•研究论文•

牛血清白蛋白-Cu²⁺结合过程中盐酸小檗碱的变构效应

刘雪锋* 李磊 方云

(江南大学化学与材料工程学院 无锡 214122)

摘要 用核磁共振(¹H NMR)、圆二色谱(CD)、荧光光谱(FS)以及紫外光谱(UV)技术考察了中药有效成分盐酸小檗碱 (BC)对牛血清白蛋白(BSA)-Cu²⁺结合过程的变构效应,得到分别表征 BSA 内源荧光猝灭、BSA-Cu²⁺复合物稳定性以及 Cu²⁺在 BSA 分子上的结合位点发生变构的定量效应参数 β_Q ($\beta_A \approx \beta_n$)和效率参数 γ_Q ($\gamma_A \approx \gamma_n$).结果表明, BC 对 Cu²⁺猝 灭 BSA 内源荧光呈负变构效应(0 < β_Q < 1),而对 BSA-Cu²⁺复合物稳定性以及 Cu²⁺在 BSA 分子上的结合位点呈正变构 效应($\beta_A > 1, \beta_n > 1$);变构效应随 BC 浓度增加而增强, BC 对 BSA-Cu²⁺复合物稳定性的变构效率明显高于其对荧光猝灭 和结合位点的变构; BSA 分子构象转变是变构效应的主要原因.

关键词 变构效应; 变构系数; 变构效率系数; 盐酸小檗碱; 牛血清白蛋白

Allosteric Effect of Berberine Chloride on Bovine Serum Albumin-Cu²⁺ Binding Process

LIU, Xue-Feng^{*} LI, Lei FANG, Yun

(School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122)

Abstract The allosteric effect of berberine chloride (BC), an active component of Traditional Chinese Medicine, on bovine serum albumin (BSA)- Cu^{2^+} binding process has been studied by ¹H NMR, circular dichroism, fluorescence spectroscopy and ultraviolet-visible absorption spectroscopy. Quantitative allosteric coefficients (β_Q , β_A and β_n) and allosteric efficiency coefficients (γ_Q , γ_A and γ_n) were obtained, respectively. The negative allosteric effect of BC on the BSA intrinsic fluorescence quenching ($0 < \beta_Q < 1$) and the positive allosteric effects of BC on both BSA- Cu^{2^+} complex stability and the Cu^{2^+} -binding sites ($\beta_A > 1$ and $\beta_n > 1$) were observed. The degree of the allosteric effects increased with BC concentration increase. The allosteric efficiency of BC in the aspect of BSA- Cu^{2^+} complex stability was higher than those of BSA fluorescence quenching and Cu^{2^+} -binding sites. The BSA molecule conformational transition may be the main cause for the allosteric effect of BC.

Keywords allosteric effect; allosteric coefficient; allosteric efficiency coefficient; berberine chloride; bovine serum albumin

生命体中多种小分子(离子)物质同时与生物大分子 结合及彼此间的影响已经引起关注^[1~5]. Hage 等^[6]以血 清白蛋白为固定相采用生物作用色谱(biointeraction chromatography)技术考察了一种药物(变构剂)对另一种 药物-蛋白质结合的变构效应(allosteric effect)^[6~8],报道 了药物-蛋白质结合的定量变构系数,为探讨不同药物 与蛋白质结合过程中的相互竞争提供了新的视角.但 是,关于有机药物对蛋白质-金属离子结合过程的变构 效应尚未见有报导.

本 文 选 取 盐 酸 小 檗 碱 (berberine chloride, BC, Scheme 1)为变构剂, 考察 BC 对 Cu²⁺与牛血清白蛋白 (bovine serum albumin, BSA)结合过程的变构效应, 期望

^{*} E-mail: xfliu@jiangnan.edu.cn

Received January 14, 2008; revised April 9, 2008; accepted May 12, 2008.

能够为理解金属离子、药物对血浆中外源金属离子分布 和储存的影响以及可能的后续生物效应提供有用信息. 此外,考虑到在色谱技术^[6]中蛋白质固定后其原有性质 可能发生改变以及蛋白质随流动相的洗脱损失,本文采 用核磁共振(¹H NMR)、圆二色谱(CD)、荧光光谱(FS) 和紫外吸收光谱(UV)等实验手段开展研究,获得了分 别表征 BSA 内源荧光猝灭、Cu²⁺-BSA 复合物稳定程度 以及 Cu²⁺结合位点发生变构的猝灭变构系数 β_Q, β_A 和 β_n,考察了 β_Q (β_A 和 β_n)随变构剂 BC 浓度(C_{BC})变化的规 律,并分别得到相应的变构效率定量参数 γ_Q, γ_A 和 γ_n;并 从 BSA 分子构象转变角度对变构效应的可能机制进行 了初步探讨.

1 实验部分

1.1 试剂与仪器

盐酸小檗碱(实验室自制^[9]), 牛血清白蛋白(>98%, BSA Fraction V, 上海华美生物工程公司), Tris(生化试 剂), 超纯水(电阻率 17.8 MΩ•cm), CuCl₂•2H₂O等其他试 剂均为分析纯. RF-5301PC 型荧光光度仪(Shimadzu 公 司), J-715 圆二色光谱仪(日本 JASCO 公司, ARX-300 型 核磁共振仪(瑞士 BRUKER 公司).

1.2 实验方法

以含有一定浓度 BC 的 Tris-HCl 缓冲溶液(pH=7.4, 内含 0.15 mol•dm⁻³ NaCl 以维持离子强度)为溶剂配制 BSA (1.0×10⁻⁵ mol•dm⁻³)标准溶液. 向 10 mL BSA 标 准溶液中加入一定量的 Cu²⁺标准溶液摇匀后,置于(30 ±0.1)或(37±0.1) ℃水浴中恒温 3 h 后测定荧光发射光 谱(实验条件与文献[9]相同). 测定 BC-Tris-HCl 溶液在 300~500 nm 的紫外吸收光谱. 以 2.0×10⁻⁶ mol•dm⁻³ 的 BSA-Tris-HCl 溶液为溶剂配制 BC 与 Cu²⁺成一定浓 度比例的 BC-BSA-Cu²⁺溶液,测定其在 190~250 nm 的 CD 光谱(光谱条件与文献[10,11]相同). ¹H NMR 实验 用样品以 D₂O 为溶剂配制, 以 D₂O(化学位移 δ =4.70) 为内标确定 BC 分子中各 H 原子的化学位移.

2 结果与讨论

2.1 BC 对 Cu²⁺猝灭 BSA 内源性荧光的变构效应

BSA 分子中因含有荧光性氨基酸残基(色氨酸、酪 氨酸和苯丙氨酸)所以是内源性荧光物质,在 340 nm 附 近有荧光发射信号.有/无 BC 存在时, Cu²⁺都可以猝灭 BSA 的内源性荧光^[12](图 1,以 37 ℃为例).

图 1 37 ℃时有/无 BC 存在下 Cu²⁺对 BSA 内源荧光的猝灭 Figure 1 BSA fluorescence quenched by Cu²⁺ in the absence/presence of BC at 37 ℃

 $C_{BSA} = 1.0 \times 10^{-5} \text{ mol} \cdot \text{dm}^{-3}$; a: $C_{BC} = 0$, b: $C_{BC} = 0.5 \times 10^{-5} \text{ mol} \cdot \text{dm}^{-3}$, c: $C_{BC} = 2.5 \times 10^{-5} \text{ mol} \cdot \text{dm}^{-3}$; $C_{Cu}^{2+}/10^{-5} \text{ mol} \cdot \text{dm}^{-3}$ (from 1 to 9) was 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0, respectively

当BC浓度在1.0×10⁻⁵ mol•dm⁻³以下时, BSA的荧

光发射信号因 Cu^{2+} 猝灭而导致强度降低,但峰形及峰 位置无明显变化(图 1a 和 b);但是,当 BC 浓度达 1.0× 10^{-5} mol·dm⁻³以上时,BSA 在 343 nm 处的单峰被 BC 裂分为二重峰^[9],二重峰信号强度均随 Cu^{2+} 浓度增加而 减弱,但出峰位置没有明显改变(图 1c).

按照 Stern-Volmer 方程^[1]处理实验数据得到 Cu²⁺对 BSA 荧光的猝灭常数(K_{SV}). 类似于文献[6], 定义猝灭 变构系数 $\beta_Q = K_{SV}/K_{SV,0}$, 其中 $K_{SV}, K_{SV,0}$ 分别为含与不含 BC 时 Cu²⁺对 BSA 荧光的猝灭常数(表 1).

由表 1 可见, K_{sv} 随温度升高而有所增大, 说明 Cu²⁺ 对 BSA 的荧光猝灭过程可能为动态猝灭^[13]. Hage^[6]认 为: 若 $\beta > 1$, 变构剂对药物-蛋白质结合过程呈正变构; 若 $0 < \beta < 1$ 则呈负变构; 而 $\beta = 1$ 则说明无变构效应. 由 表 1 结果可知, BC 对 Cu²⁺猝灭 BSA 内源性荧光的过程 产生负变构效应($0 < \beta_Q < 1$).

将 β_Q 与变构剂 BC 浓度(C_{BC})作图(图 2),数学拟合 得到 β_Q = $Aexp(\gamma_Q C_{BC})$ 指数型方程(方程中A为指前因子, 当 $C_{BC}=0$ 时 A=1). 定义 γ_Q 为猝灭变构效率系数 ($dm^3 \cdot mol^{-1}$),用以表征变构剂的变构效率(表 2).

由表 2 可知, 当 $C_{BC}=0$ 时, $A\approx1$ 与理论推算值吻合; 猝灭变构系数 β_Q 偏离 1 的程度随 C_{BC} 增大而增加, 说明 猝灭变构效应随 C_{BC} 的增加而增强, Cu^{2+} 愈来愈难于猝

图 2 β_0 随 BC 浓度的变化关系

Figure 2 The relationship between β_Q and the concentration of BC

灭 BSA 内源荧光(表 1),这可能与 Cu²⁺与 BSA 荧光性氨 基酸残基间的空间距离 *r* 因 BC 共存而发生改变有关.

根据 Förster 无辐射的能量转移理论^[14,15]计算得到 Cu²⁺与 BSA 荧光性氨基酸残基之间的空间距离 *r*(表 3). 有/无 BC 存在时, *r* 都小于 7 nm, 表明 Cu²⁺与 BSA 之间 存在非辐射能量转移, 这是发生荧光猝灭的根本原因之 一. 与不含 BC 时相比, 有 BC 存在时 *r* 增大, Cu²⁺对 BSA 内源荧光猝灭能力必然降低, 这是 BC 对 Cu²⁺猝灭 BSA 内源性荧光过程具有负变构效应的主要原因之一.

	Table 1	The value of \mathbf{x}_{SV} and p_Q in the absence/presence of B C	
$C_{\rm BC}/({\rm mol}{ m \cdot dm}^{-3})$	t/°C	$K_{\rm SV} imes 10^4 / ({ m dm}^3 \cdot { m mol}^{-1})$	$\beta_{\rm Q} = K_{\rm SV}/K_{\rm SV,0}$
0	30	$0.3358 \pm 0.0060 \ (R^2 = 0.9978)$	1.000 ± 0.018
	37	$0.3565 \pm 0.0071 \ (R^2 = 0.9973)$	1.000 ± 0.021
0.5×10^{-5}	30	$0.3129 \pm 0.0043 \ (R^2 = 0.9987)$	0.932 ± 0.013
0.5 × 10	37	$0.3327 \pm 0.0041 \ (R^2 = 0.9989)$	0.933 ± 0.012
1.0×10^{-5}	30	$0.3014 \pm 0.0040 \ (R^2 = 0.9989)$	0.898 ± 0.012
	37	$0.3213 \pm 0.0045 \ (R^2 = 0.9985)$	0.901 ± 0.013
1.5×10^{-5}	30	$0.2934 \pm 0.0036 \ (R^2 = 0.9989)$	0.874 ± 0.011
1.5 × 10	37	$0.3189 \pm 0.0050 \ (R^2 = 0.9983)$	0.881 ± 0.014
2.0×10^{-5}	30	$0.2862 \pm 0.0039 \ (R^2 = 0.9987)$	0.852 ± 0.012
2.0 \lapha 10	37	$0.3073 \pm 0.0045 \ (R^2 = 0.9986)$	0.862 ± 0.013
2.5×10^{-5}	30	0.2848 ± 0.0038 ($R^2 = 0.9987$)	0.848 ± 0.011
2.3×10	37	$0.3070 \pm 0.0086 \ (R^2 = 0.9945)$	0.861 ± 0.024

表1 有/无 BC 存在下 Cu²⁺-BSA 体系的 K_{SV} 和 β_Q

表 2 猝灭变构效率系数 γ_Q

Table 2	The value	of the	quenching	allosteric	coefficient γ_0	
---------	-----------	--------	-----------	------------	------------------------	--

t/°C	Equation	$\gamma_{\rm Q}/({\rm dm}^3 { m \cdot mol}^{-1})$
30	$\beta_{\rm Q} = 0.98 \exp(-6581.6C_{\rm BC})$	-6581.6 ± 1041.0
37	$\beta_{\rm Q} = 0.98 \exp(-5949.2 C_{\rm BC})$	-5949.2 ± 1080.6

表 3 有/无 BC 存在下 Cu²⁺-BSA 体系的图谱重叠积分(*J*), 能 量转移效率(*E*)和空间距离(*r*)

Table 3 J, E and r of Cu^{2+} -BSA systems in the absence/presence of BC

$C_{\rm BC}/(10^{-5} {\rm mol} { m \cdot dm}^{-3})$	t/℃	$J/(10^{-16} \mathrm{cm}^3 \cdot \mathrm{dm}^3 \cdot \mathrm{mol})$	<i>E</i> /%	<i>r</i> /nm
0	30	0.5215	3.48	1.85
0	37	0.5308	1.60	2.12
0.5	30	7.0414	2.38	3.04
0.3	37	7.1050	1.23	3.41
1.5	30	7.0185	2.20	2.08
1.3	37	7.0088	1.85	3.18
2.5	30	1.0567	1.49	2.40
2.3	37	1.0148	0.35	3.04

BC 对 Cu²⁺-BSA 复合物稳定性和 Cu²⁺结合位点数 的变构效应

由于出现荧光峰裂分现象(图 1),用荧光发射峰面 积 $S(荧光发射总量)代替荧光发射强度 I,按 lg K_A = lg[(S_0-S)/S]-nlg [D]处理实验数据^[16]并作图(图 3). 公$ $式中 <math>K_A$ 为表观结合常数(用以表征复合物的稳定性, dm³•mol⁻¹), n 为 Cu^{2+} 在 BSA 分子上的结合位点数, S_0 和 S 分别为 Cu^{2+} 加入前后 BSA 的荧光发射总量, [D]为 加入 Cu^{2+} 的总浓度. 经拟合得到线性方程后,再由方程的斜率和截距计 算得到 Cu^{2+} 的结合位点数 n 和表观结合常数 $K_{A.}$ 定义 $\beta_A = K_A/K_{A,0}, \beta_n = n/n_0$ (其中 $K_{A,0}, K_A$ 和 n_0, n 分别为加入 BC 前后 BSA- Cu^{2+} 结合的表观结合常数和结合位点数) 用以表征 BC 对 Cu^{2+} 结合位点数和 BSA- Cu^{2+} 复合物稳 定性的定量变构效应(表 4).

从热力学计算结果可知, BC 存在时 BSA-Cu²⁺的结 合过程是熵增加(ΔS >0), Gibbs 自由能降低(ΔG <0)的 自发分子作用过程. 由表4可见, β_A >1和 β_n >1表明BC 对 BSA-Cu²⁺复合物稳定性和 Cu²⁺结合位点数都具有正 变构效应, 说明BC共存时使BSA-Cu²⁺复合物稳定性增 大, 进而使 Cu²⁺在血液中的存储时间增长, 同时游离 Cu²⁺浓度降低、Cu²⁺的毒副作用可能减小.

分别将 β_A 和 β_n 对 C_{BC} 作图(图 4), 发现 β_A 和 β_n 与 C_{BC} 之间都呈线性变化关系, 拟合得到线性方程. 将方 程斜率分别定义为变构效率系数 γ_A (dm³•mol⁻¹)和 γ_n (dm³•mol⁻¹)分别从表观结合常数和结合位点数两个角 度表征 BC 对 BSA-Cu²⁺结合变构效应的效率, 结果列于 表 5.

图 4 和表 5 结果说明, 随着 C_{BC} 增大, BSA-Cu²⁺结 合过程的变构程度越来越偏离 1, 表明变构效应随 BC 浓度增加而增强, 这与猝灭变构过程相类似.

图 3 有/无 BC 存在下 Cu²⁺-BSA 体系 lg[*D*]~lg[(*S*₀-*S*)/*S*]图 Figure 3 The lg[*D*]~lg[(*S*₀-*S*)/*S*] curves of Cu²⁺ and BSA system with/without BC a. C_{BC} =0; b. C_{BC} =0.5×10⁻⁵ mol•dm⁻³; c. C_{BC} =1.5×10⁻⁵ mol•dm⁻³; d. C_{BC} =2.5×10⁻⁵ mol•dm⁻³

		Table 4	The value of p_A and p_n of B	SA -Cu binding pro	JCESS	
	$C_{\rm BC}/(10^{-5} {\rm mol} \cdot {\rm dm}^{-3})$	t/°C	$K_{\rm A}/(10^2{\rm dm^3 \bullet mol^{-1}})$	n	$\beta_{\rm A} = K_{\rm A}/K_{{\rm A},0}$	$\beta_n = n/n_0$
	٥	30	0.96 ± 0.02	0.85 ± 0.04	1.00 ± 0.020	1.00 ± 0.05
	0	37	1.90 ± 0.02	0.94 ± 0.03	1.00 ± 0.005	1.00 ± 0.03
	0.5	30	1.53 ± 0.01	0.92 ± 0.02	1.59 ± 0.010	1.08 ± 0.02
	0.5	37	2.43 ± 0.01	0.96 ± 0.02	1.28 ± 0.005	1.02 ± 0.02
	1.0	30	2.03 ± 0.01	0.94 ± 0.02	2.11 ± 0.010	1.07 ± 0.02
	1.0	37	3.10 ± 0.01	0.99 ± 0.02	1.63 ± 0.005	1.06 ± 0.02
	1.5	30	2.68 ± 0.01	0.99 ± 0.02	2.79 ± 0.010	1.16 ± 0.02
	1.5	37	3.26 ± 0.01	1.00 ± 0.02	1.72 ± 0.005	1.06 ± 0.02
	2.0	30	3.04 ± 0.01	1.01 ± 0.02	3.17 ± 0.010	1.14 ± 0.02
2.0	2.0	37	4.50 ± 0.01	1.04 ± 0.02	2.37 ± 0.005	1.11 ± 0.02
2.5	2.5	30	3.45 ± 0.01	1.02 ± 0.01	3.59 ± 0.010	1.20 ± 0.01
	2.3	37	5.53 ± 0.01	1.07 ± 0.02	2.91 ± 0.005	1.14 ± 0.02

图 4 $C_{BC} \sim \beta_A$ (a)和 $C_{BC} \sim \beta_n$ (b)关系曲线 **Figure 4** The $C_{BC} \sim \beta_A$ (a) and $C_{BC} \sim \beta_n$ (b) curves of BSA-Cu²⁺system

表5 BC 对 BSA-Cu²⁺结合过程的变构效率系数 $\gamma_A \pi \gamma_n$ **Table 5** The value of γ_A and γ_n of BSA-Cu²⁺ binding process

		61	
t/°C	Equation	$\gamma_{\rm A}/(10^5 {\rm dm^3 \bullet mol^{-1}})$	$\gamma_{\rm n}/(10^3 {\rm dm^3 \cdot mol^{-1}})$
30	$\beta_{\rm A} = 1.05 \times 10^5 C_{\rm BC} + 1.07 \ (R^2 = 0.9924)$	1.05 ± 0.04	
37	$\beta_{\rm A} = 0.74 \times 10^5 C_{\rm BC} + 0.90 (R^2 = 0.9531)$	0.74 ± 0.08	
30	$\beta_{\rm n} = 6.72 \times 10^3 C_{\rm BC} + 1.00 \ (R^2 = 0.9988)$		6.72 ± 0.12
37	$\beta_{\rm n} = 5.65 \times 10^3 C_{\rm BC} + 1.00 \ (R^2 = 0.9994)$		5.65 ± 0.07

在实验浓度范围内, γ_Q 和 γ_n 的数量级均为 10^3 量级, 而 γ_A 的数量级为 $10^4 \sim 10^5$ 量级, 说明 BC 对 BSA-Cu²⁺ 复合物稳定性的变构效率明显高于其对荧光猝灭和结 合位点的变构, 表明 BC 共存时可能会显著增加 Cu²⁺-血清蛋白复合物的稳定性, 并且 Cu²⁺-血清蛋白复合物 稳定程度随 BC浓度增加而增强. 而 Cu²⁺-血清蛋白复合 物稳定性增加预示 Cu²⁺在生物体血液中贮存时间会延 长,同时其游离浓度将会减小.

2.3 变构效应的可能机制

核磁共振(NMR)技术是一种检测分子间相互作用 的灵敏方法^[17].分子结构中相关原子化学位移值(*ð*)的 改变能够反映出分子间相互作用的发生以及相互作用 的关键基团或片段^[18,19].图 5 为 BC (a), BC-BSA (b)和 BC-BSA-Cu²⁺ (c)的 ¹H NMR 谱图,以 D₂O(化学位移 δ=4.70)为内标对图 5 解析结果列于表 6.

与 BC(图 5a)相比, BC-BSA(图 5b)和 BC-BSA-Cu²⁺ (图 5c)体系中 BC 各 H 原子的化学位移均向低场移动, 这可能是由于疏水性 BC 进入 BSA 的疏水空腔而被 BSA 包埋所致.

但是,相同条件下 BC 各 H 原子的化学位移改变值 (Δδ)呈现出不同的改变程度.在 BC-BSA 二元体系中, 其顺序为 H(B)>H(E)>H(D)>H(F)>H(C)>H(A)> H(M)>H(L)>H(G)>H(K);在 BC-BSA-Cu²⁺三元体系 中,顺序为 H(B)>H(E)>H(D)>H(C)>H(F)>H(M)> H(A)>H(L)>H(G)>H(K),表明 H(B), H(E)和 H(D)所 在片段可能是 BC 与 BSA 强结合的分子片段,而 H(L), H(G)和 H(K)部分则是 BC 与 BSA 的弱结合片段,即 BC 可能以特定的分子取向插入 BSA 分子内部.此外,

图 5 BC (a), BC-BSA (b)和BC-BSA-Cu²⁺ (c)的¹H NMR 谱图 **Figure 5** ¹H NMR spectrum of BC (a), BC-BSA (b) and BC-BSA-Cu²⁺ (c)

 $C_{\rm BC} = 2.0 \times 10^{-4} \text{ mol} \cdot \text{dm}^{-3}$, molar ratio of n(BC) : n(BSA) (b) $: n(\text{Cu}^{2+})$ (c) was 200 : 1 : 1

иб乙	δ(BC)/	$\delta'(\text{BC-BSA})/$	$\Delta \delta^{*/}$	δ "(BC-BSA-Cu ²⁺)/	$\Delta \delta^{\prime **/}$
H 原丁	ppm	ppm	Hz	ppm	Hz
А	9.407	9.465	17.41	9.501	28.21
В	7.979	8.193	64.23	8.226	74.13
С	7.752	7.819	20.11	7.882	39.02
D	7.567	7.686	35.72	7.744	53.12
Е	7.008	7.211	60.93	7.246	71.43
F	6.699	6.799	30.01	6.811	33.61
G	5.900	5.943	12.91	5.982	24.61
J	4.653	***	***	***	***
Κ	3.948	3.972	7.20	4.007	17.70
L	3.880	3.929	14.71	3.971	27.31
М	3.006	3.058	15.61	3.102	28.81

表 6 BC 的化学位移及改变值 Table 6 The values of BC chemical shifts δ and $\Delta \delta$

 $\Delta \delta = (\delta' - \delta) \text{ ppm} \times 300.13 \text{ MHz} **\Delta \delta' = (\delta'' - \delta) \text{ ppm} \times 300.13 \text{ MHz};$ ***overlapped by D₂O, 1 ppm=300.13 MHz.

BC-BSA 和 BC-BSA-Cu²⁺体系相比较, BC 与 BSA 结合时的强(或弱)结合片段没有改变,但是 BC-BSA-Cu²⁺体系中 BC 各 H 原子的化学位移改变值(Δδ)均较 BC-BSA 二元体系有所增大,说明 BC-BSA-Cu²⁺体系中 BC-BSA 有更强的相互作用,这可能是 BC 对 BSA-Cu²⁺结合过程 具有变构效应的根本原因. 从圆二色谱(图 6)计算得到 BSA 二级结构含量结果 (表 7)表明, 变构剂 BC 存在时, BSA 分子构象中四种二 级结构(α-Helix, β-Sheet, Turn 和 Random)含量均有不同 程度的改变, 说明 BC 的变构效应正是通过 BC-BSA 结 合进而使 BSA 构象改变得以实现的. BC-BSA-Cu²⁺三元 体系中, BSA 分子中 α-Helix 和 β-Sheet 含量较 Cu²⁺-BSA 二元体系略有降低而转角(Turn)结构明显增加, 这种构 象改变可能是导致 Cu²⁺与 BSA 分子中荧光性氨基酸残 基间的空间距离 r 变大(表 3)的主要原因, 进而使直接荧 光猝灭和非辐射能量转移过程变得比较困难, 最终致使 BC 对 BSA-Cu²⁺荧光猝灭过程呈负变构效应.

图 6 变构过程中 BSA 的 CD 图谱

Figure 6 CD spectra of BSA in allosteric process $C_{\text{BSA}} 2.0 \times 10^{-6} \text{ mol} \cdot \text{dm}^{-3}$, molar ratio of $n(\text{BC}) : n(\text{BSA}) : n(\text{Cu}^{2+})$ from 1 to 4 was 0.5 : 1 : 1, 0 : 1 : 0, 2.5 : 1 : 0 and 2.5 : 1 : 1, respectively

表7 BSA 二级结构含量的改变

Table 7 The change of α -helix, β -sheet, turn and random coil content in BSA

Sustam (malar ratio)	α -Helix/	β -Sheet/	Turn/	Random/
System (motar ratio)	%	%	%	%
Cu^{2^+} -BSA (1 : 1)	45.4	27.0	0.3	27.3
BC-BSA-Cu ²⁺ ($0.5:1:1$)	44.7	26.7	1.2	27.5
BC-BSA-Cu ²⁺ (2.5 : 1 : 1)	45.3	25.9	1.4	27.4

此外, BC 对 K_A 和 n 呈正变构效应的原因可能也源 自于 BSA 分子构象的转变.因为 BC 插入 BSA 分子后, BSA 分子构象发生应激改变(比如 BC 周围的 BSA 局部 结构可能变得比较松散),使其分子上容易与 Cu^{2+} 结合 的含 N, O 的氨基酸残基更加暴露^[20],导致 Cu^{2+} 与 BSA 分子的结合更加容易(β_A >1), BSA 分子上 Cu^{2+} 可结合 的位点也有所增加(β_n >1).

References

1 Li, G.-Z.; Liu, Y.-M.; Guo, X.-Y.; Wang, J.-J. Acta Chim.

Sinica 2006, 64, 679 (in Chinese).

(李桂芝, 刘永明, 虢新运, 王进军, 化学学报, **2006**, *64*, 679.)

- 2 Wang, Y.-Q.; Zhang, H.-M.; Zhang, G.-C.; Tao, W.-H.; Tang, S.-H. J. Lumin. 2007, 126, 211.
- 3 Kandagal, P. B.; Shaikh, S. M. T.; Manjunatha, D. H.; Seetharamappa, J.; Nagaralli, B. S. J. Photochem. Photobiol. A 2007, 189, 121.
- 4 Tian, Q.-L.; Liao, S.-H.; Lu, P.; Liu, L.-J. Chin. J. Chem. 2006, 24, 1388.
- 5 Wen, X.-D.; Li, P.; Qian, Z.-M.; Yang, R. Acta Chim. Sinica 2007, 65, 421 (in Chinese).
 (闻晓东,李萍,钱正明,杨冉,化学学报, 2007, 65, 421.)
- 6 Chen, J.-Z.; Hage, D. S. Nat. Biotechnol. 2004, 22, 1445.
- 7 Wainer, I. W. Nat. Biotechnol. 2004, 22, 1376.
- 8 Chen, J.-Z.; Fitos, I.; Hage, D. S. Chirality 2006, 18, 24.
- 9 Liu, X.-F.; Xia, Y.-M.; Fang, Y. J. Inorg. Biochem. 2005, 99, 1449.
- Kandagal, P. B.; Ashoka, S.; Seetharamappa, J.; Shaikh, S. M. T. 1; Jadegoud, Y.; Ijare, O. B. *J. Pharm. Biomed. Anal.* 2006, *41*, 393.
- Ashoka, S.; Seetharamappa, J.; Kandagal, P. B.; Shaikh, S. M. T. *J. Lumin.* 2006, *121*, 179.
- 12 Song, Z.; Liang, H. Spectrosc. Spect. Anal. 2002, 23, 892 (in

Chinese).

(宋琤, 梁宏, 光谱学与光谱分析, 2002, 23, 892.)

- Yang, P.; Gao, F. *Principle of Bioinorganic Chemistry*, Science Press, Beijing, 2002, pp. 329~331 (in Chinese).
 (杨频,高飞,生物无机化学原理,科学出版社,北京, 2002, pp. 329~331.)
- 14 Sharma, A.; Schulman, S. G. Introduction to Fluorescence Spectroscopy, John Wiley & Sons, Inc., New York, 1999, pp. 58~59.
- Zhang, G.; Keita, B.; Brochon, J.-C.; de Oliveira, P.; Nadjo,
 L.; Craescu, C. T.; Miron, S. J. Phys. Chem. B 2007, 111, 1809.
- 16 Feng, X.-Z.; Lin, Z.; Yang, L.-J.; Wang, C.; Bai, C.-L. *Talanta* 1998, 47, 1223.
- 17 Sulkowska, A.; Bojko, B.; Rownicka, J.; Rezner, P.; Sulkowski, W. W. J. Mol. Struct. 2005, 74, 781.
- 18 Sulkowska, A.; Bojko, B.; Rownicka, J.; Rezner, P.; Sulkowski, W. W. *Biopolymers* 2004, 74, 256.
- 19 Wang, Y.; Li, L.-X.; Zhao, D.-B.; Zhang, W.; Liu, X.-H. Acta Chim. Sinica 2006, 64, 1361 (in Chinese).
- 20 (王勇, 李林玺, 赵东保, 张卫, 刘绣华, 化学学报, 2006, 64, 1361.)
- 21 Bal, W.; Christodoulou, J.; Sadler, P. J.; Tucker, A. J. Inorg. Biochem. 1998, 70, 33.

(A0801147 CHENG, F.; LU, Z. S.)