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Determining land-cover characteristics of large watersheds for use in hydrologic models has
been enhanced by application of remotely sensed data and the technologies used to interpret
them. The objective of this paper was to describe and evaluate a process for obtaining land-
use information for a large watershed using multi-temporal Landsat-5 Thematic Mapper (TM)
images. The Kanopolis Lake watershed, which covers 6316 km2 in central Kansas, USA, was
evaluated. Land-cover data for 1992 was derived for use in the Agricultural NonPoint Source
Pollution (AGNPS) hydrologic model. Due to shape, large size, and geographical location of
this watershed, two early-summer Landsat TM images were required to cover the entire
watershed. Both scenes were classified separately and then combined together to estimate
land-cover information. ISODATA (Iterative Self-Organizing Data Analysis Technique)
algorithm of unsupervised classification followed by supervised classification was performed.
Initially, a Level-1 classification scheme was used, which differentiated cover classes among
water, agricultural, rangeland, forest, residential, and barren areas. The agricultural areas
were reclassified into winter wheat and summer crop and rangeland classified into low,
medium, and high cover. Good agreement was found with other published land-cover spatial
data, with consistent results across both Landsat scenes. Reliability, use of readily available
data, and reasonable ease of use make these methods appropriate for hydrologic modeling of
small to large watersheds.
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INTRODUCTION

The prediction capabilities of hydrologic models depend primarily on accurate representation of
the watershed conditions, including land-cover. Reliable land-cover information, however, has
always been challenging to obtain. Traditional field reconnaissance techniques are time consuming,
expensive, and for large and remote watersheds often infeasible. Development of land-cover
classification techniques using remotely sensed data has reduced the time and effort needed to acquire
data. However, large watersheds, covered by multiple satellite images pose difficulties in the
classification process because of the large amount of data and variation of pixel characteristics in
different images for the same area. The classification process becomes even more difficult when
using historical Landsat data without ground truth data. Therefore this paper attempted to overcome
these difficulties using multi-temporal Landsat-5 Thematic Mapper (TM) scenes of a large watershed
to derive a land-cover map that can be used in a hydrologic model.

A GIS interface, AGNPS–Arc Info developed by Liao and Tim (1997), accepts information from
GIS coverages including land-cover, soil, stream, and digital elevation, to extract parameters for the
AGNPS input file. Satellite images have been used successfully to generate land-cover coverages for
this model interface (Bhuyan et al., 2000). Several other hydrologic models have successfully utilized
satellite imagery. Yin and Williams (1997) studied the incorporation of Landsat and AVHRR
(Advanced High-Resolution Radiometer) satellite images into the crop-growth model of SWRRB
(Arnold et al., 1990) to monitor hydrologic processes of a watershed. The modeled monthly runoff
rates were in good agreement with the observed monthly rates. Cruise and Miller (1993) acquired
spectral images using the CAMS (Calibrated Airborne Multispectral Scanner) radiance data to
classify land-cover in the Rosario watershed of Puerto Rico. Land-cover data was used with
Groundwater Loading Effects of Agricultural Management Systems (GLEAMS; Knisel et al., 1993)
model to simulate 4 years of sediment discharge from a watershed.  Cruise and Miller (1994) also used
the airborne spectral images, as mentioned above, to generate input for Chemicals, Runoff and
Erosion from Agricultural Management Systems (CREAMS; Knisel, 1980) model to predict runoff
and sediment from a watershed.

The process of classifying satellite images is critical to the quality of land-cover data extracted.
However, published descriptions often lack sufficient detail to allow recreation of the classification
process for other watersheds.  Furthermore, studies of watersheds that span multiple satellite images
may pose additional difficulties in maintaining consistent land-cover classification across images.
Therefore, the objectives of this study were to describe the steps involved in Level-1 land-cover
classification of Landsat TM and demonstrate further classification of cropland into crop classes and
rangeland into classes based on rangeland quality, and to verify the accuracy of developed land-cover
maps.

MATERIALS AND METHODS

This study will assess land-cover in the Kanopolis Lake watershed, which encompasses 11
counties and drains into Kanopolis Lake in central Kansas (Figure 1).  The watershed includes 6,540
km of intermittent streams and 844 km of perennial streams.  Kanopolis Lake watershed falls in the
Central Statistics District out of nine agricultural districts of Kansas (Kansas Agricultural Statistics
Service,  1996).   Watershed soils are mostly silty loam and  land-cover is dominated by cropland and
pasture. Recently, the Kansas Department of Health and Environment initiated an assessment of the
Kanopolis Lake watershed because of growing concern about overloading of sediment and nutrients
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in Kanopolis Lake, a drinking water source for the City of Ellsworth and surrounding communities.
The overall scope of this project is to evaluate the effects of current and potential future watershed
land management on water quality.

The event-based watershed model AGNPS (Young et al., 1987, 1989, 1994) version 5.0 can easily
be used to study the effects of changing conditions in a watershed  (Tim and Jolly, 1995; Lee and
White, 1992) and has also been successfully applied in other watersheds in Kansas (Koelliker and
Humbert, 1989; Mankin et al., 1999; Bhuyan et al., 2000; Marzen et al., 2000). This model predicts
event-based generation and transport of nonpoint source pollutants such as total suspended sediment,
nitrogen, and phosphorous. Many of the model’s sensitive parameters are associated with the land-
cover characteristics, making accurate land-cover data critical.

The AGNPS model is a single-event, distributed-parameter model developed by scientists and
engineers at the U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS;
Young et al., 1987, 1989, 1994). The model accepts inputs from point sources such as feedlots and
wastewater treatment plants, and routes these pollutants along with nonpoint source pollutants to
estimate the overall watershed loads. The model discretizes the watershed into square cells, each of
which is characterized by 22 input parameters: cell number, cell division, receiving cell number,
aspect/flow direction, land-cover (C) factor, conservation practice (P) factor, surface condition
constant, Natural Resources Conservation Service (NRCS) runoff curve number (CN), slope, slope
shape and length, Manning’s roughness coefficient, soil erodibility (K) factor, soil texture, fertilizer
indicator and availability, pesticide indicator, point source indicator, gully indicator, additional
erosion, impoundment indicator, and channel indicator.

A GIS layer of the Hydrologic Unit Code 11 (HUC 11) boundaries for the State of Kansas was
obtained from the GIS database of Kansas Data Access Support Center (DASC). The exact boundary
of Kanopolis Lake watershed was then created/digitized by overlaying the digital raster graphics
(DRG) of a 7.5-minute USGS quadrangle map, also available from DASC.  The DRGs were used
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Figure 1.  Location of Kanopolis Lake watershed and relevant Landsat images.
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to locate the ridge lines for delineation of the watershed boundary.

Due to the shape, large size, and geographical location of the watershed, two Landsat TM scenes
are required to cover the entire watershed: Row 33, paths 29 and 30 (Figure 1). The dates of the cloud-
free images obtained in this study were May 6, 1992 for the western part of the watershed and June
16, 1992 for the eastern part of the watershed. The images during this period would also be useful
for classification of agricultural land because both summer crops and winter wheat will be present
in the field.

The two Landsat TM images were geo-registered and rectified separately with the USGS 7.5-
minute DRGs selecting more than 30 points using a second-order polynomial (Jensen, 1996).
Universal Transverse Mercator projection with North American Datum 27 was selected. A root

mean square of less than 1 was obtained after re-sampling, which indicated that the error involved
during this process would be within a pixel size of 30 m. Both images were also subjected to haze
correction using Chavez Haze Correction model (Chavez, 1996).

An unsupervised classification was used to develop a set of 30 spectral categories for the two
images.  The ISODATA algorithm (Jensen, 1996) was employed for this purpose.  An attempt was
made to reclassify the spectral groups into thematic groups using a Level-1 classification system as
described by Anderson et al. (1976).  These classes included residential, agricultural, rangeland,
water, barren, and forestland.  However, there were some spectral categories that seem to belong to
neither or more than one thematic classes.  The good classes or confident classes were extracted from
initial classification and remaining classes were subjected to another ISODATA algorithm of
unsupervised classification. This process was repeated until the entire image was accurately
classified (Figure 2).

DRGs for the USGS 7.5-minute quadrangles were used for geo-rectification of the Landsat TM
images. A total of 79 DRGs were obtained from DASC to cover the entire watershed.  DASC also
made land-cover coverages for each county of the entire state of Kansas during 1991. The land-cover
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coverages for the counties located in the watershed were downloaded, joined and clipped with the
watershed boundary layer, and used in the rectification and classification process.  ERDAS
IMAGINE 8.4 software (ERDAS Inc., 1997) was used for the classification process. The schematic
view of the classification procedure is shown in Figure 2.

The next step was to sub-classify the cropland into winter wheat and summer crops (predominately
corn, sorghum, and soybean) and the rangeland into low, medium, and high cover. The two major
classes of cropland areas were selected as they can represent different hydrologic characteristics of
watersheds. Similarly, the low, medium, and high density of rangeland would have different
hydrologic impacts on the watershed. These groups differ in many parameters in the AGNPS model,
including C-factor, CN, surface condition factor, and Manning’s roughness coefficient (Young et al.,
1994), all of which affect the runoff characteristics and the loss of sediment and nutrients from the
watershed.

Separation of winter wheat and summer crop

The agricultural areas of the classified images were separated and used to mask out the raw pixels
of agricultural areas from the raw geo-rectified and atmospheric corrected images. The separation
was done according to the recoding process described in the ERDAS IMAGINE software user
manual. Supervised classification procedure was used to classify the remaining agricultural areas into
either winter wheat or summer crop.  Dates of satellite images were used to differentiate between
winter wheat and summer crops.  Based on crop-calendar reports (Kansas Agricultural Statistics
Service, 1996) and expert opinion (Rogers, 2000, personal communication), it was determined that
by the first week of May, winter wheat typically is in its full growing period with 100% canopy cover;
corn typically has approximately 30% ground cover; and soybean and sorghum may not be planted
yet or have just been planted.  Usually by mid June, the winter wheat in the field is either senesced
and ready to harvest or already harvested; corn is in its early growing stage; and sorghum and soybean
have just been planted. Therefore, in the false-color composite, the corn would appear bright red and
the winter wheat area would appear dark gray.

Some of the areas designated as cropland after the unsupervised classification had irregular field-
shape characteristics and variations of spectral intensity that were indicative of rangeland. Areas
designated as cropland after the unsupervised classification were separated and delineated into
training areas of winter wheat, summer crop, and rangeland, and a supervised classification was
performed (Jensen, 1996). The areas thus classified as rangeland were then incorporated into the
other areas designated as rangeland during the unsupervised classification to create a single
rangeland image.

Subclassification of rangeland areas

The rangeland layer was used to mask out the pixels of rangeland areas from raw rectified images.
During the period of acquiring images, the rangeland in the watershed was in its full growing season.
Therefore, a Normalized Difference Vegetation Index (NDVI) was applied on rangeland pixels of
the two images.  The NDVI is the difference of near-infrared (TM Band 4) and visible (TM Band 3)
reflectance values divided by the sum of their reflectance values (Equation (1)). The NDVI has been
used to correlate with the standing green and brown biomass (Lyon et al., 1998). The value of the
NDVI increases with the increasing vegetation in the scene (Malingreau, 1989).

NDVI = (NIR band – Visible band)/(NIR band + Visible band) (1)
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The NDVI values were rescaled from 100 to 200 to simplify analysis.  The next goal was to select
threshold values of NDVI to classify the rangeland areas.  Due to non-availability of standard
threshold values, NDVI values were divided into three equal ranges and classified as low, medium,
and high vegetation density.

Joining the classified images

All the classified images were combined to produce final classified images for eastern and western
Landsat scenes. The final classified images had the following classes: winter wheat, summer crop,
water, low-cover rangeland, medium-cover rangeland, high-cover rangeland, residential, forestland,
and barren land.

An important step in the analysis of larger watersheds is joining the classified images from multiple
Landsat scenes. There was a significant portion of overlapping area between the two Landsat scenes
(Figure 1). Ideally, the overlapped portion in the both classified images contains the same information.
However, 100% similarity is not possible due to variation of reflectance of the same objects in
different images. This is attributed primarily to differences in atmospheric moisture and clouds,
growth condition and moisture status of vegetation, sun angle and associated topographic shadows,
and human error in the classification processes. The percent difference in the classes assigned to
paired pixels could be determined using change detection techniques and then criteria developed for
resolving differences. However after visual and manual cross-referencing, we found a simple
overlapping operation to give satisfactory results.

During the overlapping operation, the overlapped portion of the final classified image contains the
information from the image that is placed on top.  We used a trial and error method to select the
information from the Eastern image to represent the overlapped area.  This produced a smooth overall
final image with less variation of in classes along the edge of the overlapped areas and greater overall
accuracy (Po) and Kappa coefficient of agreement (k).

An area of interest was created from the Arc coverage of the watershed boundary, which was used
to subset the classified image. Finally, a low pass (3 by 3 majority) filter was applied to reduce noise
from the classified image. The raster image was then converted to a polygon coverage to use in the
AGNPS–Arc Info interface model.

Classification accuracy

There must be a method for quantitatively assessing classification accuracy if remote sensing-
derived land-use or land-cover maps are to be useful (Meyer and Werth, 1990). Fitzpatrick-Lins
(1981) suggested that the sample size N could be used to assess the accuracy of a land-use
classification map using the formula for the binomial probability theory:

N = Z2 p q / E2 (2)

where p is the expected percent accuracy, q = 100 – p, E is the allowable error, and Z = 1.96 from
the standard normal deviant for the 95% 2-sided confidence level.

An expected accuracy of 85% was selected because the land-use classification system specifies
that each category should be mapped to at least 85% accuracy. The allowable error of 2% was used
by Fitzpatrick-Lins (1981) in a study that involved very little field verification. We used a higher
allowable error of 5%, which reflects a greater level of confidence in our supervised classification
process.  Substituting these values into Equation (2), N = 196.  IMAGINE software was used to
generate a total of 205 reference points (a value » 196 that yielded a convenient division among
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classes) representing each land-cover class (Table 1).

Fewer points from residential and water were selected as these two classes covered small
percentages of the total watershed area. Reference-point or ground-truth data during the year 1992
were not readily available.  However, DASC prepared land-cover coverages for each county in
Kansas with Level-1 classification using satellite imagery and digital ortho-photography during the
year 1991-1992.  We have considered this data as our best estimates of independent reference data
for Level-1 classification.  However, the DASC coverages lumped summer-crop and winter-wheat
areas into a cropland class and did not contain a barren class.

This left five classes for comparison.  An error matrix was used to summarize the agreement of
the current method with the baseline land-cover classification, and compute the overall accuracy of
the current method.  A widely used measure for estimating overall classification accuracy using an
error matrix is the Kappa coefficient of agreement, k (Muller et al., 1998).  The calculation of k
attempts to remove chance agreement from estimates of classification accuracy by incorporating the
row and column totals of the error matrix.  The k coefficient is calculated from the following equation
(Foody, 1992):

( )
( )Pe

PePo
k

−
−=

1
(3)

where Po is the observed proportion of agreement and Pe is the proportion of agreement that may be
expected to occur by chance.  Po is a measure of the overall accuracy and is calculated as the ratio
of the number of correct classifications to the total number of comparisons made. Pe is calculated
from the row and column marginals of the classification error matrix and is given by the following
equation:

∑
=

=
n

i

)i(Pc)iPr(Pe
1
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where n is the number of classes; Pr is the ratio of row marginal values to the total number of sample
points and Pc is the ratio of column marginals to the total points.  The range of k is 0 to 1, where greater
values indicate better accuracy.

Land-cover class No. of reference points 

1. Residential 10 

2. Summer Crop 30 

3. Winter wheat 30 

4. Forestland 30 

5. Water 15 

6. Rangeland  

Low cover 30 

Medium cover 30 

High cover 30 

Total 205 

 

Table 1.  Numbers of Reference Points Selected from Each Land-cover Class
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RESULTS AND DISCUSSION

In this study, two different Landsat scenes were used to derive land-cover classes for Kanopolis
watershed for the year 1992.  The Level-1 classification produced 6 land-cover classes.  Further
breakdown of the agricultural and rangeland areas was done using supervised classification
technique.

NDVI values

The NDVI values for rangeland ranged from 106 to 174 in the western image and from 106 to 154
in the eastern image (Figure 3). This graph indicates two general characteristics of rangeland in this
watershed. First, the western scene had higher frequencies for most values of NDVI and a greater
overall NDVI frequency (i.e., area under the frequency curve was greater). This indicates a greater
area of rangeland in the western scene than the eastern scene.  Second, the distribution was shifted
toward lower NDVI values  (i.e.,  a lower mean NDVI value)  in the western scene. This indicates
a lower growth of rangeland vegetation in the western scene than the eastern scene. Both these

characteristics can be explained by the distribution of rainfall and soil type in the watershed. The
western part of the watershed has coarser soil texture and received less rainfall, which increased the
area dedicated to rangeland instead of cropland, but also produced a lower quality of vegetation.

Variation in land-cover

Land-cover distribution for Kanopolis Lake watershed is presented in Table 2 and Figure 4.
Cropland covered 47% of the watershed and rangeland covered 52%. More rangeland area occurred
in the western part of this watershed. The cropland areas could be separated into summer crops and
winter wheat.  In most cases the large water bodies could also be classified.  However, water

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

100 110 120 130 140 150 160 170 180

NDVI values

F
re

q
ue

nc
y 

(p
ix

el
s)

Eastern part Western part

Figure 3.  Distribution of NDVI values



Journal of Environmental Hydrology                              Volume 10  Paper 6  September20029

Agricultural Watershed Land Cover from Landsat Scenes    Bhuyan, Mankin, Hutchinson, Goodin and Koelliker

classifications did not appear along the river mainstem because the width was smaller than the
resolution of the pixel size. Forestland or riparian land also could be classified and appeared along
the main watercourse of the watershed.  Similarly, the residential areas within the watershed could
be classified very well, although some of the pixels might have been lost in these categories during
the smoothing process.

Table 2.Areal Distribution of Land-cover Classes from Satellite Image Data for the
Kanopolis Lake Watershed During 1992

Land-cover classes Area 
 (km2) (% of total) 
Residential 11.9 0.2 
Summer crop 1835.0 29.1 
Winter wheat 1113.4 17.6 
Forestland 47.9 0.8 
Water 18.6 0.3 
Barren land 9.3 0.1 
Rangeland   

Low cover 299.4 4.8 
Medium cover 2112.1 33.4 
High cover 868.4 13.7 

Total 6316.0 100.0 
   

Figure 4.  Classified images of the Kanopolis Lake watershed.
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Accuracy Assessment

The error matrix for five land-cover classes of residential, cropland, forestland, water, and
rangeland was used to assess the accuracy of the land-cover classification (Table 3).  The overall
accuracy (Po) is the ratio of the sum of diagonal values (171) to the total number of cell counts in the
matrix (205) or 83.4%. This percent accuracy is comparable to values obtained by other researchers,
who reported percent accuracies ranging from 65% to 87% (Muller et al., 1998; Marsh et al., 1994;
DeGloria et al., 1986).

Reference-data Classification

Landsat Residential Cropland Forestland Water Rangeland Total User’s Pr
Classification accuracy, %

Residential 8 2 — — — 10 80.0 0.05
Cropland 1 59 — — — 60 98.3 0.29
Forestland — 4 23 — 3 30 76.7 0.15
Water — — — 15 — 15 100.0 0.07
Rangeland 1 22 1 — 66 90 73.3 0.44

Total 10 87 24 15 69 205
Producer’s 80.0 67.8 95.8 100.0 95.7
Accuracy, %
Pc 0.05 0.42 0.12 0.07 0.34

Table 3.  Error matrix comparing the classified image to the reference map.

The user’s accuracy is a measure of commission errors, indicating the probability that a unit within
an individual category is correctly classified; it is estimated as proportion of the diagonal value to the
row total.  For example, user’s accuracy was 59/60 = 98.3% for cropland and 66/90 = 73.3% for
rangeland.  Producer’s accuracy is a measure of omission errors, indicating the probability that a
reference data point is correctly classified, and it is estimated as the proportion of the diagonal value
to the column total.  For example, producer’s accuracy was 59/87 = 67.8% for cropland and 66/69
= 95.7% for rangeland.

In 22 cases, points classified as cropland by the reference coverage were classified as rangeland
by the current Landsat classification.  This is largely responsible for the lower user’s accuracy for
rangeland and the lower producer’s accuracy for cropland.  Assuming that the reference coverage is
correct, this would suggest that high-residue croplands were incorrectly classified by our classification
as rangeland.  However, this may also represent low-residue rangelands that were incorrectly
classified as croplands in the reference classification.  This would need to be resolved using actual
ground-truth data for the year in question.

Both spring burning of rangelands, which causes a temporary low-residue condition, and spring
overgrazing of cattle, when winter-grazed animals are at the greatest weight prior to shipping, could
explain incorrect classifications in the reference data-set.  In each of these cases, the dates of images
used to assess land cover as well as the dates reference data are collected are critical and must
correspond.  Although the reference data used in this study were collected within the same year as
the images used for our classification, the published land-cover data-set does not specify the exact
dates that images were taken.  Thus, we cannot fully judge the correspondence of the two data sets.
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With chance agreement (Pe) of 0.297 and Po of 0.834, the k coefficient of agreement (Equation
(3)) was 0.76.  This compared well with the value of 0.60 obtained by Marsh et al. (1994).  Again,
our incorrect classification of cropland as rangeland was responsible for as much as a 0.11 reduction
in Po and a corresponding 0.15 reduction in k.

CONCLUSIONS

A reliable procedure for land-cover classification of Landsat-5 TM images for a larger watershed
has been described. This classification procedure was used on two historical Landsat scenes using
a hybrid classification technique that employed both unsupervised as well as supervised classification
algorithms.  Croplands were classified as summer crop and winter wheat, and the rangeland areas
were classified into categories of low, medium, and high cover. The classified images were joined,
and the resulting land-use map was used to extract the land-cover information required to develop
AGNPS model inputs.  This procedure is applicable for many watershed models and will allow
development of required hydrologic model parameters for large watersheds with reasonable ease and
accuracy.
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