化学氢生 成氨的转化率分别为 47%, 73%和 60%, 可见在这三个 样品中 $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\alpha}$ 具有最高的电化学氢生 成氨的转化率. 在本实验中合成氨的产率及转化率可能 与电解质材料、电解质厚度、电极材料、电极极化、操 作温度、施加的电流密度、气体流速等多种因素有关,最

图 7 温度对合成氨产率的影响

Figure 7 Effect of temperature on the rate of ammonia formation

图8 电流密度对合成氨产率的影响

Figure 8 Effect of current density on the rate of ammonia formation at 520 $\,^\circ\!\mathrm{C}$

$$\blacksquare - M = Ca^{2^+}; \bullet - M = Sr^{2^+}; \blacktriangle - M = Ba^{2^+}$$

优化条件仍需进一步探讨.

3 结论

采用水热沉淀法制备了 La_{0.9}M_{0.1}Ga_{0.8}Mg_{0.2}O_{3-α} (M=Ca²⁺, Sr²⁺, Ba²⁺)系列陶瓷样品的前驱体,进一步 初烧和烧结得到了系列陶瓷样品,为单一斜方晶钙钛矿 结构,采用多种电化学方法研究了样品在 300~600 ℃ 时的质子导电性能.电导率的同位素效应和氢的电化学 透过(氢泵)实验证实样品具有质子导电性,由氢浓差电 池电动势及氢泵实验测得的质子迁移数均约为 1,表明 在氢气气氛中该系列陶瓷样品几乎是纯的质子导体.通 过系统的研究发现样品的质子电导率、氨产率及晶胞自 由体积恰好具有很好的相关性: $Sr^{2+}>Ba^{2+}>Ca^{2+}$. 在 该系列样品中相同条件下, $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\alpha}$ 具有 最高的氨产率和电化学氢生成氨的转化率, 分别为 2.53× 10^{-9} mol·s⁻¹·cm⁻²和 73%, 这与其具有最高的质子电导 率有关. 该系列样品可作为氢传感器、氢泵及常压合成 氨等电化学装置的固体电解质材料.

References

- 1 Yi, J. Y.; Choi, G. M. J. Eur. Ceram. Soc. 2004, 24, 1359.
- 2 Huang, K.; Goodenough, J. B. J. Alloys Compd. 2000, 303~304, 454.
- 3 Feng, M.; Goodenough, J. B. Eur. J. Solid State Inorg. Chem. 1994, 31, 663.
- 4 Ma, G.; Zhang, F.; Zhu, J.; Meng, G. Chem. Mater. 2006, 18, 6006.
- 5 Zhang, F.; Chen, C.; Pan, B.; Xu, R.; Ma, G.-L. Acta Chim. Sinica 2007, 65, 2473 (in Chinese).
 (张峰,陈成,潘博,许睿,马桂林,化学学报, 2007, 65, 2473.)
- 6 Zhang, F.; Yang, Q.; Pan, B.; Xu, R.; Wang, H. T.; Ma, G. L. *Mater. Lett.* 2007, *61*, 4144.
- 7 Zhang, F.; Sun, L.; Zhu, J.; Pan, B.; Xu, R.; Ma, G. J. Mater. Sci. 2008, 43, 1587.
- 8 Huang, K.; Goodenough, J. B. J. Solid State Chem. 1998, 136, 274.
- 9 Stevenson, J. W.; Armstrong, T. R.; McCready, D. E.; Pederson, L. R.; Weber, W. J. J. Electrochem. Soc. 1997, 14, 3613.
- 10 Huang, K.; Tichy, R. S.; Goodenough, J. B. J. Am. Ceram. Soc. 1998, 81, 2565.
- 11 Chen, C.; Ma, G. J. Mater. Sci. 2008, 43, 5109.
- Zhu, J.-L.; Zhang, F.; Chen, C.; Ma, G.-L. Chinese J. Inorg. Chem. 2007, 23, 1621 (in Chinese). (朱剑莉, 张峰, 陈成, 马桂林, 无机化学学报, 2007, 23, 1621.)
- 13 Chen, T.-Y.; Fung, K.-Z. J. Eur. Ceram. Soc. 2008, 28, 803.
- Ma, G.-L.; Qiu, L.-G.; Chen, R. Acta Chim. Sinica 2002, 60, 2135 (in Chinese).

(马桂林, 仇立干, 陈蓉, 化学学报, 2002, 60, 2135.)

- Ruiz-Trejo, E.; Kilner, J. A. Solid State Ionics 1997, 97, 529.
- 16 Larring, Y.; Norby, T. Solid State Ionics 1995, 77, 147.
- 17 Nowick, A. S.; Du, Y. Solid State Ionics 1995, 77, 137.
- 18 Ma, G. L.; Shimura, T.; Iwahara, H. Solid State Ionics 1999, 120, 51.
- 19 Li, Z. J.; Liu, R. Q.; Xie, Y. H.; Feng, S.; Wang, J. D. Solid State Ionics 2005, 176, 1063.
- 20 Marnellos, G.; Stoukides, M. Science 1998, 282, 98.

 $\blacksquare -M = Ca^{2^+}; \bullet -M = Sr^{2^+}; \blacktriangle -M = Ba^{2^+}$