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The instability of the plane interface between two Walters B' viscoelastic
superposed fluids permeated with suspended particles and uniform rotation
in porous medium is considered following the linearized perturbation the-
ory and normal mode analysis. For the stable configuration the system is
found to be stable or unstable if v' < or > k/e, depending on kinematic
viscoelasticity, permeability of the medium and porosity of the medium.
However, the system is found to be unstable for the potentially unstable con-
figuration.
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Introduction

The instability of the plane interface separating two Newtonian fluids when one
is accelerated towards the other or when one is superposed over the other has been stud-
ied by several authors, and Chandrasekhar [1] has given a detailed account of these inves-
tigations. The influence of viscosity on the stability of the plane interface separating two
electrically conducting, incompressible superposed fluids of uniform densities, when the
whole system is immersed in a uniform horizontal magnetic field, has been studied by
Bhatia [2]. Chandra [3] observed a contradiction between the theory for the onset of con-
vection in fluids heated from below and his experiment. He performed the experiment in
an air layer and found that the instability depended on the depth of layer. A Bénard-type
cellular convection with fluid descending at the cell centre was observed when the pre-
dicted gradients were imposed for layers deeper than 10 mm. A convection that was dif-
ferent in character from that in deeper layers occurred at much lower gradients than pre-
dicted, if the layer depth was less than 7 mm and called columnar instability. He added an
aerosol to mark the flow pattern. Motivated by interest in fluid-particle mixtures and co-
lumnar instability, Scanlon and Segel [4] studied the effect of suspended particles on the
onset of Bénard convection and found that the critical Rayleigh number was reduced
solely because the heat capacity of the pure gas was supplemented by that of the particles.
The suspended particles were thus found to destabilize the layer. Palaniswamy and
Purushotham [5] have studied the stability of shear flow of stratified fluids with fine dust
and found the effects of fine dust to increase the region of instability.

DOI:10.2298/TSCI0701093K 93



THERMAL SCIENCE: Vol. 11 (2007), No. 1, pp. 93-102

The thermal instability of Maxwellian viscoelastic fluid in the presence of a uni-
form rotation has been considered by Bhatia and Steiner [6], where rotation is found to
have a destabilizing effect. This is in contrast to the thermal instability of a Newtonian
fluid where rotation has a stabilizing effect. The thermal instability of an Oldroydian
viscoelastic fluid acted on by a uniform rotation has been studied by Sharma [7]. An ex-
perimental demonstration by Toms and Strawbridge [8] has revealed that a dilute solu-
tion of methyl methacrylate in n-butyl acetate agrees well with the theoretical model of
Oldroyd [9]. There are many elastico-viscous fluids that cannot be characterized by
Maxwell’s or Oldroyd’s constitutive relations. One such fluid is Walters B' elastico-vis-
cous fluid having relevance and importance in geophysical fluid dynamics, chemical
technology, and petroleum industry. Walters [ 10] reported that the mixture of polymethyl
methacrylate and pyridine at 25 °C containing 30.5 g of polymer per litre with density
0.98 g per litre behaves very nearly as the Walters B' elastico-viscous fluid. Polymers are
used in the manufacture of spacecrafts, aeroplanes, tyres, belt conveyers, ropes, cushions,
seats, foams, plastics engineering equipments, contact lens, efc. Walters B' elastico-vis-
cous fluid forms the basis for the manufacture of many such important and useful prod-
ucts.

In recent years, the investigations of flow of fluids through porous media have
become an important topic due to the recovery of crude oil from the pores of reservoir
rocks. A great number of applications in geophysics may be found in the books by
Phillips [11], Ingham and Pop [12], and Nield and Bejan [13]. When the fluid permeates a
porous material, the gross effect is represented by the Darcy’s law. As a result this macro-
scopic law, the usual viscous term in the equation of Walters B' fluid motion is replaced
by the resistance term —(1/k;)u —u'0/0t)u where u and u' are the viscosity and
viscoelasticity of the Walters B' fluid, %, is the medium permeability and u is the Darcian
(filter) velocity of the fluid. The Rayleigh instability of a thermal boundary layer in flow
through porous medium has been considered by Wooding [14]. Kumar [15] has studied
the stability of two superposed Walters B' viscoelastic fluid-particle mixtures in porous
medium. The stability of two superposed Walters B' viscoelastic fluids in the presence of
suspended particles and variable magnetic field in porous medium has been studied by
Sharma and Kango [16].

The present paper attempts to study the instability of two rotating viscoelastic
(Walters B') superposed fluids permeated with suspended particles in porous medium.
The knowledge regarding viscoelastic fluid-particle mixtures is not commensurate with
their scientific and industrial importance. The analysis would be relevant to the stability
of' some polymer solutions and the problem finds its usefulness in several geophysical sit-
uations and in chemical technology. These aspects form the motivation for the present
study.

Formulation of the problem and perturbation equations

Let 75, 7y, €, 045> Vi Xi» P> 4, and p' denote the stress tensor, shear stress tensor,
rate-of-strain tensor, Kronecker delta, velocity vector, position vector, isotropic pressure,
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viscosity, and viscoelasticity, respectively. The constitutive relations for the Walters B'
viscoelastic fluid are:

—poi + 75

i [u H —) i (D)
e =120,
i ax 0x;

Consider a static state in which an incompressible Walters B' viscoelastic fluid
permeated with suspended particles is arranged in horizontal strata in a porous medium
and the pressure p and density p are functions of the vertical coordinate z only. A uniform
rotation Q2 (0, 0, £2) pervades the whole system. The character of the equilibrium of this
initial static state is determined, as usual, by supposing that the system is slightly dis-
turbed and then by following its further evolution.

Let p, p, u(u, v, w), and Q (0, 0, £2) denote, respectively, the density, the pres-
sure, the velocity of pure fluid, and the uniform rotation; v(x, ) and N(x, ¢) denote the ve-
locity and number density of the particles, respectively. K = 6 mun, where 17 is the particle
radius, is the Stokes drag coefficient, v = (1, 7, s), ¥ = (x, ¥, z), and L = (0, 0, 1). Let &, k,,
and g stand for medium porosity, medium permeability, and acceleration due to gravity,
respectively. Then the equations of motion and continuity for the rotating Walters B'
viscoelastic fluid containing suspended particles in a porous medium are:

—[%+8( V)u} { (p——lQXX| )— ok +

AN G gy 22 (uxg)}—i[u uiJ‘ (2)
£ ky ot

V.i=0 3)

Since the density of every fluid particle remains unchanged as we follow it with
its motion, we have:

gQ+(ﬁ-V)p=O 4)
ot

In the equations of motion (2), by assuming a uniform particle size, spherical
shape and small relative velocities between the fluid and particles, the presence of parti-
cles adds an extra force term proportional to the velocity difference between the particles
and the fluid. Since the force exerted by the fluid on the particles is equal and opposite to
that exerted by the particles on the fluid, there must be an extra force term, equal in mag-
nitude but opposite in sign, in the equations of motion of the particles. The distances be-
tween particles are assumed quite large compared with their diameter so that interparticle
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reactions are ignored. The effects of pressure, gravity, and Darcian force on the sus-
pended particles are negligibly small and therefore ignored. If mN is the mass of particles
per unit volume, then the equations of motion and continuity for the particles, under the
above assumptions are:

mN[@+l(\7-V)\7}=KN(ﬁ—\7) ®)
ot ¢

2N v (NE) =0 (6)
ot

Initially, density = p(z), pressure = p(z), fluid velocity = (0, 0, 0) and particle ve-
locity = (0, 0, 0).
Letdp, dp, u(u, v, w), and v(/, r, s) denote, respectively, the perturbations in fluid
density p, fluid pressure p, fluid velocity (0, 0, 0), and particle velocity (0, 0, 0).
Therefore, after perturbations, we have:
p(2) +p(x, ¥, 2,1), p(z)+6p(x, ¥, 2,1),
(0,0,0) +ufu(x, y, z, 1), v(x, ¥, z, t), w(x, ¥, z,t)] and

(0,0,0) + V[I(x, y, z, 1), r(x, y, 2, 1), 5(x, , 2, 1)]

Substituting these values into eqs. (2)-(6), using initial values, we get the
linearized perturbation equations of the fluid-particle layer as:

LI voprgop+ XN -+ L) - p-w Ll @)
& Ot € & ky ot
V.-i=0 ®)
0
&= (8p) =—w(Dp) ©
ot
mo k=g (10)
K Ot
and
M v.5-o (11)
ot

where M = eN/N,y, Ny and N stand for initial uniform number density perturbation in
number density, respectively, and D = d/dz.

Analyzing the disturbances into normal modes, we seek solutions whose de-
pendence on x, y, and ¢ is given by:

e(ik,()c+ikyy+nt) (12)

where ky and k, are wave numbers along x and y-directions, k2 =k2 + k%, and 7 is, in
general, a complex constant.
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For perturbations of the form (12), egs. (7)-(10) after eliminating v give:

Lo 2N Ny — it 5p— (s 2222 (13)
e m+1 ky 3
l p+ mN nv:—ikyép—L(,u—,u’n)v+@u (14)
P m+1 ky g
! p+ mN nw=—D5p—g5p—i(/l—/l'”)W (15)
& m+1 ky
ik + iky + Dw =0 (16)
and
endp =-wDp (17)
where 7= m/K.

Eliminating dp between eqgs. (13)-(15) and using eqs. (16) and (17), we obtain:

(tn+Dn+ ki (tn+1)(v—=V'n) [D(pDw) — k2pw]+ n[D(mNDw) — mNk 2w] +
1

+|:—gk2(m+1)}(Dp)w+4(rn +1)20Q2)D pDw =0
n D+ "™ L€ i (v—vn)
b Tk (18)

where v = u/p and v' = u'/p stand for kinematic viscosity and kinematic viscoelasticity.

Two uniform viscoelastic (Walters B') fluids
separated by a horizontal boundary

Consider the case of two uniform Walters B' viscoelastic fluids of densities, vis-
cosities, viscoelasticities, suspended particles number densities as p,, ii,, tt5, N,, and p,,
U, 1y, N, separated by a horizontal boundary at z = 0. The subscripts 1 and 2 distinguish
the lower and the upper fluids, respectively.
Then in each region of constantp, constant x4, constant y', and constant mN, eq.
(18) reduces to:
(D*-x>w =0 (19)

where k

202 (tn+1)2

1+

2
+Z i+ D)(v=vn
kl

mnN

n(tn+1) +
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and in case of highly viscous and viscoelastic fluid:

£ 20 2]zm 11)2 20
1+ >
{n(rn +1)+ mn + ki (tn+1)(v— v'n}
1
- The general solution of eq. (20) is:
Po: Mo, ta, Ny

_____________________________ w = Ae*** + Be*? (21)

_____________________________ where 4 and B are arbitrary constants. The
_____________________________ boundary conditions to be satisfied in the
————————————— present problem are:

7 7 x (1) thevelocity w should vanish when
4 z — +oo (for the upper fluid) and
z = —oo (for the lower fluid),

(2)  w(z) is continuous at z = 0, and

(3)  the pressure should be continuous
across the interface.

Applying the boundary conditions (1) and (2), we have:

Py, 1y, Ny

wy =A4e™  (z<0) (22)
wy,= Ae™  (z>0) (23)

where the same constant 4 has been chosen to ensure the continuity of w at z = 0.

Here we assumed the kinematic viscosities and kinematic viscoelasticities of both
fluids to be equal i.e. v;=v,=v (Chandrasekhar [1], p.443), v| =V, =V andmN/p =
=mN,/p, =mN,/p, (= M) as these simplifying assumptions do not obscure any of the essen-
tial features of the problem.

Integrating eq. (18) across the interface z= 0, we obtain the boundary condition:

2
{n(rn +1) + ki (tn+1)(v—=v'n) |Ay(pDw) + nA ,(mNDw) + (tn + 1)&A0(p)w0 +
1 n
4(tn+1)202
mnN

+

Ay (pDW) =0 (24)

n(tn+1) + +ki(rn+1)(v— v'n)

1

where wy is the common value of w at z = 0 and Ay(f) is the jump which a quantity /'
experiences at the interface z = 0.
Applying the boundary condition (24) to the solutions (22) and (23), we obtain:
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14 mn(N, + N,) B (tn+Dgk?(a, —o) N

(py + pz){n(rn +1)+ kE (tn+1)(v— v’n)} nl{n(rn +1)+ kE (tn+1)(v— v’n)}
1 1

202
N 4(tn+1)2Q -0

{n(rn +1)+ Mn+ ki (tn+1)(v— v’n)} {n(‘m +1) + ki (tn+1)(v— V'”)} (25)

1 1

where o) = pi/(py + p2) and @z = po/(p1 + p2)
Equation (25), after substituting the value of k¥ from eq. (20) and simplification,
yields:
AnT + Agn® + Asn® +... ... + An? + Ain+ A, =0 (26)

where eV 3
k

1

2
dq = 2M+38VT+3(1_QJ+M Tz[l_ﬂJ
ky ky Pt P2 ky

=[5 o227 o ),
k k

1 1 P1t+ P> 1

2
1—ﬂ +3 1—ﬂ + M+% M+3€VT T 1—ﬂ
k ky ky ky ky
Ay = A I Va2 58W+M—212gk(052 —ap)|+2 M+28W .
ky ky ky ky

2
e O Nl 1S 1 g OO s —a o
ky p1t+ P2 1 ky P17+ P2

3 2
ky k k P+ P>

4, [1_J z{9avr+ﬂ+w_6ﬂgk(a2 )}
ky ) k| K ky P1 T P2

2
v gv evt || ev| 3evr
—drgk(o, —at )M + +3| 1 —— | | ——1gk(a, —0t;) |+| M +— K — +
gk X } ( liL‘l gk 1)} ( ky j{k1|:k1

}— g k(a, —al)(M +%J} -20%3gk(a, —a;)
1

M 2m(N, +N)
ky P11+ P>

99



THERMAL SCIENCE: Vol. 11 (2007), No. 1, pp. 93-102

2
' 2.2 '
4, :(l_i_vJFg Y2 ke, —051)(32W+MH_gk(az —al)[l—i—vJ +
!

2
k] 1 1

242
& {—38‘/T+2M+—m(]v1 +N2)}—gk(a2 —al)(M+gk_WJ.

klz ky P1tP; 1

-(32‘” + MJ —612gk(@, — ;)02
1

2,2
1:8 4 ﬂ—rgk(az —ay) |-6tgk(o, —0p)Q2 —
k2 |k
1 1
_2evgk(a, —ay) A W V%)
ky ky ky
g2y2?
1

Discussion

(a) Stable case (a, <a.p)

For the potentially stable case (@, < a,), if:

158 e vk (28)
k, g

eq. (26) does not allow any change of sign and so has no positive root. The system is

therefore stable. But if:

k
V>l (29)
£
the coefficient of n” i. e. A7 in eq. (26) is negative. Equation (26), therefore, allows at least
one change of sign and hence one positive root. The occurrence of a positive root implies
that the system is unstable.

(b) Unstable case (a, > ovy)

For the potentially unstable case (¢, > a,), the constant term 4, in eq. (26) is
negative. Equation (26), therefore, allows one change of sign and so has one positive root
and hence the system is unstable.

Thus for the stable case (o, <a.,), the system is unstable or stable depending on
kinematic viscoelasticity (assumed equal for both fluids) whether it is greater than or
smaller than the medium permeability divided by medium porosity. However, the system
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is unstable for unstable configuration. Also, it is clear from eq. (26) that suspended parti-
cles and rotation effects do not affect the stability or instability of the system.

Nomenclature

— acceleration due to gravity, [ms ]
— gravity field, [ms ]

— Stokes’ drag coefficient, [kgs ']

— wave-number, [m ']

horizontal wave-numbers, [m ']
medium permeability, [m?]

— mass of single particle, [g]

— suspended particle number density, [m °]
— growth rate, [s7']

— fluid pressure, [Pa]

— time, [s]

— fluid velocity, [ms™']

— suspended particle velocity, [ms ']

<SS I =3 A X
B
[

Greek letters

£ — medium porosity , [-]

u — dynamic viscosity, [kgm's™']

v — kinematic viscosity, [m’s™]

V! — kinematic viscoelasticity, [m*s ']
P — density, [kgm ]
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