•研究论文•

一种新型手性分子电性矩边矢量(Vmedc)的设计及其应用

陈国华**.a,b 夏之宁**.a 陆瑶b 廖立敏。

舒 茂" 孙家英" 李志良"

(*重庆大学生物工程学院/化学化工学院 重庆 400044) (*四川理工学院材料与化学工程系 四川自贡 643000)

摘要 根据分子中不同类型原子间电相互作用的不同,文中提出了一种手性分子电矩边矢量(Vmedc),进一步拓展分子电矩边性矢量(Vmed)使用范围.为检测该手性描述矢量的结构表达特性和模型预测能力,分别对 32 个培哚普利拉类血管紧张素转化酶(ACE)抑制剂的对映结构体和 7 对苯基哌啶类 σ-受体抑制剂进行考察. 32 个 ACE 抑制剂多元逐步回归系数 *R*=0.913 (*R*²=0.834, *SD*=0.768, *F*=33.875),留一法交互检验为 *R*_{cv}=0.877 (*R*_{cv}²=0.769, *SD*_{cv}=0.906, *F*_{cv}= 22.473),具有较强预测能力;继而用 BP 神经网络,对 60 组随机样本(23:9)进行留分法分析取得较好结果,训练集平均为: *R*_{Training}=0.931 (*R*_{Training}²=0.967),预测集为: *R*_{cv}=0.918 (*R*_{cv}²=0.842);而对 14 个 σ-受体抑制剂多元回归(*R*=0.955, *R*_{cv}²=0.849)获得与文献一致结果.再用 Fisher 线性判别方法和 BP 神经网络对 ACE 抑制剂进行判别分析,其活性分类 88.89% 正确(仅 9 号错误),非活性分类 100.0% 正确,总分类正确率为 96.87%.两个数据集测试证明该方法与其它文献方法相当,这为定量构效关系(QSAR)研究提供一种新选择,扩充了 Vmed 描述矢量应用范围.

A Vector of Molecular Electronegative Distance for Chiral Compounds (Vmedc) and Its Applications to Codification of Central Chirality

CHEN, Guo-Hua^{*,a,b} XIA, Zhi-Ning^{*,a} LU, Yao^b LIAO, Li-Min^a SHU, Mao^a SUN, Jia-Ying^a LI, Zhi-Liang^a

(^aCollege of Bioengineering/College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044) (^bDepartment of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000)

Abstract Based on the interaction between different atomic types, Vmedc, a novel vector of molecular electronegative distance (Vmed) has been defined and generalized in order to further codify chemical structural information for chiral drugs. Some quantitative structure-activity relationships (QSAR) have been modeled by Vmedc for both 32 stereoisomers of perindoprilate as angiotensin-converting enzyme ACE inhibitors and 7 pairs of chiral *N*-alkylated 3-(3-hydroxyphenyl)-piperidines that bind σ -receptors. Stepwise linear regression analysis was made forward to the 32 stereoisomers with good modeling results: R=0.913 ($R^2=0.834$, SD=0.768, F=33.875); $R_{cv}=0.877$ ($R_{cv}^2=0.769$, $SD_{cv}=0.906$, $F_{cv}=22.473$). Furthermore, average correlation coefficients (R) for random 60 groups with 23 training compounds for all the 32 ACE stereoisomers by backpropagation neural network (BPNN) were $R_{tr}=0.931$ ($R_{tr}^2=0.967$) and $R_{cv}=0.918$ ($R_{cv}^2=0.842$), except for four groups sampled unreasonably. Compared with literatures, Vmedc has also

Received December 26, 2007; revised April 16, 2008; accepted May 20, 2008.

国家高技术研究发展计划(863 计划)专题(No. 2006AA02Z312), 重庆大学研究生创新团队项目科技创新基金(No. 200711C1A0010260)资助项目.

^{*} E-mail: zlli-cqu@163.com, chgh29@163.com, zlli2662@163.com

been applied to obtain good results for 14 samples with correlation coefficient being $R_{cv}=0.955$ ($R_{cv}^2=0.849$). Through both Fisher' linear discriminant analysis and BPNN, the 32 ACE stereoisomers were classified correctly into 88.89% active with one (#9) wrongly classified, 100.00% nonactive with no wrongly classified, and average classification of 96.87% globally. Good results obtained here were compared to those obtained with other chiral descriptors, when it was applied to the same 2 datasets, which shows that the Vmedc approach provides a powerful alternative QSAR technique for chiral compounds.

Keywords ACE inhibitor; chiral; Vmedc; *N*-alkylated-3-(3-hydroxyphenyl)piperidine; backpropagation neural network; linear discriminant analysis

1 前言

物质的分子结构决定其性质, 在三维空间中, 分子 立体结构通常被特征化为各原子之间的键长、键角和二 面角等特征表示. 而在二维空间中, 分子结构特征被简 化为组成分子中的各原子拓扑连接关系,即分子图.由 相同原子组成的分子,由于具有不同的拓扑连接关系, 常被称为同分异构体;然而,即使两个分子具有完全相 同的分子连接拓扑关系,由于其中一个原子的手性不 同, 对应结构也不同, 即具有不同的 3D 空间结构, 若对 应分子与其镜像不能重叠则称它们为对映异构体[1.2]. 在本研究中,组成不对称的原子被称作手性原子,而具 有手性原子的分子被称为手性分子,物质的性质不仅与 分子的二维拓扑连接关系有关,而且与它的三维空间结 构也具有重要的关系. 在药物分子中, 具有相同分子拓 扑结构而立体结构不同的分子,其药物活性可能完全不 同,有的甚至还可能具有毒副作用,例如:震惊中外的 "反应停"事件[3];因此分子性质不仅决定于它的分子拓 扑关系而且受制于它的空间立体结构.

1.1 定量构效关系(QSAR)

定量构效关系(quantitative structure-activity relationship, QSAR)是应用最为广泛的药物设计手段与技术 之一,它是采用数理统计方法,建立起化合物性质、生 物活性或药物药效与其结构参数之间的定量关系^[4].通 过这些定量关系,可预测化合物的生理活性或物理性 质,指导我们设计出具有更高活性的化合物^[5].常用 QSAR 方法有二维定量构效关系(2D-QSAR)^[6,7],三维定 量构效关系(3D-QSAR)^[8~10]以及更高维的定量结构关 系^[11,12].定量构效关系最早可追溯到 Crum-Brow 和 Fraser^[13]于 1867 年提出,到 20 世纪前后,Overton 和 Meyer 等^[14,15]提出了麻醉作用的类脂学说,即化学结构 各异的麻醉剂其活性会随着脂-水分配系数增加而增加, 这可能是最早提出化合物生理活性和物理化学性质之 间的定量关系模型,因而得到大量的应用.特别是在 1962 年, Hansch^[16]提出同系列化合物某些生物活性的变

化是和它们某些可测量物理化学性质的变化相联系的, 这些可测量的特性包括疏水性质、电性质和空间立体性 质等,都有可能影响化合物的生物活性,这一重要发现 促进了 QSAR 方法的进一步蓬勃发展. 但 2D-QSAR 是 基于分子结构的拓扑关系而建立起来的, 物理意义不十 分明确.随着我们对三维空间研究能力的发展,其三维 定量构效关系(3D-QSAR)应运而生,譬如分子形状分析 (molecular shape analysis, MSA)^[17]、距离几何方法 (distance geometry, DG)^[18] 和比较分子场分析 (comparative molecular field analysis, CoMFA)方法^[19]等. 这些 3D-QSAR 方法在物理化学上的意义较为明确, 能 间接反映药物分子和靶点之间的非键相互作用特征,因 此近十多年来 3D-OSAR 方法得到了迅速的发展和广泛 的应用, 其中 CoMFA 方法是目前最为成熟且应用最为 广泛的方法^[20].虽然这些QSAR方法在药物设计方面已 取得巨大成功,但是对于手性化合物,传统 2D-QSAR 方法无法进行区分^[21,22], 而基于空间结构 3D-QSAR 方 法,如 CoMFA,对于手性化合物,由于其自身空间关系 不同而被考虑,但是对于那些高度柔韧的化合物,其处 理起来就非常困难,即使这一缺陷被 Grid 方法所克服, 但是其依然存在处理数据量太大这一难题^[23,24].因此开 展手性化合物的 QSAR 方法研究显得极为重要, 经过多 年的努力, 现已取得比较令人满意的结果[21,22]. 本研究 室提出 Vmed 方法在 QSAR 研究方面已经取得了比较满 意的结果^[25,26],本研究就是在原 Vmed 方法的基础上, 进行手性分子的修订,从而扩展其使用范围.

1.2 Vmedc 描述矢量

本研究室根据组成分子拓扑结构关系,不同类型原子划分方案和分子中各类原子的相对电性和原子之间 相对键距的不同,提出了 Vmed 描述矢量.在此基础上, 经过不断的努力,发展出系列二维新型电性距边描述矢量(MED/MDE/MEE/MHD),广泛应用于生物与药物及 毒物分子结构性质关系的表达中^[25~27].但是该方法属 于 2D-QSAR 方法,因而无法区分对映异构体,为了进 一步拓展 Vmed 的分析范围,在本研究中对其计算方法 进行部分的修改. 在本研究中,依然应用隐氢分子图进 行计算^[25],但是在原子分类方法时,先将分子按原来 Vmed 方法划分为 C 族, O 族, N 族, X 族(卤素)四类,在 此基础进一步根据分子中原子轨道杂化状态(sp3, sp2, sp1)的不同进一步划分为 9 类 C, N (sp3, sp2, sp1), O (sp3, sp2)和 X (sp3),电负性分别为 2.55, 3.44, 3.04 和 3.98 (3.16, 2.96, 2.66);半径为 1.70, 1.55, 1.60 和 1.50 (1.80, 1.95, 2.10). Vmed 定义各类原子之间相互作用 为^[25]:

$$M_{kl} = \sum_{i \in k, j \in l} (q_i q_j / d_{ij}^2) \quad (1 \le k \le l \le 9)$$

$$d_{i,j} = \sum_{i,j} (d_i') \tag{2}$$

其中 *K* 和 *l* 分别代表不同分子类型, *i* 和 *j* 分子图中的连接编码, *d_i* 为第 *i* 原子到 *j* 原子之间的相对键长, 而 *q_i* 和 *q_j* 分别代表第 *i* 号原子和 *j* 号原子的相对电负性. 为了拓展 Vmed 对手性化合物的处理能力, 在相对路径计算时, 先按照原方法搜索出两原子之间连接的最短路径, 然后根据最短路径中, 其经过的手性碳原子构型不同进行不同的计算. 根据各键包含手性碳原子的不同, 将式(2)按照下面规则进行手性变形处理:

$$d_{i,j} = \sum_{i,j} [(d'_i)^* (1+w)]$$
(3)

对于含有手性碳原子 i 有:

 $d'_{(i-1)} * (1+w_1) + d'_{(i+1)} * (1+w_2)$

(1)如果*i*的手性为*R*型,则*w*₁=0,*w*₂=0.(2)如果中 心原子*i*为手性为*S*型,则:(*a*)如果从*i*到(*i*-1)的方向 其最近手性为*S*型,则*w*₁=0;如果无手性或者手性为*R* 型,则*w*₁=1.(*b*)如果从*i*到(*i*+1)的方向其最近手性为*S* 型,则*w*₁=0;如果无手性或者手性为*R*型,则*w*₁=1. 如图 1,不考虑原子的手性,其*RSSRS*构型分子与 *RSSRR*构型分子中4号原子到15号原子 Vmed 计算用 最短路径为:4,3a,7a,1,8,9,10,11,15,则(2)式相对最 短距离计算如下:

 $\begin{aligned} & d_{4,15} = L_{4-3a}/1.54 + L_{3a-7a}/1.54 + L_{7a-1}/1.54 + L_{1-8}/1.54 \\ & + L_{8-9}/1.54 + L_{9-10}/1.54 + L_{10-11}/1.54 + L_{11-15}/1.54 = \\ & 1.54/1.54 + 1.54/1.54 + 1.47/1.54 + 1.367/1.54 + 1.54/1.54 \\ & + 1.47/1.54 + 1.47/1.54 + 1.54/1.54 = 7.751 \end{aligned}$

而对于按照手性相对路径计算方法,由式(3)其 RSSRS 构型分子与 RSSRR 构型分子计算分别如下:

 $d_{4,15}(RSSRS) = (1.54/1.54)^*(1+0) + (1.54/1.54)^*(1+1) + (1.47/1.54)^*(1+1) + (1.367/1.54)^*(1+0) + (1.54/1.54)^*(1+0) + (1.47/1.54)^*(1+0) + (1.47/1.54)^*(1+1) + (1.54/1.54)^*(1+1) = 11.660$

 $d_{4,15}(RSSRS) = (1.54/1.54)^*(1+0) + (1.54/1.54)^*(1+1) + (1.47/1.54)^*(1+1) + (1.367/1.54)^*(1+0) + (1.54/1.54)^*(1+0) + (1.47/1.54)^*(1+0) + (1.47/1.54)^*(1+0) + (1.47/1.54)^*(1+0) + (1.54/1.54)^*(1+0) = 9.70584$

则 sp3 杂化碳原子之间的 Vmedc 为: *M*_(RSSRS) = 15.442; *M*_(RSSRR) = 14.584. 由上面的计算可知, 对于手性构型分别为 *RSSRS* 和 *RSSRR* 的分子, 不管分子中四个手性原子构型如何, Vmed 计算的最小相对距离 *d*_{4,15} 都相同, 无法对手性化合物进行分辨识别; 而按照修订的手性相对最小路径计算式(3)计算, 结果完全不同, 从而达到了对手性原子的区分目的.

图 1 ACE 抑制剂分子结构图 Figure 1 The sketchs of ACE inhibitor

2 试验方法

2.1 Vmedc 描述矢量的数据准备

为检验该手性描述矢量的预测和分辨分子结构与 活性的能力,分别选取如图1所示的32个血管紧张素转 换酶(ACE)抑制剂对映异构体^[28]和 14 个苯基哌啶类 (HPP)手性化合物进行研究^[29].首先在 Chem3D 10.0 下 生成分子的立体结构,然后采用 Gaussian98,使用密度 泛函(DFT)的 B3PW91 方法,在 6-31G 基组上进行分子 结构优化^[30],然后利用优化后的分子实际键长代替标 准键长,按照式(1)和(3)计算 Vmedc 描述子.在分类研 究中,设定 32 个 ACE 抑制剂的 IC₅₀ 值不高于 110 nmol/L 为活性化合物类别,用 ACE_{iactv}=1表示;而对于 抑制浓度高于 110 nmol/L 的设为非活性化合物类别,用 ACE_{iactv}=-1表示;所有的计算都在 Pentium IV 3.0 上 进行.

2.2 预测分析

2.2.1 多元线性回归

多元线性回归常被应用于一个因变量和一个或者 几个自变量之间的线性关系研究.当样本数 n 相对于变 量数 m 不是很大时,会很容易地获得较大的 R 值,即容 易产生所谓偶然相关,使变量发生重叠;为了使所得的 定量数学模型具有良好的相关性及较好的均方根偏差, 但含有较少的变量,需要对变量进行选择和压缩,即建 立"最优"回归方程.所谓"最优"回归方程,主要是指, 在回归方程中包含所有对因变量 y 影响显著的自变量, 而不包含对 y 影响不显著的自变量的回归方程.逐步回 归分析正是根据这种原则提出来的一种回归分析方法, 逐步回归法的基本思想是将变量逐一引入,即以偏回归 平方和 F 检验显著的变量作为被引入变量,新变量引入 后还要重新对所有己引入的变量进行检验,不显著者从 方程中剔除,直到没有变量可剔除也没有变量可引入时 为止,最后对所选定变量建立线性回归方程^[31,32],本文 使用 SPSS15.0 进行多元线性回归分析.

2.2.2 反向传播人工神经网络(BPNN)

人工神经网络(Artificial neural network, ANN)是一 种非线性预测工具^[33],它的数学模型是通过人工神经 网络对人脑或自然神经网络若干基本特性的抽象和模 拟,其目的在于模拟大脑的某些机理与机制,实现某个 方面的功能^[34]. 一般的神经网络采用 I-H-O 的三层网络 结构, 其中I为输入层神经元数目, H代表隐藏层神经元 数目, O 代表输出层神经元数目. 目前已经有了很多的 神经网络方法,如:多层网络 BP 算法^[35], Hopfield 网络 模型^[36], 自适应共振理论^[37], 自组织特征映射理论^[38] 等. 反向传播(Backpropagation, BP)模型是一种前向多 层神经网络的误差反向传播学习算法,它亦采用 I-H-O 的三层网络结构, 输入数据经作用函数后, 再将隐节点 的输出信号传递到输出节点,最后给出输出结果.该算 法的学习过程由信息的前向传播和误差的反向传播组 成. 在前向传播的过程中, 输入信息从输入层经隐含层 逐层处理,并传向输出层;第一层神经元的状态只影响 下一层神经元的状态. 如果在输出层尚得不到期望的输 出结果,则转入反向传播,将误差信号(目标值与网络 输出之差)沿原来的连接通道返回,通过修改各层神经 元权值,使得误差均方最小.由于神经网络映射关系不 限于线性关系,常被应用在非线性关系和曲线方面的分 析. 通常研究的生物现象, 常常不具有线性关系, 本研 究采用自编 BP 神经网络程序, 先将输入神经网络的数 据按照公式: $X = (X - X_{\min})/(X_{\max} - X_{\min})$ 归一化处理后, 输入神经网络进行分析.

2.2.3 分类判别分析

LDA 线性判别分析的基本原理就是在 n 维样本空间,按照(4)式的线性函数通过一判决策边界直线或超 平面型判别边界将任意的两个类别区分开来^[21,22].

$$Y = a_1 X_1 + a_2 X_2 + a_3 X_3 + \dots + a_m X_m \tag{4}$$

其中: *Y* 为判别分数(判别值); *X*₁, *X*₂, *X*₃, …, *X*_m 为反映研 究对象特征的变量, *a*₁, *a*₂, *a*₃, *a*_m 为各变量的贡献大小, 亦称判别系数. 判别分析就是通过判别函数进行判别分 析. 根据样本空间类别数量的不同,依据这些描述变量, 样本空间被一个判别函数将样本空间划分两类别,通过 计算各判别函数的得分来决定预测样本的类别. 判别模 型的质量通过检测 wilk 的λ统计量, *F* 值, *p* 水平和各类 分类正确率进行 *F* 值的评价来入选变量. 本文通过检测 典则回归系数, *χ* 和 *p* 水平进行分析. 为了判定哪些变量 具有最优的组间判别效力,采用前向逐步判别方法对研 究中 Vmedc 描述矢量进行选择. 所有分析均采用 SPSS15.0 程序进行,在此基础上,利用上述判别分析得 到的主要影响变量,采用一个4-9-1的自编 BP 神经网络 程序进一步的对培哚普利类对映异构体进行分类分析.

3 结果与讨论

3.1 预测分析结果

多元线性逐步回归常被应用在生物系统的建模方面,本文分别对 32 个 ACE 抑制剂的 19 个 Vmedc 描述 矢量和 7 对 HPP 手性衍生物的 8 个 Vmedc 描述矢量进 行逐步回归分析. ACE 抑制剂的 19 个 Vmedc 描述矢量 的前向分析结果如表 1,随着变量的增加(*R*=0.777~ 0.920),其相关系数逐步增加,最终由 4 个 Vmedc 描述 变量 *v*₂(C_{SP2}—C_{SP3}, *b*₁),*v*₁₆(N_{SP3}—O_{SP3}, *b*₂),*v*₁₂(N_{SP2}— N_{SP3}, *b*₃),*v*₄(C_{SP2}—N_{SP3}, *b*₄),*v*₁₉(O_{SP3}—O_{SP3}, *b*₅)达到最佳 预测能力(*b*₀ 为拟合常数),经 LOO 方法检验 *R*_{cv}=0.877, *SD*_{cv}=0.906,模型具有比较好的预测分析能力.

表 1 采用多元线性逐步回归分析获得的 ACE 抑制剂的 QSAR 结果 **Table 1** QSAR results of variables selected for ACE inhibitors by SMR

					-													
Model	b_0	b_1	b_2	b_3	b_4	b_5	R	R^2	$R_{\rm adj}^{2}$	SD	F	U	Q	$R_{cv}^{2}(01)$	<i>SD</i> (01)	F(01)	U(01)	Q(01)
1	9.452	-1.384					0.777	0.604	0.591	1.125	45.736	57.927	37.996	0.554	1.194	37.275	53.148	42.775
2	8.500	-1.773			13.447		0.821	0.675	0.652	1.038	30.049	64.702	31.221	0.609	1.138	22.562	58.395	37.528
3	10.922	-1.548			15.522	-194.270	0.872	0.760	0.734	0907	29.528	72.885	23.038	0.701	1.012	21.884	67.244	28.679
4	12.043	-1.177		-11.251	11.613	-215.233	0.893	0.798	0.768	0.847	26.658	76.542	19.381	0.717	1.003	17.101	68.777	27.146
5	37.348	-0.653	149.284	-336.633	-291.159	-96.356	0.920	0.846	0.817	0.753	28.629	81.178	14.745	0.751	0.959	15.653	72.004	23.919
6	44.592	-0.579	196.688	-439.157	-387.635		0.913	0.834	0.809	0.768	33.875	79.985	15.938	0.769	0.906	22.473	73.766	22.157

逐步回归方程为(N=32, R=0.913 (R²=0.834), SD =0.768, F=33.875, U=79.985, Q=15.938; LOO 交互检 验预测: R_{cv} =0.877 (R_{cv}^2 =0.769), SD_{cv}=0.906, F_{cv} = 22.473):

$log(IC_{50}) = 44.592 - 0.579v_2 + 196.687v_4 -$ $439.153v_{12} - 387.632v_{16}$

在多元线性逐步回归变量选择的基础上,利用被选 中的 4 个 Vmedc 描述变量 v2, v16, v12 和 v4 作为输入, 选 取一个4-9-1的三层 BP 神经网络进行预测分析, 设定神 经学习效率因子 0.01, 学习动量为 0.01, 最大学习次数 为5百万次,为了评估模型的预测能力,采用留分法对 神经网络进行训练测试,随机抽取 60 组样本,其中 23 个样本作为训练集,9个作为预测集,采用 BP 方法进行 训练预测,结果如表 2. 其中除 2 组[49 (R=0.962, S= 0.481, F = 169.343, $R_{cv}^2 = -0.033$), 57 (R = 0.942, S =0.569, F=110.079, R_{cv}²=0.282)]由于抽样分布不太合理 外,其它各组的相关系数都不低于 0.500; 进一步说明 该方法预测能力比较稳定, 其训练和测试集的平均相关 系数为: R=0.931 (R²=0.867), R_{cv}=0.918 (R_{cv}²=0.842), 其总体结果优于线性回归结果.本文中进一步研究只含 有一个手性碳原子的苯基哌啶类手性化合物, σ-受体抑 制剂的逐步回归结果如表 3(Vmedc 描述矢量: v1(Csp2- C_{SP2} , b_1), $v_3(C_{SP2}$ — N_{SP3} , b_2), $v_5(C_{SP3}$ — C_{SP3} , b_3), $v_6(C_{SP3}$ — N_{SP3}, b₄), b 为拟合常数), 其回归方程为(n=14, R= $0.955 (R^2 = 0.912), SD = 0.343, F = 34.536, U = 12.169, Q$ =1.175, LOO 预测: n=14, $R_{cv}=0.921$ ($R_{cv}^2=0.849$), $SD_{cv} = 0.449, F_{cv} = 18.701, U_{cv} = 11.325, Q_{cv} = 2.019$):

 $log(1/IC_{50}) = 4.603(\pm 0.539) - 0.539(\pm 0.065)*v_1 + 8.515(\pm 1.304)*v_3 - 0.442(\pm 0.054)*v_5$

与文献^[22]比较, Vmedc 方法回归 *R* 值与文献报道相 当(*R*=0.969, *F*=85.826, *S*=0.270, *S*_{cv}=0.289, *p*<0.000), 说明该手性 Vmedc 方法是完全具备对手性化合物的预测分析能力, 拓展了其方法的预测范围, 其14个化合物的估计值与观测值的回归和交互校验结果如图 2 所示.

表 2 60 组 ACE 抑制剂随机样本训练统计结果 Table 2 QSAR Statistical results of random 60 sets for the 32 ACE Inhibitors

	R _{training}	Straining	F _{training}	PRESS	$R_{\rm cv}^{2}$
Mean	0.931	0.554	99.956	3.153	0.842
Max	0.964	0.635	181.467	6.124	0.985
Min	0.866	0.446	43.748	0.607	-0.033

图 2 苯基哌啶类及其留一法计算值与实验值 Figure 2 Correlation between experimental and calculated (a) or validated (b) log(1/IC₅₀) of 14 derivatives of HPP

3.2 分类结果

3.2.1 Fisher 线性判别分析结果

在本研究中, LDA 和 BPN 被分别采用对 ACE 的活 性进行分类分析,检验该 Vmedc 的分类能力. LDA 采用 一个简单的线性 QSAR 模型去拟合分类函数,为了获得 高的统计特性和较少的参数,采用 Wilks's lambda 方法 进行前向逐步判别分析,得到下面方程*n*=32, λ=0.175,

表 3 对 HPP 的 Vmedc 作用项前向逐步回归变量筛选结果 Table 3 QSAR results of forward stepwise MLR for the Vmedc indices of HPP

Model	b_0	b_1	b_2	b_3	b_4	R	R^2	$R_{\rm adj}^2$	SD	F	U	Q	$R_{\rm cv}^{2}(01)$	<i>SD</i> (01)	F(01)	U(01)	Q(01)
1	4.619				-1.139	0.706	0.499	0.457	0.747	11.945	6.657	6.687					
2	5.519	-0.120			-1.054	0.823	0.677	0.618	0.626	11.527	9.034	4.310	0.527	0.758	6.124	7.030	6.314
3	6.203	-0.319	4.550		-1.143	0.903	0.815	0.760	0.496	14.718	10.880	2.464	0.709	0.623	8.111	9.457	3.887
4	5.378	-0.490	7.691	-0.340	-0.355	0.963	0.927	0.895	0.329	28.654	12.372	0.972	0.864	0.448	14.345	11.535	1.809
5	4.603	-0.539	8.515	-0.442		0.955	0.912	0.886	0.343	34.536	12.169	1.175	0.849	0.449	18.693	11.325	2.019

 $\chi^2 = 48.875, p < 0.000$:

 $ACE_{iactive} = 123.62 * v_3 + 235.877 * v_{12} - 527.89 * v_{17} + 2956.005 * v_{19} - 238.693$

其中 p 为检验显著性水平, λ 取值范围 0 到 1, 其中 0 代 表完全分类, 1 为最差分类. 其特征值为 4.729, 典型相 关系数 R 为 0.909, 显著性概率 Sig=0.000, Sig<0.01 从 而认为判别函数有效. 方差百分比和方差累计百分比均 为 100%. 典则判别结果 88.89%的活性化合物(8/9)分类 正确,而非活性化合物 100.0%的分类正确,总的分类正 确率为 96.87% (31/32),仅有一个化合物 9 号分类错误. 为了和现有方法进行比较^[21,22],也为了检验其方法的预 测能力,按照文献方式分别采用 LOO 检验法和留分法 得到相同的分析判别能力,该手性描述子得到一致的结 果(表 4).

3.2.2 BP 分类结果

在此基础上,依据 Fisher 线性逐步判别结果,以 v₃, v₁₂, v₁₇和 v₁₉作为输入,选取一个 4-9-1 的三层 BP 神经 网络进行分类分析.设定神经网络的学习效率因子

0.01, 学习动量为0.01, 最大学习次数为5百万次, 随机 产生 60 组训练预测样本(23:9), 分别对神经进行训练 测试, 结果与Fisher 判别分类结果一致. 同时在该60组 样本中仅发现9号发生分类错误, 因此将9号样本作为 一个离群值, 再随机选择 60 组样本进行分类训练测试, 则无任何分类错误.

4 结论

传统的 2D-QSAR 方法无法对手性化合物进行分辨 处理,发展高效 2D-和 3D-QSAR 方法显得越来越迫切. 本研究提出的 Vmedc 描述子不仅能够准确地对手性化 合物进行分类分析,而且能够比较准确地预测手性化合 物的生物活性值,但是更进一步的对手性化合物其立体 结构与生物活性的关系研究还需努力.

致谢 感谢新加坡国立技术学院生命科学技术中心(新 加坡 139651)的陈刚博士提供的 Gaussian98 计算结果.

表 4 对 32 个 ACE 抑制剂的 LDA 分类结果^[21,22] Table 4 QSAR results of LDA classification to 32 ACE inhibitors with canonical score (s_{cano})

ID	Compound ^a	$IC_{50}^{b}/(nmol \cdot L^{-1})$	P ^c /%	$P_{\rm CV}{}^d/\%$	s _{cano} ^e	$P^{f,g}/\%$	s _{cano} ^h	ID	Compound ^a	$\mathrm{IC_{50}}^{b}/(\mathrm{nmol} \cdot \mathrm{L}^{-1})$	<i>P</i> ^{<i>c</i>} /%	$P_{\rm CV}{}^d/\%$	s _{cano} ^e	$P^{f,g}/\%$	s _{cano} ^h
1	SSRSS ^P	1.1	1.000	0.999	2.890	0.999	2.551	17	SRRRR	$33 \times /10^{3}$	0.990	0.978	0.041	0.956	0.341
2	SRSSS ^P	1.2	1.000	1.000	4.529	1.000	4.276	18	RSSSR	$36 \times /10^{3}$	1.000	1.000	-1.547	1.000	-1.270
3	SSSSS	1.5	1.000	1.000	4.858	1.000	4.661	19	RSRSR	47×10^3	1.000	1.000	-1.340	1.000	-1.052
4	SRRSS ^P	3.3	1.000	1.000	3.486	1.000	3.183	20	RSRSS ^P	$60 \times /10^{3}$	0.991	0.968	0.015	0.991	-0.033
5	SSSSR	12.2	1.000	1.000	3.811	1.000	3.910	21	RRRRR	10 ⁵	1.000	1.000	-1.820	1.000	-1.391
6	SSRSR	29.4	1.000	1.000	3.352	1.000	3.389	22	SRRRS	10 ⁵	1.000	1.000	-2.590	1.000	-2.336
7	SRRSR	39.8	1.000	1.000	3.356	1.000	3.390	23	RRRSS	10 ⁵	0.967	0.890	0.304	0.970	0.252
8	SRSSR	54.0	1.000	1.000	3.473	1.000	3.508	24	SRSRR ^P	10 ⁵	0.999	0.997	-0.378	0.994	-0.118
9	RRSSS*	108.0	0.907	0.999	0.538	0.908	0.522	25	RRRRS	10 ⁵	1.000	1.000	-2.087	1.000	-1.684
10	SSSRS	$1.1 \times /10^{3}$	1.000	1.000	-1.772	1.000	-1.444	26	RRSRR	10 ⁵	1.000	1.000	-2.094	1.000	-1.676
11	RSSSS	$1.9 \times /10^{3}$	0.950	0.876	0.397	0.948	0.379	27	SSSRR	10 ⁵	1.000	0.999	-0.720	0.999	-0.488
12	SSRRR ^P	$2.6 \times /10^{3}$	1.000	0.999	-0.681	0.998	-0.441	28	RSSRS ^P	10 ⁵	1.000	1.000	-1.781	1.000	-1.364
13	RRSSR	$5.5 \times /10^{3}$	1.000	1.000	-1.244	1.000	-0.945	29	RRRSR	10 ⁵	1.000	1.000	-1.375	1.000	-1.095
14	SSRRS	$7.1 \times /10^{3}$	1.000	1.000	-2.393	1.000	-2.089	30	RSSRR	10 ⁵	1.000	1.000	-2.257	1.000	-1.864
15	RRSRS	$7.8 \times /10^{3}$	1.000	1.000	-2.250	1.000	-1.853	31	RSRRS	10 ⁵	1.000	1.000	-1.627	1.000	-1.164

1~10号为活性化合物,11~32号为非活性化合物;* 错误分类化合物;"ACE 抑制剂的手性碳原子的编号为 C2, C3a, C7a, C9, C11;^b ACE 抑制剂化合物的 IC₅₀值,其值取自文献[21]和[28];^c32 个手性化合物的预测后验概率;^d 留一法预测的预测后验概率;^e 留一法典则分析的典则得分;^f 留分法中训练集的预测 后验概率;^s 留分法中预测集的预测后验概率;^h 留分法典则分析的典则得分;^p 留分法中预测集化合物.

References

- 1 Helgakert, T.; Jorgensen, P.; Olsen, J. *Molecular Electronic-Structure Theory*, Wiley, Chichester, **2000**.
- 2 Estrada, E.; Uriarte, E. Curr. Med. Chem. 2001, 8, 1573.
- 3 Melchert, M.; List, A. Int. J. Biochem. Cell Biol. 2007, 39, 1489.
- 4 Balaban, A. T. SAR QSAR Environ. Res. 1998, 8, 1.

- 5 Randic, M. J. Chem. Inf. Comput. Sci. 1997, 37, 672.
- 6 Zissimos, A. M.; Abraham, M. H.; Barker, M. C.; Box, K. J.; Tam, K. Y. J. Chem. Soc., Perkin Trans. II 2002, (3), 470.
- 7 Kier, L. B.; Hall, L. H. Molecular Structure Description: The Electrotopological State, Academic Press, New York, 1999.
- 8 Kubinyi, H.; Folkers, G.; Martin, Y. C. 3D QSAR in Drug

Design, Recent Advances, Vol. 3, Kluwer/ESCOM, Dordrecht, **1998**.

- 9 Kubinyi, H. 3D QSAR in Drug Design, Theory, Methods and Applications, ESCOM, Leiden, **1993**.
- 10 Kubinyi, H.; Folkers, G.; Martin, Y. C. 3D QSAR in Drug Design, Ligand Protein Interactions and Molecular Similarity, Vol. 2, Kluwer/ESCOM, Dordrecht, 1998.
- 11 Hopfinger, A. J.; Wang, S.; Tokarski, J. S.; Jin, B. Q.; Albuquerque, M.; Madhav, P. J.; Duraiswami, C. J. Am. *Chem. Soc.* **1997**, *119*, 10509.
- 12 Vedani, A. J. Med. Chem. 2002, 45, 2139.
- 13 Crum-Brown, A.; Fraser, T. R. Trans. R. Soc. Edinburgh 1868, 25, 151.
- 14 Overton, E. Studien Uber die Narkose, Fischer, Jena, Germany, 1901.
- 15 Meyer, H. Arch. Exp. Pathol. Pharmakol. 1899, 42, 109.
- Hansch, C.; Maloney, P. P.; Fujita, T.; Muir, R. M. *Nature* 1962, 194, 178.
- 17 Hopfinger, A. J. J. Am. Chem. Soc. 1980, 102, 7196.
- 18 Crippen, G. M. J. Med. Chem. 1980, 23, 599.
- 19 Cramer III, R. D.; Patterson, D. E.; Bunce, J. D. J. Am. *Chem. Soc.* **1988**, *110*, 5959.
- 20 Baurin, N.; Vangrevelinghe, E. J. Med. Chem. 2000, 43, 1109.
- 21 Díaz, H. G.; Sánchez, I. H.; Uriarte, E.; Santana, L. Comput. Biol. Chem. 2003, 27, 217.
- 22 Ponce, Y. M.; Díaz, H. G.; Zaldivar, V. R.; Torrens, F.; Castro, E. A. *Bioorg. Med. Chem.* 2004, *12*, 5331.
- 23 Golbraikh, A.; Bonchev, D.; Golbraik, A.; Bonchev, D.; Tropsha, A. J. Chem. Inf. Comput. Sci. 2001, 41, 147.
- 24 Todeschini, R.; Moro, G.; Boggia, R.; Bonati, L.; Cosentino, U.; Lasagni, M.; Pitea, D. *Chemom. Intell. Lab. Syst.* **1997**, *36*, 65.
- 25 Liu, S.S; Cao, C. Z; Li, Z. J. Chem. Inf. Comput. Sci. 1998, 38 (2), 387.
- 26 Liu, S. S.; Cai, S. X.; Cao, C. Z.; Li, Z. J. Chem. Inf. Comput. Sci. 2000, 40(6), 1337.
- 27 Liu, S. S.; Yin, C. S.; Cai, S. X.; Li, Z. J. Chin. Chem. Soc.

2001, 48(2), 253

- 28 Vicent, M.; Marchand, B.; Rémond, G.; Jaquein-Guinamant, S.; Damien, G.; Portevin, B.; Baumal, J.; Volland, J.; Bouchet, J.; Lambert, P.; Serkiz, B.; Luitjen, W.; Lauibie, M.; Schiavi, P. *Drug Des. Discov.* **1992**, *9*, 11.
- de Julián-Ortiz, J. V.; de Alapont, C. G.; Ríos-Santamarina,
 I.; García-Doménech, R.; Gálvez, J. J. Mol. Graphics Mod.
 1998, 16(1), 14.
- Frisch, M. J. Trucks, G. W. H. B. Schlegel, G. E. Scuseria, 30 M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, Replogle, E. S. and J. A. Pople, Gaussian 98, Gaussian, Inc., Pittsburgh PA, 1998.
- 31 Draper, N. R.; Smith, H. Applied Regression Analysis, 2nd Ed., Wiley, New York, 1981.
- 32 Miller, J. N.; Miller, J. C. Statistics and Chemometrics for Analytical Chemistry, Prentice Hall, London, 2000.
- 33 Sadeghi, B. H. M. J. Mater. Process. Technol. 2000, 103, 411.
- 34 Zupan, J.; Gasteiger, J. Anal. Chim. Acta 1991, 248, 1.
- 35 Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Parallel Distributed Processing: Exploration in the Microstructures of Cognition, MIT Press, Cambridge, 1986.
- 36 Hopfield, J. J. J. Proc. Natl. Acad Sci. U. S. A. 1982, 79, 2554.
- 37 Carpenter, G. A.; Grossberg, S. Appl. Opt. 1989, 26, 4919.
- 38 Fernández, M.; Caballero, J. *Bioorg. Med. Chem.* 2006, 14, 280.

(A0712262 CHEN, J. X.; LU, Z. S.)