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Abstract

The sensitivity of the Highway Capacity Manual (HCM) 2000 delay model to its parameters was inves-
tigated with the factorial design method. The study results suggest that the arrival flow, the saturation
flow, and the green signal time are the main parameters that significantly affect the average control delay
estimated by the delay model. Additionally, the multi-parameter interactions of the arrival flow-saturation
flow and the arrival flow-green signal time have major effects on the model-estimated average control delay.
The study results also demonstrate that the analysis period and the cycle length do not seem to have major
effects on the estimation of the average control delay. A further factorial analysis performed to investi-
gate the effect of parameters on the uniform delay showed that the green signal time and the cycle length
appeared to significantly affect the uniform delay.

Key words: Sensitivity analysis, Factorial design method, HCM 2000 delay model, Uniform delay, Incre-
mental delay.

Introduction

Sensitivity analysis of a model can help determine
relative effects of model parameters on model results.
In other words, the purpose of sensitivity testing of
a model is to investigate whether a slight pertur-
bation of the parameter values will result in a sig-
nificant perturbation of the model results, that is,
the internal dynamics of the model. The most com-
monly used sensitivity method is the change one-
factor-at-a-time approach. The major weakness of
this method is its inability to identify multiple fac-
tor interactions among the model parameters. As
an alternative approach, the factorial design method
developed by Box et al. (1978) has been successfully
employed in various environmental sensitivity stud-
ies (Henderson-Sellers, 1992, 1993; Liang, 1994; Bar-
ros, 1996; Henderson-Sellers and Henderson-Sellers,
1996; Yildiz, 2001; among others). Unlike the
standard change one-factor-at-a-time sensitivity ap-

proach, this method has the advantage of testing
both the sensitivity of model results to changes in
individual parameters and to interactions among a
group of parameters.

The objective of this study is to utilize the facto-
rial design method in the sensitivity analysis of a to-
tal delay model that estimates the difference between
the actual travel time of a vehicle traversing a sig-
nalized intersection approach and the travel time of
the same vehicle traversing on the intersection with-
out impedance at the desired free flow speed. The
Highway Capacity Manual (HCM) 2000 (TRB, 2000)
delay model, one of the most commonly used time
dependent delay models, was selected for the sensi-
tivity study. Due to the complexity and the highly
nonlinear behavior of the model, the standard change
one-factor-at-a-time sensitivity method seems inad-
equate. Therefore, as a first attempt, the sensitiv-
ity analysis of the model was conducted with the
factorial design method to identify both main pa-
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rameter and multiple parameter effects of primary
importance.

Control delay

Total delay, also called control or overall delay, is de-
fined as the additional time that a driver has to spend
at an intersection when compared to the time it takes
to pass through the intersection without impedance
at the free flow speed. This additional time is the
result of the traffic signals and the effect of other
traffic, and it is expressed on a per vehicle basis.

In estimating delay at signalized intersections,
stochastic steady-state and deterministic delay mod-
els are used for undersaturated and oversaturated
conditions, respectively. Neither model, however,
deals satisfactorily with variable traffic demands.
Stochastic steady-state delay models are only ap-
plicable for undersaturated conditions and predict
infinite delay when the arrival flow approaches the
capacity. When demand exceeds the capacity, con-
tinuous overflow delay occurs. Deterministic delay
models can estimate continuous oversaturated delay,
but they do not deal adequately with the effect of
randomness when the arrival flow is close to the ca-
pacity, and they fail for degrees of saturation between
1.0 and 1.1. Consequently, the stochastic steady-
state models work well when the degree of saturation
is less than 1.0, and the deterministic oversaturation
models work well when the degree of saturation is
considerably greater than 1.0. There exists a discon-
tinuity when the degree of saturation is 1.0 for which
the latter models predicts zero delay, while the for-
mer models predicts infinite delay.

Time-dependent delay models, therefore, fill the
gap between these 2 models and give more realistic
results in estimating the delay at signalized intersec-
tions. They are derived as a mix of the steady-state
and the deterministic models by using the coordinate
transformation technique described by Kimber and
Hollis (1978, 1979). Here, the coordinate transfor-
mation is applied to the steady-state curve to make
it asymptotic to the deterministic line. Thus, time-
dependent delay models predict the delay for both
undersaturated and oversaturated conditions with-
out having any discontinuity at the degree of satu-
ration 1.0.

The HCM 2000 delay model

The HCM 2000 model, along with the Australian
(Akcelik, 1981) and the Canadian (Teply, 1996) mod-

els, is a commonly used delay model for estimating
delay at signalized intersections. General formula-
tions of these models are similar to each other. In the
HCM 2000 model, the expression of average control
delay experienced by vehicles arriving in a specified
time and flow period at traffic signals is given by Eq.
(1):

d = d1 × (PF ) + d2 + d3 (1)

in which d is the average control delay per vehicle
(s/veh), d 1is the uniform delay term resulting from
interruption of traffic flow by traffic signals at in-
tersections, PF is the uniform delay progression ad-
justment factor, which accounts for effects of signal
progression, d 2 is the incremental delay term incor-
porating effects of random arrivals and oversaturated
traffic conditions, and d 3 is the initial queue delay
term accounting for delay to all vehicles in the anal-
ysis period due to the initial queue at the start of
the analysis period, taken as zero.

Uniform delay

The uniform delay term is based on deterministic
queuing analysis and is predicted by the assump-
tion that the number of vehicles arriving during each
signal cycle is constant and equivalent to the aver-
age flow rate per cycle. Because of constant arrival
rates, randomness in the arrivals is ignored and the
discharge rate varies from zero to saturation flow ac-
cording to the red and green time of the signal. The
discharge rate equals the saturation flow rate only
when a queue exists because of red time of the sig-
nal. On the other hand, when there is no queue, the
discharge rate is equal to the arrival flow rate due to
undersaturated traffic conditions, and values of de-
gree of saturation (X) beyond 1.0 are not used in
the computation of d 1. The uniform delay term is
expressed by Eq. (2):

d1 =
0.5C(1− g

C
)2

1−
[
min(1, X) g

C

] (2)

where d 1is uniform delay (s/veh), C is cycle time
(s), g is green time (s), X is degree of saturation
indicating the ratio of arrival flow (or demand) to
capacity (i.e. v/c), and g/C is green ratio.
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Incremental delay

The incremental delay term represents additional de-
lay experienced by vehicles arriving during a speci-
fied flow period. Incremental delay results from both
temporary and persistent oversaturation. Tempo-
rary oversaturation occurs during both undersatu-
rated and oversaturated traffic conditions because of
randomness in vehicle arrivals and temporary cycle
failures. Thus, delay resulting from temporary over-
saturation is called random overflow delay. The ef-
fect of the randomness in arrival flows is not impor-
tant and can be neglected for low degrees of satu-
ration because total arrivals are much less than the
capacity. Conversely, for high degrees of saturation
and especially when the arrival flow approaches the
capacity, the effect of random variation in arrivals
increases significantly.

Persistent oversaturation, on the other hand,
only occurs during oversaturated traffic conditions
because the arrival flow is always greater than the ca-
pacity; that is, vehicles cannot be discharged within
the signal cycles. Delay resulting from persistent
oversaturation is called continuous or deterministic
overflow delay. The effect of the overflow delay in
incremental delay increases as the duration of the
analysis period (T ) and the value of the degree of
saturation (X ) increase. The expression of the in-
cremental delay term is given in Eq. (3):

d2 = 900T

[
(x − 1) +

√
(x − 1)2 +

8kIX

cT

]
(3)

where d 2 is the incremental delay to account for the
effect of random and oversaturation queues, T is the
duration of analysis period in hours, k is the incre-
mental delay factor, I is the upstream filtering or
metering adjustment factor, and c is capacity given
as a function of saturation flow (s) and green ratio
(i.e. c = s g

C
).

Factorial design method

A general factorial design method tests a fixed num-
ber of possible values for each of the model param-
eters with specific perturbations of values (usually
2 levels: upper and lower). Unlike the standard
change-one-factor-at-a-time method, this method
has the advantage of testing both the sensitivity to
changes in individual parameters and to interactions
between groups of parameters. The method tests a

fixed number of possible values for each of the model
parameters, and then identifies and ranks each pa-
rameter according to some pre-established measures
of model sensitivity by running the model through
all possible combinations of the parameters (Box et
al., 1978). For example, if there are n parameters in
the model for 2 perturbation levels, then there will
be 2n combinations of the model parameters. This
is illustrated in the following 3-parameter (23 facto-
rial) design. Assume that parameters are called A,
B, and C, and the prediction variable is called PV.
The corresponding design matrix for this example is
shown in Table 1.

Table 1. Factorial design matrix for single parameters.

Run A B C PV
1 - - - R1

2 + - - R2

3 - + - R3

4 + + - R4

5 - - + R5

6 + - + R6

7 - + + R7

8 + + + R8

where + and - signs represent the 2 possible values
of each parameter (upper and lower levels, respec-
tively). Within the design matrix, the effects due to
each parameter and parameter interactions can be
estimated as:

Ej = [
n∑
i

(SijRi)]/Nj (4)

in which Ej represents the effect of the jth factor
(i.e. in the jth column), n is the total number of ex-
perimental runs (i.e. n= 8), Sij represents the sign
in row i and column j, Ri represents the value of the
prediction variable obtained from the ith experimen-
tal run, and Nj is the number of + signs in column
j.

Using Eq. (4) and the above design matrix, the
effects of parameter interactions on the model results
can also be estimated based on the signs of the pa-
rameter interactions using the following rule: plus
times minus gives a minus, and minus times minus
or plus times plus gives a plus. The corresponding
design matrix for parameter interactions is given in
Table 2.
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Table 2. Factorial design matrix for multi-parameter interactions.

Run A·B A·C B·C A·B·C
1 + + + -
2 - - + +
3 - + - +
4 + - - -
5 + - - +
6 - + - -
7 - - + -
8 + + + +

The degree of importance of the parameters and
their interactions can be determined after all the Ej

values are estimated from Eq. (4). One way of iden-
tifying and ranking the parameters with major ef-
fects, as suggested by Box et al. (1978), is to plot
the effects on a normal probability scale. According
to this method, any outliers from the straight line
on the normal probability plot could be considered
to affect the model results significantly, while other
effects would lead to variability in model results con-
sistent with the result of random variation about
a fixed mean, assuming that higher order interac-
tions are negligible in a manner similar to neglecting
higher order terms in a Taylor series expansion (Box
et al., 1978). Another way of identifying the param-
eters with major effects on the model results, as sug-
gested by Henderson-Sellers (1992, 1993), is to use
an iterative method to find thresholds that are 2, 3,
or 4 standard deviations from zero. Here, any effects

greater than the estimated thresholds are considered
to have significant effects on the model results.

Factorial design of the HCM 2000 delay model

The 2-level factorial design method was applied to
the HCM Delay 2000 Model for the sensitivity anal-
ysis. Five model parameters with parameter index
numbers from 1 to 5 (1:v , 2:s, 3:g, 4:C , and 5:T )
were selected for this purpose (Table 3). Since the
degree of saturation (X ) and the capacity (c) are
dependent parameters, they cannot be selected as in-
dividual parameters in the sensitivity analysis. The
upper and lower levels of the selected model param-
eters given in Table 3 were chosen arbitrarily within
their reasonable ranges. In this particular study, the
progress adjustment factor (PF), the incremental
delay calibration factor (k ), and the upstream fil-
tering adjustment factor (l) were taken as 1.0, 0.5,
and 1.0, respectively.

Table 3. The selected model parameters for the sensitivity analysis.

Parameter Parameter Name Symbol Lower Upper
Index No. Level Level

1 Arrival flow (veh/h) v 250 750
2 Saturation flow (veh/h) s 1000 2000
3 Green time (s) g 30 90
4 Cycle time (s) C 120 180
5 Duration of analysis period (h) T 0.5 1.0

For the given number of parameters and pertur-
bation levels, the design matrix for the main param-

eters is shown in Table 4.
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Table 4. The design matrix for the main model parameters.

Model Parameters
Run 1 2 3 4 5
1 - - - - -

2 + - - - -

3 - + - - -

4 + + - - -

5 - - + - -

6 + - + - -

7 - + + - -

8 + + + - -

9 - - - + -

10 + - - + -

11 - + - + -

12 + + - + -

13 - - + + -

14 + - + + -

15 - + + + -

16 + + + + -

17 - - - - +

18 + - - - +

19 - + - - +

20 + + - - +

21 - - + - +

22 + - + - +

23 - + + - +

24 + + + - +

25 - - - + +

26 + - - + +

27 - + - + +

28 + + - + +

29 - - + + +

30 + - + + +

31 - + + + +

32 + + + + +

The corresponding computation matrix for the
multiple parameter interactions was obtained using

the design matrix (Table 5).
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Sensitivity Results and Discussion

A total of 32 runs were conducted for the given fac-
torial design. The results for average control delay
and parameter effects for main and multiple param-
eter interactions are given in Table 6.

Table 6. Results of 32 runs and parameter effects.

Runs Average Control Parameter Parameter
Delay (s/veh) Index No. Effects

1 204.2 1 1225.0
2 1385.2 2 -827.9
3 22.8 3 -1275.4
4 257.8 4 565.7
5 5.3 5 467.5
6 169.4 12 -627.1
7 2.4 13 -1030.1
8 4.2 14 382.6
9 832.1 15 406.9
10 3224.3 23 637.3
11 109.4 24 -280.2
12 963.2 25 -270.5
13 66.6 34 -380.0
14 797.6 35 -408.8
15 28.0 45 179.6
16 70.4 123 441.1
17 658.7 124 -130.3
18 5435.3 125 -210.0
19 22.9 134 -221.5
20 933.2 135 -348.2
21 5.4 145 127.4
22 620.0 234 122.4
23 2.4 235 211.8
24 4.2 245 -95.2
25 3082.9 345 -125.8
26 12,674.4 1234 -24.7
27 166.3 1245 -43.0
28 3663.3 2345 41.3
29 77.4 1235 151.4
30 3047.7 1345 -73.5
31 28.0 12345 -10.8
32 103.2

In order to determine the main and multiple pa-
rameter interactions with major effects on the HCM
2000 Delay model results, the parameter effects were
plotted on a standard normal probability scale as
suggested by Box et al. (1978). The outliers marked
on Figure 1 are v , s, and g as main parameters, and
v-s and v-g as 2-parameter interactions.
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Figure 1. Parameter effects plotted on a normal proba-

bility scale.

Using the iterative approach suggested by
Henderson-Sellers (1993, 1996), the identified pa-
rameters were then classified into 2 categories: pri-
mary importance and secondary importance. More
specifically, the importance of these parameters was
ranked based on the absolute value of their effects
at the 4-, 3-, and 2-standard deviations (i.e. 4σ, 3σ,
and 2σ) thresholds as shown in Table 7.

Table 7. Importance of identified parameters based on
thresholds of |4σ|, |3σ| and |2σ|.

Primary Secondary
Outliers Importance Importance

|4σ| |3σ| |2σ|
v

√

s
√

g
√

v-s
√

v-g
√

Referring to the cumulative queuing polygon
(Figure 2), the sensitivity results are consistent with
the fact that the average delay per vehicle at signal-
ized intersections is minimized when the arrival flow
(v ) is less than the capacity of the intersection (c).
In this case, vehicles are mainly subjected to uniform
delay and the amount of delay becomes equal to the
effective red signal time or less. On the other hand,
as the arrival flow exceeds the capacity, vehicles need
to wait for a few signal cycles to be discharged and
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this causes an increase in the average delay per ve-
hicle.

ν

S
Q (t)

wi

Red Green

A(t)

D(t)
i

t Time

Figure 2. Cumulative queuing polygon.

In addition to the arrival flow, the saturation flow
(s) is also a significant parameter of average delay.
As queued vehicles at a signalized intersection dis-
charge at a relatively higher rate, the effect of the
queue will diminish and the average delay will de-
crease. On the other hand, as the arrival flow ap-
proaches the saturation flow, or vehicles discharge
at a relatively lower rate, the average delay increases
accordingly.

As it is known, the capacity of a signalized in-
tersection is linearly dependent upon the saturation
flow as well as the allocation of the green time (g)

in a signal cycle. Therefore, if the green time in-
creases, the number of vehicles to be discharged also
increases and, in turn, the average delay per vehicle
decreases.

The results of sensitivity analysis indicate that
only 2 parameter interactions of v-s and v-g have
significant effects on model results. Not surprisingly,
this is due to their respective individual main param-
eter effects.

The study results also suggest that the remain-
ing main parameters (i.e. the cycle length [C ] and
the analysis period [T ]) do not have major effects
on the average delay as much as the arrival flow, the
saturation flow, and the green time.

A further factorial analysis was performed to in-
vestigate the effect of parameters on the uniform de-
lay. The results showed that the green time and the
cycle length appeared to be significant parameters
on the uniform delay.

Using the factorial design method, a sensitivity
testing of the HCM 2000 delay model to parameters
was performed in this study. The evaluation of the
sensitivity results show that the arrival flow, the sat-
uration flow, and the green time are the main param-
eters with significant effects on the average control
delay. Additionally, v-s and v-g are multiple pa-
rameters having major effects on the average control
delay.
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